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Abstract

Abstract

We look at the history of premier league football over the last 23
years using a mixture of state space models where the states are
defensive and attacking form (The ability to score goals and restrict
goals).

We show that the seasons vary a lot in volatility. Some seasons are
predictable with teams maintaining their form over the season. In
other seasons, the form of the teams vary substantially throughout
the season with some teams exhibiting sharp changes of style and
form. Plots

To model this we use a mixture of models to accommodate both
sequences of games of predictable form and other sequences of
games showing highly variable form. In using mixtures we arrive at a
model with superior predictive properties.
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Methodological Background

West, Harrison and Migon (1985) introduce a class of dynamic
generalised linear models where dynamic updates of the sufficient
statistics can be made through the exploitation of conjugacy.

We extend this methodology to models where the dynamic
parameters do not have sufficient statistics but where the full
conditional posteriors of each parameter are from known
distributions.

We show, using applications, how proxys for the sufficient statistics
(which we call quasi-sufficient statistics) can be constructed for the
purpose of sequential updating and marginalisation and prediction.

Parameters that cannot be updated in this way are averaged over.
These include discount factors which represent the rate of change of
form and another parameter to model correlation and
over-dispersion.
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Main ingredients of methodology

We exploit these ideas which simplify and speed up inference

1 Sequential Bayes with parameter discounting (forgetting the
past).

2 Exploitation of conjugacy providing closed form expressions
for posterior and cumulative evidence

3 Mixtures of models with differing discount factors (each
weighted by its cumulative evidence).

4 Use of sufficient statistics or proxys for them to be used to
define conditional posteriors

5 Use of only multiplicative models

6 Total absence of simulation based methods
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The state space model

Figure: Sequential evolution of parameters of two conditionally
independent Poisson distributions.

Gareth Ridall,Lancaster University, UK, Anthony Pettitt, QUT, Australia, email: g.ridall@Lancaster.ac.uk
Fast sequential Bayesian prediction of football using mixtures of state space models



Introduction and background
The likelihood and priors

Sequential updating of a state space model
Dynamic model averaging

Predicting premier league football outcomes

Aim of the analysis

To develop a model or combination of models capable of dynamically
predicting the premier league football outcomes over the last two decades,
using only the final scores, date and the home ground advantages. In this
way we hope to develop an exploratory tool to identify changes in form
and style both within and between the seasons of the major clubs.

Results, dates of results and bookmaker odds of results of over 20
seasons of premier league football are available online at

http://www.football-data.co.uk/englandm.php
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Literature

Residual analysis, from stationary univariate Poisson models over
each season, indicate low, predominantly positive correlation. In
addition there is some over-dispersion.

Dixon and Coles (1997) formulate correlation only between low
scoring games.

Karlis and Ntzoufras (2003), Crowder et. al (2002) and Koopman
and (2013) use latent variables to explain positive correlations.

Gamerman et al.,(2013) construct conjugate state space models for
univariate models

We suggest a shared gamma multiplicative random effect to explain
both over-dispersion and positive correlations.
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The likelihood and priors
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The likelihood

Let i ∈ {1, 2, . . . , 20} denote the home team and j ∈ {1, 2, . . . , 20}
denote the away team and let the games, in chronological order be
labelled as t = 1, . . . , 380.

Let αi,t be the attacking strength of team i at time t,

Let βj,t be the defensive strength of team j at time t

let γt be the common home ground advantage.

Then the home goals Xt and away goals Yt at time t are conditionally
independent Poisson distributions(

Xt

Yt

)
| κ ∼ Poisson

(
αi,tβj,tγtεt
αj,tβi,tεt

)
(Likelihood)

where εt ∼ Gamma (κ, κ) is a shared random effect for game t.
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The likelihood

The joint likelihood of data and random effects is

f (x, y, ε | α,β, γt , κ) ∝ exp(−
380∑
t=1

εt [αi,tβj,tγt + αj,tβi,t ]

×
380∏
t=1

κκ

Γ(κ)
εκ−1
t exp(−κεt) [εtαi,tβj,tγt ]

xt × [εtαj,tβi,t ]
yt

The likelihood marginalised over the random effect is

L(α,β, γ, κ) =

∫
ε

f (x, y, ε | α,β, Γ, κ)p(ε | κ)dε

=
380∏
t=1

Γ(κ+ xt + yt)

Γ(κ)Γ(xt + 1)Γ(yt + 1)
pxtt q

yt
t (1− pt − qt)

κt

where pt = µt

κ+µt+λt
and qt = λt

κ+µt+λt
, µt = αi,tβj,tγt and λt = αj,tβi,t .

Gareth Ridall,Lancaster University, UK, Anthony Pettitt, QUT, Australia, email: g.ridall@Lancaster.ac.uk
Fast sequential Bayesian prediction of football using mixtures of state space models



Introduction and background
The likelihood and priors

Sequential updating of a state space model
Dynamic model averaging

Over-dispersion and positive correlations

This is the bivariate Negative Binomial model which is able to explain
both over-dispersion and positive correlation. The marginal variance,
covariance and correlations of the bivariate distribution can be derived by
using standard identities.

Var(Xt) = µt +
µ2
t

κ

Cov(Xt ,Yt) =
µtλt
κ

Cor(Xt ,Yt) =
µtλt√

(κµt + µ2
t )(κλt + λ2t )

where µt is the expected score of the home side and λt is the expected
score of the away side.
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Sequential updating of a state space model
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Sequential inference

We assume that the dynamic parameters θt = {αt ,βt , γt} evolve over
time in such away that there is a loss of information from posterior to
prior through the use of discount parameters. Gamerman et al.,(2013)
and others express a conjugate transition equation to the conditionally
Poisson likelihood as(

Xt

Yt

)
| κ ∼ Poisson

(
αi,tβj,tγtεt
αj,tβi,tεt

)
(Observation Equation)

ωθt

θt−1
∼ Beta

(
ωpθt−1, (1− ω)pθt−1

)
(State Equation)

We will see that 0 < ω ≤ 1 has the effect of discounting the posterior
from the previous observation.
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Sequential Bayesian inference

Figure: Sequential Bayesian inference consists of an extend an an update
step.Gareth Ridall,Lancaster University, UK, Anthony Pettitt, QUT, Australia, email: g.ridall@Lancaster.ac.uk
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Posteriort−1
Extend−−−→ Priort

Update−−−−→ Posteriort

The extend argument below follows from induction.

θt−1 | x1:t−1, y1:t−1 ∼ Gamma
(
pθt−1, q

θ
t−1

)
(Posterior)

π(θt | x1:t−1, y1:t−1)∝
∫
θt−1

π(θt−1 | x1:t−1, y1:t−1) π(θt | θt−1)dθt−1 (Extend)

θt | x1:t−1, y1:t−1 ∼ Gamma
(
ωpθt−1, ωq

θ
t−1

)
(Prior)

∼ Gamma
(
p̃θt , q̃

θ
t

)
π(θt | x1:t , y1:t)∝ π(θt | x1:t−1, y1:t−1)p(xt , yt | θt) (Update)

θt | x1:t , y1:t ∼ Gamma
(
pθt , q

θ
t

)
(Posterior)

and the bi-product of the update step is the predictive distribution:

p(xt , yt | x1:t−1, y1:t−1) =

∫
θt

p(xt , yt | θt)π(θt | x1:t−1, y1:t−1)dθt

=
1

xt !yt !
× Γ(pθt )

Γ(p̃θt )

q̃θt
p̃θt

qθt
pθt
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The Extend step (before each game)

Figure: The extend step takes the posterior from the last observation to
create new prior. It expresses loss of information by discounting or down
weighting past form The discount factor, ω, preserves the mean of the
posterior but adds uncertainty to the priory by increasing its variance.
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Step 1 Football model: Extending the previous posterior

The priors in terms of the previous posterior

Prior Posterior

Attack αi,t ∼ Gamma
(
p̃αi,t , q̃

α
i,t

)
αi,t ∼ Gamma

(
pαi,t , q

α
i,t

)
Defense βi,t ∼ Gamma

(
p̃βi,t , q̃

β
i,t

)
βi,t ∼ Gamma

(
pβi,t , q

β
i,t

)
HGA γt ∼ Gamma (p̃γt , q̃

γ
t ) γt ∼ Gamma (pγt , q

γ
t )

αi,t ∼ Gamma
(
p̃αi,t , q̃

α
i,t

)
, p̃αi,t = ωpαi,t−1, q̃αi,t = ωqαi,t−1 (AS Home)

αj,t ∼ Gamma
(
p̃αj,t , q̃

α
j,t

)
, p̃αj,t = ωpαj,t−1, q̃αj,t = ωqαj,t−1, (AS Away)

βj,t ∼ Gamma
(
p̃βj,t , q̃

β
j,t

)
, p̃βj,t = ωpβj,t−1, q̃βj,t = ωqβj,t−1, (DS Away)

βi,t ∼ Gamma
(
p̃βi,t , q̃

β
i,t

)
, p̃βi,t = ωpβi,t−1, q̃βi,t = ωqβi,t−1, (DS Home)

γt ∼ Gamma (p̃γt , q̃
γ
t ), p̃γt = wtp

γ
t−1, q̃γt = wtq

γ
t−1, (HGA)

εt ∼ Gamma (κ, κ), (R.E)

The mean is preserved but the variance has increased.
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The Update step (after each game)

Figure: The Update step is just an application of Bayes theorem. The
prior is updated to encompass information from the score of the latest
football game. The normalising constant of Bayes theorem yields the
predictive distribution which give us the cumulative evidence, needed for
model comparisons.
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The full conditional posteriors (after each game)

We denote the fixed parameters by φ. The dynamic posterior parameters
θt = {αj,t , αi,t , βi,t , βj,tγt , εt } are updated at the end of a game at time t
using the following joint posterior

π(θt | x1:t , y1:t ,φ) ∝ exp−[εt(αi,tβj,tγ + αj,tβi,t)] × [εtαi,tβj,tγ]xt × [εtαj,tβi,t ]
yt︸ ︷︷ ︸

Likelihood

× αp̃αi,t−1

i,t exp(−p̃αi,tαi,t) α
p̃αj,t−1

j,t exp(−p̃αj,tαj,t)︸ ︷︷ ︸
Prior Attacking Strengths

× β
p̃
β
i,t−1

i,t exp(−p̃βi,tβi,t) β
p̃
β
j,t−1

j,t exp(−p̃βj,tβj,t)︸ ︷︷ ︸
Prior Defensive Strengths

× γ p̃
γ
t t−1

t exp(−q̃γt γt)︸ ︷︷ ︸
HGA

× εκ−1
t exp(−κεt)︸ ︷︷ ︸
Random effect
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Step 2 Updating the sufficient statistics

The updates can be formulated by examining the full conditional posterior
distributions. All the dynamic parameters have known shape parameters.
However the scale parameters involve other parameters and are not known.
However the expectations at the previous iteration can be used as a proxy for a
sufficient statistic.
The update equations are then

pαi,t ← p̃αi,t + xt qαi,t ← q̃αi,t + γ̂t β̂j,t , (AS home)

pαj,t ← p̃αj,t + yt qαj,t ← q̃αj,t + β̂i,t , (AS away)

pβi,t ← p̃βi,t + yt qβi,t ← q̃βi,t + α̂j,t , (DS home)

pβj,t ← p̃βj,t + xt qβj,t ← q̃βj,t + γ̂t α̂i,t (DS away)

pγt ← p̃γt + xt qγt ← q̃γt + α̂i,t β̂j,t (HGA)

pεt ← κ+ xt + yt qεt ← κ+ γ̂α̂i,t β̂j,t + α̂j,t β̂i,t (RE)

where α̂i,t =
pαi,t
qαi,t

, β̂i,t =
p
β
i,t

q
β
i,t

and γ̂t =
p
γ
t

q
γ
t

.
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Updating the cumulative evidence (after each game)

The predictive can be calculated as

p(xt , yt | x1:t−1, y1:t−1,φ) =
1

xt !yt !
×

Γ(pαi,t)

Γ(p̃αi,t)

q̃αi,t
p̃αi,t

qαi,t
pαi,t
×

Γ(pαj,t)

Γ(p̃αi,t)

q̃αj,t
p̃αj,t

qαj,t
pαj,t

×
Γ(pβi,t)

Γ(p̃βi,t)

q̃βi,t
p̃βi,t

qβi,t
pβi,t

‘×
Γ(pβj,t)

Γ(p̃βi,t)

q̃βj,t
p̃βj,t

qβj,t
pβj,t
× Γ(pγt )

Γ(p̃γt )

q̃γt
p̃γt

qγt
pγt
× Γ(pεt )

Γ(κ)

κκ

qεt
pεt
. (1)

The evidence for can be calculated as

Zk,t =
t∏

t∗=1

p(xt∗ , yt∗ | x1:t∗−1, y1:t∗−1,φk) (2)

Here φk , k = 1, 2, . . . ,K denotes a particular configuration of the fixed
parameters which include ω and κ, the discount and correlation
parameters.
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Dynamic model averaging
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Dynamic model averaging

We now look at the online evolution of the mixture of models.
We set a uniform prior on each configuration of fixed parameters φk at
the beginning of the season as π(φk) = 1

K . The posterior weights of each
component of the mixture, Ωk,t , are given by

Ωk,t = π(φk,t | x1:t , y1:t) =
p(xt , yt | x1:t−1, y1:t−1,φk)∑K
k=1 p(xt , yt | x1:t−1, y1:t−1,φk)

.

The filtered posteriors of the attacking and defensive strengths are now a
mixture of Gamma distributions

αt | φ =
K∑

k=1

Ωk,tαk,t

where αk,t ∼ Gamma
(
pαk,t ,q

α
k,t

)
, for k = 1, 2, . . . ,K

Gareth Ridall,Lancaster University, UK, Anthony Pettitt, QUT, Australia, email: g.ridall@Lancaster.ac.uk
Fast sequential Bayesian prediction of football using mixtures of state space models



Introduction and background
The likelihood and priors

Sequential updating of a state space model
Dynamic model averaging

Sequential prediction from the dynamic mixture

The cumulative evidence for the mixture of models is the sum of the
predictive distributions weighetd by the cumulative evidence up to last
observation.

Z∗
t =

t∏
t∗=1

K∑
k=1

Ωk,t−1p(xt∗ , yt∗ | x1:t∗−1, y1:t∗−1,φk) (3)

We show that the cumulative predictive performance of the mixture is
usually much better than the cumulative predictive performance any of
the components of the mixture.

The plots on the next few slides contrast the log evidence of the mixture,
Z∗
t to the log evidence of each of the components of the mixture

Zk,t k = 1, 2, . . . 20.
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Weighted prediction of a finite number of predictive
distributions

Figure: In model averaging the predictive from K models is combined
and weighted by the cumulative evidence from previous step
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Comparison of evidence for models for 1999 Season

Figure: The log evidence of the mixture compared to the log evidence of
each of the components of the mixture
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Comparison of evidence for models for 2001 Season

Figure: The log evidence of the mixture compared to the log evidence of
each of the components of the mixture
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Comparison of evidence for models for 2004 Season

Figure: The log evidence of the mixture compared to the log evidence of
each of the components of the mixture
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Comparison of evidence for models for 2005 Season

Figure: The log evidence of the mixture compared to the log evidence of
each of the components of the mixture
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Comparison of evidence for models for 2009 Season

Figure: The log evidence of the mixture compared to the log evidence of
each of the components of the mixture
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Comparison of evidence for models for 2015 Season

Figure: The pedictivity of the mixture compared to the log evidence of
each of the components of the mixture
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Comparison of evidence for models for 2019 Season

Figure: The log evidence of the mixture compared to the log evidence of
each of the components of the mixture
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The evolution of posterior weights with different discount
factors

Figure: Sequential posterior weights within and between seasons.
ω ∈ {0.95, 0.995, 0.96, 0.965, 0.97, 0.975, 0.98, 0.985, 0.99, 1}
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The evolution of weights of models with different values of
κ and ω.

Figure: Sequential posterior weights within and between seasons.
κ ∈ {10, 20, 50, 200} and ω ∈ {0.98, 0.99, 1}
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Filtered mixtures of abilities for Chelsea and Man United

Figure: The evolution of form of Chelsea (Winners in 05,06,10,15,17) and
Man United (Winners in 99,00,01,03,07,08,09,11,13)
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Filtered mixtures of abilities for Arsenal and Liverpool

Figure: The evolution of form of Arsenal (98,02,04) and Liverpool.
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Conclusions

MCMC and simulation based methodologies are of limited use for
fast online prediction.

Online sequential updating and model averaging give superior
predictions

Constant exponential smoothing with a fixed rate parameter is not
appropriate for football modelling

A small varying amount of over dispersion and positive correlation
can be dealt with by model averaging.

Mixtures of models highlight sharp changes in form and result in
better predictions.

Embrace conjugacy when you can
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Winners

Season Winners
1 1997/98 Arsenal
2 1998/99 Manchester United
3 1999/00 Manchester United
4 2000/01 Manchester United
5 2001/02 Arsenal
6 2002/03 Manchester United
7 2003/04 Arsenal
8 2004/05 Chelsea
9 2005/06 Chelsea

10 2006/07 Manchester United
11 2007/08 Manchester United
12 2008/09 Manchester United
13 2009/10 Chelsea
14 2010/11 Manchester United
15 2011/12 Manchester City
16 2012/13 Manchester United
17 2013/14 Manchester City
18 2014/15 Chelsea
19 2015/16 Leicester City
20 2016/17 Chelsea
21 2017/18 Manchester City
22 2018/19 Manchester City
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