Statistical Models of Horse Racing Outcomes Using R

Dr Alun Owen, Coventry University, UK

aa5845@coventry.ac.uk

MathSport International 2019

Royal Ascot 20th June 2019 The Britannia Stakes (1 mile = 8 furlongs)

https://www.youtube.com/watch?v=sZsF3Q3IJEE

Frankie Dettori riding Turgenev

Frankie Dettori had won 4/4 races so far

He was the strong favourite @ 7/2 to win this 5th race of the day

Harry Bentley riding Biometric @ 28/1

Data: Flat Turf Handicaps in the UK 16,685 horses taking part in 1,693 races.

- race.id unique reference number for each race;
- horse.ref reference number (or name) for each horse in each race (must be unique within a race);
 - age of the horse (years);

age

sireSR

daysLTO

trainerSR

position1

position2

position3

finpos

entire

win

sp

gelding

- win percentage by offspring of the horse's sire (father) prior to this race;
- win percentage achieved by the horse's trainer prior to this race;
- days since last race (days since Last Time Out);
- finishing position in the previous race (1, 2, 3 or 4, 0 = anywhere else);
- finishing position two races ago (1, 2, 3 or 4, 0 = anywhere else);
- finishing position three races ago (1, 2, 3 or 4, 0 = anywhere else);
 - finishing position in the current race;
- male horse that has not been castrated (1=yes, 0=no);
- male horse that has been castrated (1=yes, 0=no);

note that a horse that is neither a gelding nor an entire was female;

blinkers, visor, cheekpieces or tonguetie (each 1=yes if they were wearing these, 0=no).

- indicator of whether each horse won (yes) or not (no);
- starting price obtained from Betfair (adjusted for commission);

race.id	horse.ref	age	sireSR	trainerSR	daysLTO	position1	position2	position3	finpos	win	sp	entire	gelding	blinkers	visor	cheekpieces	tonguetie
1	1	7	6.2	5.4	96	0	0	0	5	no	18	0	1	0	0	0	0
1	2	7	10	9.7	4	3	1	2	9	no	3.5	0	1	0	0	0	0
1	3	4	8	11.1	23	0	4	1	6	no	8	0	0	0	0	0	0
1	4	6	8.8	11.4	40	4	1	0	3	no	3.5	0	0	0	1	0	0
1	5	8	4.7	11.9	14	0	1	3	4	no	11	0	1	0	0	1	0
1	6	9	2.5	2.8	16	3	0	0	1	yes	6	0	1	1	0	0	0
1	7	5	9.5	8.7	16	0	0	0	2	no	4.5	0	1	0	0	0	0
1	8	6	8.1	9	2	0	2	0	7	no	9	0	1	0	1	0	0
1	9	7	8.3	9	23	0	0	0	8	no	20	0	0	0	1	0	0
2	1	9	8.1	5.2	16	3	0	3	3	no	4	0	1	0	1	0	0
2	2	6	7.4	8.8	159	0	0	2	7	no	8	0	1	0	0	0	0
2	3	10	0	0	5	0	0	0	8	no	16	0	1	0	0	0	0
2	4	6	8.8	14	5	0	0	1	5	no	9	0	1	0	0	0	0
2	5	5	9	13.6	23	4	0	1	2	no	2.25	0	0	0	0	0	0
2	6	9	8.3	8.7	19	4	1	2	1	yes	7	0	1	0	0	0	0
2	7	8	7.3	11.4	31	0	0	0	6	no	12	0	1	0	0	0	0
2	8	7	7.1	10	14	2	0	0	4	no	5	0	1	0	0	0	0

Data Management

- Sire SR and Trainer SR both capped at 20%
- daysLTO capped at 60 days
- SP adjusted for Betfair Commission assumed to be 5%
- Training set 70% of races (11,710 horses taking part in1,181) to develop a model and possible betting strategy;
- Test set 30% of races 4,975 horses from 512 races for out-of-sample assessments.

Win Proportion versus Age (Training Set) Hence define new variable: age.diff=abs(age-4.5)

Supports evidence in Gramm and Marksteiner (2011)

Age (Years)

Sire Strike Rate (%)

Win Proportion

Trainer Strike Rate (%)

yes

Days Since Last Time Out

Position

(Training Set) Win Proportion versus blinkers, visor, cheekpieces or tongue-tie

	Entire	Gelding	Blinkers	Visor	Cheek Pieces	Tongue Tie
Yes	0.115	0.106	0.111	0.103	0.069	0.084
No	0.099	0.091	0.100	0.101	0.103	0.102

Multinomial logistic regression model (Discrete choice models)

Consider "estimated" relative ratings or utilities, V_i , for horses i = 1,...,n in a race And "true" (unknown) ratings/utilities U_i , then:

$$U_i = V_i + \varepsilon_i,$$

 ε_i is the (random) difference between the estimated and true ratings/utilities

Probability that horse *i* will win the race is:

$$P_{i} = \operatorname{Prob}(U_{i} > U_{j} \forall j \neq i)$$

= $\operatorname{Prob}(V_{i} + \varepsilon_{i} > V_{j} + \varepsilon_{j}, \forall j \neq i).$
= $\operatorname{Prob}(\varepsilon_{j} < \varepsilon_{i} + V_{i} - V_{j}, \forall j \neq i).$

This is the cumulative distribution of ε_j over all $j \neq i$.

The logistic model derived by assuming that ε_i follows an extreme value distribution (Gumbel distribution): $F(\varepsilon_j) = \exp\{-\exp(-\varepsilon_j)\}$

Multinomial logistic regression model (Discrete choice model)

By making the assumption above, it can then be shown that the probability P_i that horse *i* will win a race involving *n* horses is given by:

$$P_i = \frac{\exp(V_i)}{\sum_{i=1}^n \exp(V_i)}.$$

We relate the rating/utility, V_i , for horse *i* to horse-specific variables (age, sireSR etc.) using $V_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip},$

where $x_{i1}, x_{i2}, ..., x_{ip}$ are the *p* horse-specific variables (age, sireSR etc.) for horse *i* and $\beta_1, \beta_2, ..., \beta_p$ are model parameters to be estimated.

Specification in R Using mlogit package

mlogit(win~

data=h.dat)

age.diff+sireSR+trainerSR+daysLTO+

position1+position2+position3+entire

+gelding+blinkers+visor+cheekpieces+tonguetie

Alternative-specific variables are the **horse**-specific variables. Individual-specific variables are the **race**-specific variables. Often this is the source of confusion that prevents many implementing the multinomial logistic model for horse racing.

Specification in R

h.dat<- mlogit.data(data=model.data, choice="win",chid.var="race.id", alt.var="horse.ref",shape="long")

choice indicator of which horse won each race (in our data set this is the variable called win); chid.var defines the choice sets (races) from which winner is chosen (in our data set this is race.id); alt.var defines the choice alternatives (horses) in each set (race) (in our data set this is horse.ref)

Parameter		Estimate	Std. Error	р	
age.diff sireSR trainerSR		-0.153	0.0314	< 0.001	
		0.048	0.0093	< 0.001	
		0.051	0.0093	< 0.001	
daysLTO		-0.004	0.0018	0.020	
	1	0.602	0.0919		
Desition 1	2	0.324	0.1006	< 0.001	
POSITIOIT	3	0.312	0.1027		
	4	0.159	0.1082		
	1	0.368	0.0974	<0.001	
Desition?	2	0.363	0.0982		
Position2	3	0.066	0.1074		
	4	0.213	0.1050		
	1	-0.046	0.1061		
Desition?	2	0.109	0.1000	0.42	
rositions	3	0.117	0.1036	0.45	
	4	0.130	0.1013		
entire		0.499	0.1297	< 0.001	
gelding		0.557	0.0948	< 0.001	
blinkers		0.016	0.1125	0.89	
visor		0.027	0.1443	0.85	
cheekpieces		0.504	0 1 470	0.001	
r i r	S	-0.504	0.14/0	0.001	

Calibration for the model (o) and market implied win probabilities (+) Here we adjust market probabilities to account for Betfair Commission

Model (o) or Market (+) Win Probability

P1 and P 2 v Model (——) and Market (-----) Win Probabilities

$$P1 = \exp\left\{\frac{1}{N}\sum_{k=1}^{N}\log(P_{jk})\right\} \qquad P2 = \exp\left\{\frac{1}{N}\sum_{k=1}^{N}\left[\log(1-P_{jk})\right]\right\}$$

Model or Market Implied Win Probability Threshold

0.3

0.4

0.5

Betting on unseen data (Test Set)

Unit bets placed "virtually" on horses where:

1. model win probability was greater than 0.15

2. ratio of win probability of model/market (adjusted for commission) > 1.3

Ratio

Market Probability

Efficiency of Race Track Betting Markets, eds. Haush, Lo and Ziemba.

Discrete Choice Methods and Simulation, Kenneth Train.

Kenneth E. Train

Independence from irrelevant alternatives (IIA)

$$\frac{P_i}{P_j} = \frac{\frac{\exp(V_i)}{\sum_{i=1}^n \exp(V_i)}}{\sqrt{\frac{\exp(V_j)}{\sum_{i=1}^n \exp(V_i)}}} = \frac{\exp(V_i)}{\exp(V_j)}$$

Depends only on horses *i* and *j*

Suppose have three horses A, B and C with model win probabilities 0.4, 0.4, 0.2 and hence model implied (decimal) odds 2.5, 2.5, 5.0

If horse A becomes a non-runner the probabilities will change to 0.4/0.6=0.67 for B and 0.2/0.6=0.33 for C and hence odds of 1.5 and 3.0.

Need to be happy this is sensible??

MathSport International 2019