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Royal Ascot 20th June 2019
The Britannia Stakes (1 mile = 8 furlongs)

https://www.youtube.com/watch?v=sZsF3Q3IJEE

Frankie Dettori riding Turgenev

Frankie Dettori had won 4/4 races so far

He was the strong favourite @ 7/2 to win this 5th race of the day

Harry Bentley riding Biometric @ 28/1
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Data: Flat Turf Handicaps in the UK
16,685 horses taking part in 1,693 races. 

race.id - unique reference number for each race;

horse.ref - reference number (or name) for each horse in each race (must be unique within a race);

age - age of the horse (years);

sireSR - win percentage by offspring of the horse’s sire (father) prior to this race;

trainerSR - win percentage achieved by the horse’s trainer prior to this race;

daysLTO - days since last race (days since Last Time Out);

position1 - finishing position in the previous race (1, 2, 3 or 4, 0 = anywhere else);

position2 - finishing position two races ago (1, 2, 3 or 4, 0 = anywhere else);

position3 - finishing position three races ago (1, 2, 3 or 4, 0 = anywhere else);

finpos - finishing position in the current race;

entire - male horse that has not been castrated (1=yes, 0=no) ;

gelding - male horse that has been castrated (1=yes, 0=no) ;

note that a horse that is neither a gelding nor an entire was female;

blinkers, visor, cheekpieces or tonguetie (each 1=yes if they were wearing these, 0=no).

win - indicator of whether each horse won (yes) or not (no);

sp - starting price obtained from Betfair (adjusted for commission);



MathSport International 2019

race.id horse.ref age sireSR trainerSR daysLTO position1 position2 position3 finpos win sp entire gelding blinkers visor cheekpieces tonguetie

1 1 7 6.2 5.4 96 0 0 0 5 no 18 0 1 0 0 0 0

1 2 7 10 9.7 4 3 1 2 9 no 3.5 0 1 0 0 0 0

1 3 4 8 11.1 23 0 4 1 6 no 8 0 0 0 0 0 0

1 4 6 8.8 11.4 40 4 1 0 3 no 3.5 0 0 0 1 0 0

1 5 8 4.7 11.9 14 0 1 3 4 no 11 0 1 0 0 1 0

1 6 9 2.5 2.8 16 3 0 0 1 yes 6 0 1 1 0 0 0

1 7 5 9.5 8.7 16 0 0 0 2 no 4.5 0 1 0 0 0 0

1 8 6 8.1 9 2 0 2 0 7 no 9 0 1 0 1 0 0

1 9 7 8.3 9 23 0 0 0 8 no 20 0 0 0 1 0 0

2 1 9 8.1 5.2 16 3 0 3 3 no 4 0 1 0 1 0 0

2 2 6 7.4 8.8 159 0 0 2 7 no 8 0 1 0 0 0 0

2 3 10 0 0 5 0 0 0 8 no 16 0 1 0 0 0 0

2 4 6 8.8 14 5 0 0 1 5 no 9 0 1 0 0 0 0

2 5 5 9 13.6 23 4 0 1 2 no 2.25 0 0 0 0 0 0

2 6 9 8.3 8.7 19 4 1 2 1 yes 7 0 1 0 0 0 0

2 7 8 7.3 11.4 31 0 0 0 6 no 12 0 1 0 0 0 0

2 8 7 7.1 10 14 2 0 0 4 no 5 0 1 0 0 0 0



Data Management

• Sire SR and Trainer SR both capped at 20%

• daysLTO capped at 60 days

• SP adjusted for Betfair Commission assumed to be 5%

• Training set 70% of races (11,710 horses taking part in1,181 ) to 
develop a model and possible betting strategy;

• Test set 30% of races 4,975 horses from 512 races for out-of-sample 
assessments.
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Win Proportion versus Age (Training Set)
Hence define new variable: age.diff=abs(age-4.5)

Supports evidence in Gramm and Marksteiner (2011) 



Win Proportion versus 
SireSR, TrainerSR, 

daysLTO (Training Set)



(Training Set) Win Proportion v Position in the horse's:
previous race (───)

two races ago (- - - - -) 
three races ago (∙∙∙∙∙∙∙∙∙∙)



(Training Set) Win Proportion versus 
blinkers, visor, cheekpieces or tongue-tie  

Entire Gelding Blinkers Visor
Cheek
Pieces

Tongue 
Tie

Yes 0.115 0.106 0.111 0.103 0.069 0.084 

No 0.099 0.091 0.100 0.101 0.103 0.102



Multinomial logistic regression model 
(Discrete choice models)

Consider “estimated” relative ratings or utilities, 𝑉𝑖, for horses i =1,…,n in a race

And “true” (unknown) ratings/utilities 𝑈𝑖, then:
𝑈𝑖 = 𝑉𝑖 + 𝜀𝑖 ,

𝜀𝑖 is the (random) difference between the estimated and true ratings/utilities

Probability that horse i will win the race is:

𝑃𝑖 = Prob 𝑈𝑖 > 𝑈𝑗 ∀𝑗 ≠ 𝑖

= Prob 𝑉𝑖 + 𝜀𝑖 > 𝑉𝑗 + 𝜀𝑗 , ∀𝑗 ≠ 𝑖 .

= Prob 𝜀𝑗 < 𝜀𝑖 + 𝑉𝑖 − 𝑉𝑗 , ∀𝑗 ≠ 𝑖 .

This is the cumulative distribution of 𝜀𝑗 over all 𝑗 ≠ 𝑖.

The logistic model derived by assuming that 𝜀𝑖 follows an extreme value distribution (Gumbel 

distribution): F 𝜀𝑗 = exp −exp −𝜀𝑗



Multinomial logistic regression model 
(Discrete choice model)

By making the assumption above, it can then be shown that the probability 𝑃𝑖 that horse i
will win a race involving n horses is given by:

𝑃𝑖 =
exp(𝑉𝑖)

σ𝑖=1
𝑛 exp(𝑉𝑖)

.

We relate the rating/utility, 𝑉𝑖, for horse i to horse-specific variables (age, sireSR etc.) using

𝑉𝑖 = 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝,

where 𝑥𝑖1, 𝑥𝑖2,…, 𝑥𝑖𝑝 are the p horse-specific variables (age, sireSR etc.) for horse i

and β1, β2,…, βp are model parameters to be estimated.



Specification in R Using mlogit package

Alternative-specific variables are the horse-specific variables.
Individual-specific variables are the race-specific variables.
Often this is the source of confusion that prevents many
implementing the multinomial logistic model for horse racing.

mlogit(win~

age.diff+sireSR+trainerSR+daysLTO+

position1+position2+position3+entire

+gelding+blinkers+visor+cheekpieces+tonguetie

|0|0,data=h.dat)



Specification in R

h.dat<- mlogit.data(data=model.data, 

choice="win",chid.var="race.id",

alt.var="horse.ref",shape="long")

choice indicator of which horse won each race
(in our data set this is the variable called win);

chid.var defines the choice sets (races) from which winner is chosen
(in our data set this is race.id);

alt.var defines the choice alternatives (horses) in each set (race)

(in our data set this is horse.ref)



Parameter Estimate Std. Error p 

age.diff -0.153 0.0314 <0.001 

sireSR 0.048 0.0093 <0.001 

trainerSR 0.051 0.0093 <0.001 

daysLTO -0.004 0.0018 0.020 

Position1 

1 0.602 0.0919 

<0.001 
2 0.324 0.1006 

3 0.312 0.1027 

4 0.159 0.1082 

Position2 

1 0.368 0.0974 

<0.001 
2 0.363 0.0982 

3 0.066 0.1074 

4 0.213 0.1050 

Position3 

1 -0.046 0.1061 

0.43 
2 0.109 0.1000 

3 0.117 0.1036 

4 0.130 0.1013 

entire 0.499 0.1297 <0.001 

gelding 0.557 0.0948 <0.001 

blinkers 0.016 0.1125 0.89 

visor 0.027 0.1443 0.85 

cheekpieces -0.504 0.1470 0.001 

tonguetie -0.297 0.1632 0.069 

 



Calibration for the model (o) and market implied win probabilities (+)
Here we adjust market probabilities to account for Betfair Commission



𝑃1 and 𝑃 2 v Model (        ) and Market (------) Win Probabilities

𝑃1 = ex p
1

𝑁


𝑘=1

𝑁

lo g 𝑃𝑗𝑘
𝑃2 = ex p

1

𝑁


𝑘=1

𝑁

log 1 − 𝑃𝑗𝑘
2
+

𝑖≠𝑗

𝑛𝑘

lo g 𝑃𝑖𝑘
2



Betting on unseen data (Test Set)

Unit bets placed "virtually" on horses where:

1. model win probability was greater than 0.15 

2. ratio of win probability of model/market (adjusted for commission) > 1.3 
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Efficiency of Race Track Betting 
Markets, eds. Haush, Lo and Ziemba. 
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Discrete Choice Methods and 
Simulation, Kenneth Train. 



Independence from irrelevant alternatives (IIA) 

𝑃𝑖
𝑃𝑗
= ൚

exp(𝑉𝑖)
σ𝑖=1
𝑛 exp(𝑉𝑖)

exp(𝑉𝑗)

σ𝑖=1
𝑛 exp(𝑉𝑖)

=
exp(𝑉𝑖)

exp(𝑉𝑗)

Depends only on horses i and j

Suppose have three horses A, B and C with model win probabilities 0.4, 0.4, 0.2 and hence 
model implied (decimal) odds 2.5, 2.5, 5.0

If horse A becomes a non-runner the probabilities will change to 0.4/0.6=0.67 for B and 
0.2/0.6=0.33 for C and hence odds of 1.5 and 3.0.

Need to be happy this is sensible??
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