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Research Aims

1. Develop a rating system which provides a reliable indication of the 
relative ability of different players and enables us to estimate the 
underlying probability that one player will beat another.
• 4 types of model tested

• Discussion of results: main limitations and differences between models

2. Understand what effect current form / momentum has on the 
outcome of the match / outcome of the next frame.

3. Review the use of performance statistics in snooker and their 
potential for explaining the outcome of a match and / or 
highlighting differences in ability between players.
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Methods of rating and ranking players

Official World Rankings

• 128 professional players

• 20 ranking events per season (all knockout competitions)

• Rankings based on prize money won over the last 2 seasons

• Officially updated around 10 times per season

Win Percentage

• Proportion of frames won by each player

• Allows for modelling of different lengths of match

• Very strongly correlated with proportion of matches won
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Proportion of Frames Won by each player

Correlation between % Frames Won and % Matches Won over 2 seasons
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Modelling the outcome of matches

• Models used to estimate the probability of winning a frame P(F) against 
another player

• Probability of winning a match then derived as a series of Bernoulli trials

Prize Money model:   𝑷 𝑭 1 = 𝟎. 𝟓 + ln 𝑷𝑴1 − ln 𝑷𝑴2 ∗ 𝟎. 𝟎𝟒𝟕𝟎𝟕

Win Percentage model:   𝑷 𝑭 1 = 𝟎. 𝟓 + 𝑾𝑷1 − 𝑾𝑷2 (capped at 0 and 1)

Bradley-Terry model: MLE based on wins and losses against each individual

Elo model: Reflects current ability rather than performance over a given period

(logistic distribution: standard deviation = 500, weight = 10)
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Prediction Accuracy

Proportion of matches played in ranking events during 2017/18 and 2018/19 
(4,430) won by the player with the higher rating

All models – predicted same winner for 82% matches, with 72.2% success rate

Top 3 models – predicted same winner for 91% matches, with 70.5% success rate

Model Correct Predictions % Correct

Win%_2 year 3,049 68.8

BT_2 year 3,048 68.8

Elo 3,047 68.8

Prize Money 3,024 68.3

BT_1 year 3,017 68.1

Win%_1 year 3,004 67.8
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Calibration measure

Ratio of expected over actual wins for higher-rated player in each match (ideal = 1.00)

All models have a bias towards the higher-rated players (i.e. predict that they will win 
more matches than they actually do)

Model Frames Won Matches Won

Win%_2 year 1.01 1.03

Elo 1.02 1.04

Win%_1 year 1.02 1.05

BT_2 year 1.03 1.05

Prize Money 1.04 1.06

BT_1 year 1.04 1.06
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Modelling of ‘new’ players

Official Rankings:

• New players start with £0, all Amateur players are unranked (i.e. £0)
[£0 modelled as £250 to enable logs to be taken]

Win Percentage & Bradley-Terry models:

• Players given an individual rating after 10 matches

• Combined rating for players contesting <10 matches based on aggregated results

Elo model:

• Players allocated a start rating which is subsequently updated

• Differentiation between professionals and amateur players
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Calibration scores based on experience of players (1)

Ratio of expected and actual wins where player had contested X matches over the 
past 2 years

All models tend to under-estimate chances of less-experienced players.

Matches played 
in last 2 years

# % won PM Win%_2 BT_2 Win%_1 BT_1 Elo

< 10 524 22% 0.56 0.67 0.60 0.85 0.78 0.94

10 - 20 329 27% 0.77 0.95 0.95 0.86 0.85 0.87

20 - 50 1,537 33% 0.97 0.93 0.95 0.91 0.94 0.94

50 - 100 5,390 55% 1.03 1.03 1.02 1.03 1.01 1.01

100+ 1,080 70% 1.00 0.99 1.04 0.99 1.05 1.03
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Calibration scores based on experience of players (2)

1. Prize Money (PM) model heavily under-estimates players who have contested 
fewer than 20 matches in past 2 years

2. Elo model is the least biased for players who have contested fewer than 10 
matches, although not as strong for players contesting 10 – 20 matches

3. For unrated players, models based on 1 year of results are less biased than models 
based on 2 years of results – although the 2-year models are less biased for those 
contesting 10-20 matches.

Matches played in 
last 2 years

PM Win%_2 BT_2 Win%_1 BT_1 Elo

< 10 0.56 0.67 0.60 0.85 0.78 0.94

10 - 20 0.77 0.95 0.95 0.86 0.85 0.87

20 - 50 0.97 0.93 0.95 0.91 0.94 0.94
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Strength of opposition

Anticipated limitation of Win Percentage model is that it doesn’t take into account 
strength of opposition faced.

Bradley-Terry model produces a relative rating based on wins and losses against each 
player, which effectively takes this into account.

A measure of Strength of opposition is the weighted average of each opponent’s Win 
Percentage – e.g. …
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Frames Played Opponent Rating FP * OR

Opponent 1 10 60% 6

Opponent 2 6 50% 3

Weighted average = ∑ (FP * OR) / FP = 56.25%
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World Ranking at end of 2018/19 season

Average strength of opposition faced by different players 
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Win Percentage v Bradley-Terry

For each match played, estimate the strength of opponent faced by either player 
over the last 2 seasons

• 543 cases where opponent strength > 52.5% 
(player’s Win Percentage is potentially an under-estimate of their performance)

• 446 cases where opponent strength < 47.5%
(player’s Win Percentage is potentially an over-estimate of their performance)

Calibration (Matches won)

Win%_ 2 yr model BT_ 2yr model

Opponent strength > 52.5% 0.97 1.06

Opponent strength < 47.5% 1.03 0.90
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Form

Analysis of 
individual players

X – axis:

Comparison of Win 
Percentage between 
start of 2017/18 and 
end of 2018/19 

Y – axis:

Expected / Actual 
frames won
(Win%_2 yr model)
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Change in Win Percentage

Calibration of frames won for different players and their change in Win Percentage
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2 years v 1 year

For each match played, compare each player’s 1-year Win % and 2-year Win %

• 428 cases where 1-year Win % is > 3% higher than 2-year Win %
(2-year model potentially under-estimates current level of performance)

• 734 cases where 1-year Win % is < -3% lower than 2-year Win %
(2-year model potentially over-estimates current level of performance)

Calibration (Matches won)

Win%_ 2 yr model Win%_ 1yr model Elo

1-yr  >  2-yr 0.93 1.10 1.03

2-yr  >  1-yr 1.04 0.85 0.91
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Conclusions

Modelling ‘New’ Players

Look for earliest viable time to base ratings on individual performance

Try and differentiate between unranked players

Strength of Opposition

Looks to be a significant factor but may need to be captured in another way

Current Form

A potentially key factor which is not fully taken into account by existing 
models.

Could be more significant for positive changes in performance
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Performance measures

Alternative approach would be to derive a player rating from different 
components of their performance.

Data limited to 2 events per season, and 2 meaningful measures.

Based on 146 matches a plausible model would be:

𝑷 𝑭 𝟏 = 𝟎. 𝟓

+ 𝟐. 𝟎𝟗𝟏 × 𝑷𝒐𝒕 𝑺𝒖𝒄𝒄𝒆𝒔𝒔𝟏 − 𝑷𝒐𝒕 𝑺𝒖𝒄𝒄𝒆𝒔𝒔𝟐
+ 𝟎. 𝟕𝟏𝟕 × 𝑺𝒂𝒇𝒆𝒕𝒚 𝑺𝒖𝒄𝒄𝒆𝒔𝒔𝟏 − 𝑺𝒂𝒇𝒆𝒕𝒚 𝑺𝒖𝒄𝒄𝒆𝒔𝒔𝟐
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