Score-based soccer match outcome modeling
— an experimental review

Ondtej Hubaéek  Gustav Sourek  Filip Zelezny

Czech Technical University in Prague



Introduction
[ 1}

The Motivation

2017 Soccer Prediction Challenge
e in conjuction with MLJ's SI (Machine Learning for Soccer)

What is the best (score-based) model for soccer?
lack of accepted dataset led to incomparable results

large dataset published recently

match results widely available
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Dataset & Models

Table: Sample of the dataset.

League Season Date Home Away  Score

ENG1 2003 10/6/2004 Arsenal Chelsea 3-1

ITA2 2016  18/5/2016 Ascoli Ternana 1-2

@ Type of models
e statistical models
e rating systems
e graph-based models
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Double Poisson Model[6]

@ The probability of match outcome is given by

)\’,f,e_)‘H )\fg e A

P(GH = x, Ga = y[Am, Aa) = = "

@ The scoring rates \ are given by

log(Ay) = Stryy — Stra+ H
log(Aa) = Stra — Stry

@ The parameters Str, H are fitted optimizing log-likelihood

L=]JJP(G = x G = AT, A7) - wi)
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Double Poisson Model
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gives probability distribution over possible scores

only one metaparameter

can be used for other low-scoring sports/games

assumes independence between score and conceded goals
Poisson dist. does not handle over/under dispersed data

needs to be reffited after each league round
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PageRank[3]

@ the leagues can be represented as graphs

e nodes ~ teams
e edge ~ matches

@ Page P is linked from important pages = the page P is
important.

@ Team T defeated strong teams — the team T is strong.

@ adjacency matrix given by:

2m PTSi(m) - wim
Mj = S

o refitted after each round
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Elo Rating [5]

@ originally developed for rating chess players

@ models expected match outcome based on ratings discrepancy

1
T 1+ dRRA

@ updates based on actual outcome S and goal difference §
RH  — Ri_’—l—k(1—|—5)7~(5—E) 1 if the home team won

1=
o 5=1<0.5 if the match was drawn
Rﬁrl = Rf—k(l—i—é)”-(S—E) 0 if the home team lost
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Steph Ratings[7]

winning solution from chess ratings competition @Kaggle

extends another popular rating system (glicko)

o

o

@ each player has a rating and its variance

@ computation of expected outcome similar to Elo
o

k factor depends on rating variance
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Berrar Ratings|[1]

@ models goals scored instead of match outcome

@ each team has att and def ratings

~ h
tty, defa) =
gh(a H, ae A) 1+ exp(—ﬁh(attH + defA) - Pyh)

~ aa
tta, defy) =
ga(a A, de H) 1+ exp(—pa(atta + defy) — va)

@ updates ratings according to discrepancy from observed goals

atttt =atth + ware(gh — &)

dei",‘jrl =def}, + waed g2 — &a)
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pi-ratings|2]

@ models expected goal difference éd instead of goals scored
@ each team has home and away ratings

@ simplified calculations:
gdy = 10RF™/C _ 1
gda =10R"/C 1
gd = gd — gda
W = logio(1+ |gd — gd|) - C
R+ =\
R;’_I"Vay+ =y
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Score-based TrueSkill™[4]

g2

oi

N(©; 1, Ny, 0,9 N@©;u, 0, N(d; y, 0,7

(P) s,~ Poisson (exp(x))
"OR" (N) N (s; x, ¥*)

P) s~ Poisson (exp(y))
"OR" (N) N (7Y, V)

Figure: TrueSkill™model schema taken from the original paper.
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From Ratings to Predictions

def optimize_rating(data, res, params)

ratings = compute_ratings(data, res, params)
olr = OrderedLogisticRegression ()
olr = olr.fit(ratings, res)

predictions = olr.predict_proba(ratings)
loss = RPS(predictions, res)
return loss.mean()
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Experimental Setup

@ seasons 2000,/01-2008/09, 52 leagues

@ we omit first season from each league and first 5 rounds of
each season

o over 84 000 matches after filtering

@ all models re-implemented and check against reference
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Results

Table: Experimental results.

RPS Ent Acc

Berrar 0.2088 1.0221 49.03
Elo 0.2087 1.0216 49.10
PageRank 0.2134 1.0349 47.88
pi-ratings  0.2091 1.0236 49.01
Poisson 0.2088 1.0219 48.94
Steph 0.2099 1.0254 48.94
TrueSkill 0.2104 1.0267 48.73
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Conclusion

slightly modified 40 years old Elo model performed best
o closely followed by 36 years old Poisson model

performance gap between domain specific and general ratings
endless options for tuning

further analysis of the results TBD

call for contributions



Conclusion

after nearly 40 years, the Poisson model is still competitive
performance gap between domain specific and general ratings
endless options for tuning

further analysis of the results TBD

call for contributions

Thank you for your attention.
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