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Abstract

@ We look at the history of premier league football over the last 23
years using a mixture of state space models where the states are
defensive and attacking form (The ability to score goals and restrict
goals).

@ We show that the seasons vary a lot in volatility. Some seasons are
predictable with teams maintaining their form over the season. In
other seasons, the form of the teams vary substantially throughout
the season with some teams exhibiting sharp changes of style and
form.

@ To model this we use a mixture of models to accommodate both
sequences of games of predictable form and other sequences of
games showing highly variable form. In using mixtures we arrive at a
model with superior predictive properties.
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Methodological Background

@ West, Harrison and Migon (1985) introduce a class of dynamic
generalised linear models where dynamic updates of the sufficient
statistics can be made through the exploitation of conjugacy.

@ We extend this methodology to models where the dynamic
parameters do not have sufficient statistics but where the full
conditional posteriors of each parameter are from known
distributions.

@ We show, using applications, how proxys for the sufficient statistics
(which we call quasi-sufficient statistics) can be constructed for the
purpose of sequential updating and marginalisation and prediction.

@ Parameters that cannot be updated in this way are averaged over.
These include discount factors which represent the rate of change of
form and another parameter to model correlation and
over-dispersion.

Gareth Ridall,Lancaster University, UK, Anthony Pettitt, QU



Introduction and background

Introduction and background

Gareth Ridall,Lancaster University, UK, Anthony Pettitt, QU



Introduction and background

Main ingredients of methodology

We exploit these ideas which simplify and speed up inference
© Sequential Bayes with parameter discounting (forgetting the
past).
@ Exploitation of conjugacy providing closed form expressions
for posterior and cumulative evidence

© Mixtures of models with differing discount factors (each
weighted by its cumulative evidence).

@ Use of sufficient statistics or proxys for them to be used to
define conditional posteriors

© Use of only multiplicative models

@ Total absence of simulation based methods
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Introduction and background

The state space model

The state or evolution equation

0, | 01 ~ 9()

0——00t710——-0t9t *—>0 9t+1

thla}/éfl Xtaift

X,Y; |0~ L(6y)
The likelihood or measurement equation

Figure: Sequential evolution of parameters of two conditionally
independent Poisson distributions.
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Introduction and background

Predicting premier league football outcomes

Aim of the analysis

To develop a model or combination of models capable of dynamically
predicting the premier league football outcomes over the last two decades,
using only the final scores, date and the home ground advantages. In this
way we hope to develop an exploratory tool to identify changes in form
and style both within and between the seasons of the major clubs.

Results, dates of results and bookmaker odds of results of over 20
seasons of premier league football are available online at

http://www.football-data.co.uk/englandm. php
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Introduction and background

Literature

@ Residual analysis, from stationary univariate Poisson models over
each season, indicate low, predominantly positive correlation. In
addition there is some over-dispersion.

@ Dixon and Coles (1997) formulate correlation only between low
scoring games.

@ Karlis and Ntzoufras (2003), Crowder et. al (2002) and Koopman
and (2013) use latent variables to explain positive correlations.

@ Gamerman et al.,(2013) construct conjugate state space models for
univariate models

@ We suggest a shared gamma multiplicative random effect to explain
both over-dispersion and positive correlations.
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The likelihood and priors

The likelihood

Let i € {1,2,...,20} denote the home team and j € {1,2,...,20}
denote the away team and let the games, in chronological order be
labelled as t =1, ..., 380.

@ Let o be the attacking strength of team i at time t,
@ Let 3 be the defensive strength of team j at time t
@ let ; be the common home ground advantage.

Then the home goals X; and away goals Y; at time t are conditionally
independent Poisson distributions

(Xt> | k ~ Poisson <ai’tﬁj’t7tet) (Likelihood)

Y: Oéj,tﬁi,tﬁt

where ¢; ~ Gamma (k, k) is a shared random effect for game t.
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The likelihood and priors

The likelihood

The joint likelihood of data and random effects is

380
f(X, Yy, € | «, /63 VYt H) o8 exp(f Z 6t'[ai,tﬂj,tp)/t + CVj,i.“ﬁi,l“]
t=1
380 K

H K B t t
8 F(H)G? Lexp(—ree) [exai o867 % [ercj e Bie]”
t=1

The likelihood marginalised over the random effect is

L(cv, B, 7, K) = / Flx,y,€ | @ BT, k)ple | r)de
380

MNk+x:+y . e "
T et 2 ) g1 g
(k)
t=1

Mxe + DM (ye +1)

where p; =

223 — At — . . — . .
PR W and g; = e Ht = Oé:,tﬂj,t’Yt and \; = a_],tﬂl,t-
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The likelihood and priors

Over-dispersion and positive correlations

This is the bivariate Negative Binomial model which is able to explain
both over-dispersion and positive correlation. The marginal variance,

covariance and correlations of the bivariate distribution can be derived by
using standard identities.

2
Var(X;) = pr + ;t

A
C]OV()(t7 Yt) = Hede
K

COl“(Xh Yt) = Mt)\t
V (ke + p3)(kAe + AZ)

where i, is the expected score of the home side and \; is the expected
score of the away side.
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Sequential updating of a state space model

Sequential inference

We assume that the dynamic parameters 8; = {a, 3,7} evolve over
time in such away that there is a loss of information from posterior to
prior through the use of discount parameters. Gamerman et al.,(2013)
and others express a conjugate transition equation to the conditionally
Poisson likelihood as

X: . a; 1B ¢ Vi€t . .
k ~ Poisson s Observation Equation
<Yt) ‘ ( aj,tﬂi,th ( d )
0
;} t1 ~ Beta (wp!_y, (1 —w)p?_,) (State Equation)
t7

We will see that 0 < w <1 has the effect of discounting the posterior
from the previous observation.
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Sequential updating of a state space model

Sequential Bayesian inference

Posterior Prior Posterior

01 | Xut1, Vi1 — 0 | Xi1, Vi1 — 60; | X, Yiu

ét = w@t_l
o——0 () | e——>o ét o—0 6,:,1 o—>0 ét o——>0
Xl‘,fla Y;‘,fl Xt7 Y
Extend Update

Figure: Sequential Bayesian inference consists of an extend an an update
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Sequential updating of a state space model

5 Extend . Update .
Posterior;_;—— Prior,——— Posterior;

The extend argument below follows from induction.
01 | x1:t—1, y1:t—1 ~ Gamma (pf,l, qf,l) (Posterior)

700 | X1t yie1)ox / 7(Ocr | Xve—1, yir—1) 7(0r | O_1)d0e_r (Extend)

01
0 | x1:t—1, y1:t—1 ~ Gamma (wpf,l,wqf,l) (Prior)
~ Gamma (p?, §7)
m(0¢ | Xue, yi:e)oc w(0¢ | Xue—1, yrie—1)p(xe, ye | 0¢) (Update)
0 | x1:t, y1:+ ~ Gamma (pf, qf) (Posterior)

and the bi-product of the update step is the predictive distribution:
P(Xt,}/t | Xl:t—l,_ylzt—l) = / P(Xt7}/t ‘ et)ﬂ'(et ‘ Xl:t—hylzt—l)det
J o,

e
1 r(pf) g™
xelye! © T(pY) qf"?
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Sequential updating of a state space model

The Extend step (before each game)

Home attacking strength Away attacking strength
wagt— waj 1
Home goals Away goals
HGA WY )e———— >0 X, K Y,
WPj -1 whii

Away defensive strength Home defensive strength
Figure: The extend step takes the posterior from the last observation to
create new prior. It expresses loss of information by discounting or down
weighting past form The discount factor, w, preserves the mean of the
posterior but adds uncertainty to the priory by increasing its variance.
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Sequential updating of a state space model

Step 1 Football model: Extending the previous posterior

The priors in terms of the previous posterior

Prior Posterior
Attack | ai ~ Gamma (ﬁ,-a,t, c"]ﬁ‘t) ai,s ~ Gamma (p,-oft7 q,-‘ft)

Defense | fBi+ ~ Gamma (ﬁft, E]ft) Bi,+ ~ Gamma (pft7 qft)

HGA Ve ~ Gamma (B, §.') 7t ~ Gamma (p/, q/)

~a o~ ~o [e% ~o @
aj,e ~ Gamma (pf,ta qi,t)a Pit = WpPit—1, Gijt = Wqj -1 (AS Home

)
Qje ~ Gamma (ﬁfh aﬁt)y ﬁﬁt = ijcftfly ‘#t = wqﬁ‘t—h (AS AW&}’)
B~ Gamma (B3 ), Bl =wpfiy, G =wqly, (DS Away)
Bi,t ~ Gamma (ﬁfﬁ diﬁft)7 ﬁft = wpf[?tfp Elft = qutfp (DS Home)

Ve~ Gamma‘ (ﬁ?v 67)7 ﬁ? = th?717 ‘7? = Wtq:lfh (HGA)
€: ~ Gamma (k, ), (R.E)

The mean is preserved but the variance has increased.
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Sequential updating of a state space model

The Update step (after each game)

Home attacking strength Away attacking strength

i @
Home goals Away goals
HGA 7 o= Ty K Yt
B; .
Jst d;_,
Away defensive strength Home defensive strength

Figure: The Update step is just an application of Bayes theorem. The
prior is updated to encompass information from the score of the latest
football game. The normalising constant of Bayes theorem yields the
predictive distribution which give us the cumulative evidence, needed for
model comparisons.
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Sequential updating of a state space model

The full conditional posteriors (after each game)

We denote the fixed parameters by ¢. The dynamic posterior parameters
0: = {ajt, iy, Birt, Bj,t7e, € + are updated at the end of a game at time t
using the following joint posterior

(0 | X1:6,¥1., D) o< exp —[ec(i,eB,ey + ajeBie)] X [exai,eBi,:7] X [erarj eBie]”
Likelihood

B —1 Y, —1
iyt ~O . jt _ma 3
x ;" exp(=pieaie) o' exp(—piray,e)

Prior Attacking Strengths

ﬁft_l _ =B 3 ’31'/1_1 _&B
Xﬁi,t exp( Pi,tﬁut) it exp( pj,tﬁlwt)

Prior Defensive Strengths

ﬁ?t*l ~y Kk—1
Xyttt exp(—§iye) X € exp(—ker)

HGA Random effect
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Sequential updating of a state space model

Step 2 Updating the sufficient statistics

The updates can be formulated by examining the full conditional posterior
distributions. All the dynamic parameters have known shape parameters.
However the scale parameters involve other parameters and are not known.
However the expectations at the previous iteration can be used as a proxy for a
sufficient statistic.

The update equations are then

piie < P + xt Gie < G+ ’%Bj,t, (AS home)
Pit < Bie + ye G < @+ Bie, (AS away)
pft A 5:‘12 +x qiﬁ,t — EIff + &, (DS home)
Pﬁt A 5ﬁr +xe qﬁt — CNIft + Yl (DS away)
p < B+ xt Gl G + i (HGA)
pr < K+ X + e q: — K+ ’?@f,tﬁAj,r + dj,tffi,r (RE)

R PN p? . v

where &;; = q;{, Bie = q'{;t and 4 = %.

i

-
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Sequential updating of a state space model

Updating the cumulative evidence (after each game)

The predictive can be calculated as

1 « r(Pf‘)ft) ~ftﬁ'§’xt r(pﬁ‘t) aﬁtﬁﬁt
xelye! r(ﬁiaft) Q,{):tp"c’xt r(ﬁioft) qﬁtpﬁt
(

(

p(Xta)/t | X1:t—15 Y1:t—1, ¢) =

ey 8 5P o
Xr(pff) g’ P y r(pf,) P LD @ (e ke

~ g ~ ] 7 T .
T(5) g2 7 TBL) o e T(B) gy T() gt

The evidence for can be calculated as

t
Zk,t = H P(Xt*7)/t*

t*=1

Xl:t*717y1:t*717¢k) (2)

Here ¢, k=1,2,..., K denotes a particular configuration of the fixed
parameters which include w and &k, the discount and correlation
parameters.
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Dynamic model averaging

Gareth Ridall,Lancaster University, UK, Anthony Pettitt, QU



Dynamic model averaging

Dynamic model averaging

We now look at the online evolution of the mixture of models.

We set a uniform prior on each configuration of fixed parameters ¢, at
the beginning of the season as 7(¢,) = % The posterior weights of each
component of the mixture, £ ;, are given by

p(Xe, ¥t | X1:6—1, Y1:e—1, D)
! .
Zk:l p(xt,yt | X1:t—15 Y1:t—1, ¢k)

Qk,t = 7T(¢k,t | Xl:ta.ylzt) =

The filtered posteriors of the attacking and defensive strengths are now a
mixture of Gamma distributions

K
(07, | ¢ = ZQk,tak,t

k=1

where o ~ Gamma (pi"t,qf_», fork=1,2,...
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Dynamic model averaging

Sequential prediction from the dynamic mixture

The cumulative evidence for the mixture of models is the sum of the
predictive distributions weighetd by the cumulative evidence up to last
observation.

t K
Zt* = H ZQk,t—lp(Xt*ayt*

t*=1 k=1

Xl:t*—l;yl:t*—17¢k) (3)

We show that the cumulative predictive performance of the mixture is
usually much better than the cumulative predictive performance any of
the components of the mixture.

The plots on the next few slides contrast the log evidence of the mixture,
Z; to the log evidence of each of the components of the mixture
Zir k=1,2,...20.
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Dynamic model averaging

Weighted prediction of a finite number of predictive
distributions

Ty Y Wy Ttt1 Y41

!

G, 0 01421, Q1 00011 o—ve01111%1n

N,

K
— 11— E Q kit ZL-.Hl
k=1

Predictive for mixture

Oy o—>0 Oy 7, Qo 0—>0 o1 o—>0 0b4.17,,,
él.-j © Opt Zii Qg &0 Opri1 o—ve Ok ti1Zin
Ot o—wo O 2 ) o, & O1ci11 o—ve O i

Update Extend Update

Figure: In model averaging the predictive from K models is combined
and weighted by the cumulative evidence from previous step
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Dynamic model averaging

Comparison of evidence for models for 1999 Season

1998-1999

mixture

=
i
S
©

w=08

-3640 o
3630 —

T
o
@
@

3670
-3660 o

<
log evidence

Figure: The log evidence of the mixture compared to the log evidence of
each of the components of the mixture
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Dynamic model averaging

Comparison of evidence for models for 2001 Season

2000-2001
mixture .
w=1 | ]
w=0.995 [ ]
w=0.99 [ ]
w=0.985 [ ]
w=0.98 [ ]
w=0.975 [ ]
w=0.97 [ ]
W=0.965 [ ]
w=0.96 [ ]
W=0955 [ ]
w=0.95 [ ]
w=0.94 [ ]
w=0.92 [ ]
w=0.91 | ]
w=09 | ]
w=0.89 | ]
w=0.87 | ]
w=0.85 . OO
w=0.83 I
w=05 [
T T T 1
° o ° °
e 2 .‘l‘ =
L] Q 9 9
log evidence

Figure: The log evidence of the mixture compared to the log evidence of
each of the components of the mixture
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Dynamic model averaging

Comparison of evidence for models for 2004 Season

2003-2004

mixture

=
i

S

©

w=08

3800

790 —
-3780 o
3770 -
3760 —

-3820
-3810

? <
log evidence

Figure: The log evidence of the mixture compared to the log evidence of
each of the components of the mixture

Gareth Ridall,Lancaster University, UK, Anthony Pettitt, QU



Dynamic model averaging

Comparison of evidence for models for 2005 Season

2004-2005

mixture

3
L
@
2
]

w=08

3650
2640

630 —
3620 -

<
log evidence

Figure: The log evidence of the mixture compared to the log evidence of
each of the components of the mixture
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Dynamic model averaging

Comparison of evidence for models for 2009 Season

2008-2009

mixture

=
i
&
©
&

w=08

3560

550 —
2540
3530

<@
log evidence

Figure: The log evidence of the mixture compared to the log evidence of
each of the components of the mixture
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Dynamic model averaging

Comparison of evidence for models for 2015 Season

2014-2015

mixture

w=08

3710
3700 o
3690 -
3680 —
3670 —

log evidence

Figure: The pedictivity of the mixture compared to the log evidence of
each of the components of the mixture
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Dynamic model averaging

Comparison of evidence for models for 2019 Season

2018-2019

mixture [ |

=
il
&
=
2

w=08

3800
-3790 -
3780 —

T
o
o

3840
-3830
3820 |

? <
log evidence

Figure: The log evidence of the mixture compared to the log evidence of
each of the components of the mixture
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Dynamic model averaging

The evolution of posterior weights with different discount
factors

Evolution of model weights
Model weights
w09

Wadel Weigh:

‘Qﬂ’é@m “ )

Figure: Sequential posterior weights within and between seasons.
w € {0.95,0.995,0.96,0.965,0.97,0.975. 0.98, 0.985,0.99, 1}
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Dynamic model averaging

The evolution of weights of models with different values of

Evolution of model weights by kappa and discount factor
Model weights
X w90 wi

T 1) 1) 1] i £l i 19 i 19 T 1 T I ) 1) i ) 10 19 £
Tao7 | oo | 7009 | 2000 | 2007 | 2002 | 2005 | 2004 | 2005 | 2006 | 2007 2006 | 2005 | 2010 | 2011 | 201z [ 2015 | Zots | 2015 [ 706 | 207 [ 2016

Y PR ORI VDY NSRS RN V0 RN RN NRANAN (NN NN |, 0 NN VAN R S
20 20 20 20 20 20 20 0|20 20 2 20 20 20 20 20 20
foa7 | oo | 008|000 5007|2005 2008|2004 | 0053008 |07 000 | 3009 | ot | ors | 3015|3013 | ot | 016

20 20 20
206 | 017 | 208

AR 0 NI B0 AR 0

0
k3 J _ [t e "
2 50 50 5% %0 50 5 ) E i o
H 2005 2007|2005 | 2006 | 2007 2008 T B 0 O 1

o

o

200
2005

P T 1 1 1 1 O
2008|2007 20080

A

Figure: Sequential posterior weights within and between seasons.
x € {10,20,50,200} and w € {0.98,0.99,1}

Gareth Ridall,Lancaster University, UK, Anthony Pettitt, QU




Dynamic model averaging

Filtered mixtures of abilities for Chelsea and Man United

Chelsea
Defense
050 160250 050 150250 050 160250 050 160250 050 160250 050 160250 050 160250 050 180250 050 160250 050 160250 050 180250
L AT i

TREEE] 1y i
2009 | 2010 [ 2011 | 2012 | 2013 [ 2014 | 2015 | 2016 | 2017 | 2018

2001 2019
§ il A
5 e R [ TR 1= 21N
ok s
o O AN P A
Game
Man Unite:
Detense
R
om0z owoam  owm  owmm  owem  owa  owm  owam  omme  owme oo
St 501 56| |51 5abs|-bote - 5ob7 - 5obs T paoe- Sbia-| 5ot bbb Shik b b St SbisS

e el

520 el o]
£ e Wi \
H
& Al Wi, Al Rt | s |57
o ey ML
1o
Cnzma | owazme oz | owezme | oz | oz | owom | owzs | ooz | oz | oo

Game

Figure: The evolution of form of Chelsea (Winners in 05,06,10,15,17) and
Man United (Winners in 99,00,01,03,07,08,09,11,13)
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Dynamic model averaging

Filtered mixtures of abilities for Arsenal and Liverpool

Arsenal
Defense ——
Atack  ——
050 160250 050 160250 050 160250 050 160250 050 160250 050160250 050 160250 050 160250 050 160250 050 160250 050 160250
2007_|_2008 | 2009 2011 2013 | 2014 | 2015 | 2016

2
L A
R N \“r;‘«\ A
ey M . e PN ) A W
1 A
P . P et N |t
2 Ao W
A AL YA AL 0 L 4 L ARl A AL AR AN AR A
Game
Liverpoal
Dol
Rekee
(Zioos"{ w05 | ot | 0T | ooz | 2005 | 004" | 2005 {1 o0s {2007 | aos | 2o0e | bot | bo11 | bets | porat | botat [ sois | ot | oty bots | bots"

A A
o )"'“m""“lﬁi Wi N

trengh
<

5 A Ak ST bl LY pr
7 e fima "% M J._quwh ont Mok m:!k,h {JV g [ et M{gl ”"?m.‘i‘ "ﬂ};fﬂF M\m A \FMJ /,/
Al | WLt W { e | e il
| “

Figure: The evolution of form of Arsenal (98,02,04) and Liverpool.
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Dynamic model averaging

Conclusions

@ MCMC and simulation based methodologies are of limited use for
fast online prediction.

@ Online sequential updating and model averaging give superior
predictions

@ Constant exponential smoothing with a fixed rate parameter is not
appropriate for football modelling

@ A small varying amount of over dispersion and positive correlation
can be dealt with by model averaging.

@ Mixtures of models highlight sharp changes in form and result in
better predictions.

@ Embrace conjugacy when you can
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Dynamic model averaging

Winners

Season Winners
1 1997/98 Arsenal
2 1998/99 Manchester United
3 1999/00 Manchester United
4 2000/01 Manchester United
5 2001/02 Arsenal
6 2002/03 Manchester United
7 2003/04 Arsenal
8 2004/05 Chelsea
9 2005/06 Chelsea
10 2006/07 Manchester United
11 2007/08 Manchester United
12 2008/09 Manchester United
13 2009/10 Chelsea
14 2010/11 Manchester United
15 2011/12 Manchester City
16 2012/13 Manchester United
17 2013/14 Manchester City
18 2014/15 Chelsea
19 2015/16 Leicester City
20 2016/17 Chelsea
21 2017/18 Manchester City
22 2018/19 Manchester City
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