Integrated Break and Carryover Minimization Problem in Round Robin Tournaments

Burak ÇAVDAROĞLU Kadir Has University, İstanbul, TURKEY Tankut ATAN Bahçeşehir University, İstanbul, TURKEY

> MathSport International 2019 Conference Athens, Greece 1-3 July 2019

Round Robin Tournaments (RRTs)

- Every team plays with every other team (for once: Single RRT / twice: Double RRT)
- We are only interested in time-constrained single RRTs
- If number of teams is *n*
 - In each round, every team plays one game (n/2 games per round)
 - In a double RRT, the tournament lasts for $2 \cdot (n-1)$ rounds.
 - In a double RRT, $n \cdot (n-1)$ games are played in total. (For exp: 306 games if n = 18)
- Two popular fairness criteria in time-constrained RRTs.
 - Number of breaks
 - Carryover effects (coe) value

Number of Breaks

	Rounds											
	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	
	D-C	K-C	B-D	I-L	K-H	H-I	D-J	G-J	F-H	D-I	C-E	
	K-L	I-A	H-J	J-B	I-J	B-C	K-G	L-C	K-B	F-K	I-K	
nes	F-J	B-F	F-L	G-A	A-C	E-F	A-F	B-A	C-G	G-L	J-A	
Gar	E-B	L-D	C-I	C-F	L-B	L-A	I-B	D-K	L-J	B-H	G-B	
	I-G	G-H	A-K	H-D	F-G	J-K	E-L	F-I	A-D	E-A	D-F	
	A-H	J-E	E-G	K-E	D-E	G-D	C-H	H-E	E-I	J-C	H-L	

 $b_{i,r}$ (binary): occurrence of a break for team i in round rNumber of breaks: $\sum_{i} \sum_{r} b_{i,r}$ **Break:** If a team plays two home or away matches in two successive rounds, the alternating H/A pattern for the team is said to be *broken* and the team has a "break".

						R	lound	s					
		R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	# Break
	Α	Н	А	Н	А	Н	А	Н	А	Н	Α	<u>A</u>	1
	В	А	Н	<u>H</u>	Α	<u>A</u>	Н	Α	Н	Α	Н	А	2
	С	А	<u>A</u>	Н	<u>H</u>	А	<u>A</u>	Н	Α	Н	А	Н	3
	D	Н	А	<u>A</u>	<u>A</u>	Н	А	Н	<u>H</u>	Α	Н	<u>H</u>	4
	Ε	Н	А	Н	А	<u>A</u>	Н	<u>H</u>	Α	Н	<u>H</u>	Α	3
ams	F	Н	Α	Н	А	Н	Α	<u>A</u>	Н	<u>H</u>	<u>H</u>	Α	3
Teá	G	А	Н	А	Н	А	Н	А	Н	Α	Н	<u>H</u>	1
	Η	А	<u>A</u>	Н	<u>H</u>	А	Н	А	Н	Α	<u>A</u>	Н	3
	Т	Н	<u>H</u>	А	Н	<u>H</u>	А	Н	Α	<u>A</u>	<u>A</u>	Н	4
	J	А	Н	А	Н	А	Н	А	<u>A</u>	<u>A</u>	Н	<u>H</u>	3
	K	Н	<u>H</u>	А	Н	<u>H</u>	Α	Н	Α	Н	А	<u>A</u>	3
	L	А	Н	А	<u>A</u>	Н	<u>H</u>	Α	Н	<u>H</u>	А	<u>A</u>	4

of breaks: 34

Break Minimization

- [1a] de Werra (1981)
 - Canonical schedules minimize the number of breaks.
- [1b] Elf et al. (2003)
 - A new break minimization problem: Given a feasible tournament schedule without home-away assignment, they find H/A pattern that minimizes the number of breaks.
 - They conjecture that this problem is NP-hard.
- [1c] Miyashiro and Matsui (2005)
 - They propose a polynomial-time algorithm which finds a home-away assignment for a given feasible tournament schedule if a solution with n-2 breaks exists for the schedule, else returns "infeasible".

Carryover Effects (coe) Value

						R	ound	s				
		R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11
	Α	Н	I.	К	G	С	L	F	В	D	Е	J
	В	Е	F	D	J	L	С	1	Α	Κ	Н	G
	С	D	К	1	F	Α	В	Н	L	G	J	E
	D	С	L	В	Н	Е	G	J	К	Α	1	F
	Ε	В	J	G	К	D	F	L	Н	Т	Α	C
sme	F	J	В	L	С	G	Е	Α	1	Н	К	D
Teã	G	1	Н	Ε	Α	F	D	К	J	С	L	В
	Н	Α	G	J	D	Κ	1	С	Е	F	В	L
	Т	G	Α	С	L	J	Н	В	F	Ε	D	К
	J	F	Ε	Н	В	1	K	D	G	L	C	Α
	К	L	С	А	Ε	Н	J	G	D	В	F	Ι
	L	К	D	F	1	В	Α	Е	С	J	G	Н

 c_{ij} : number of carrovers carryovers Team j receives from Team i coe value : $\sum_{ij} c_{ij}^2$

Carryover effect: Assume Team A plays against Team B in the previous round, and against Team C in this round. This means Team C receives a carryover effect from Team B in the current round.

							Теа	ms						
		Α	в	С	D	Ε	F	G	н	1	J	К	L	$\Sigma_j c_{ij}^2$
	Α	0	1	2	0	2	3	1	0	2	0	1	0	24
	В	1	0	0	1	0	2	0	2	3	1	0	2	24
	С	2	2	0	0	1	0	1	0	1	1	0	4	28
	D	0	1	0	0	1	2	1	0	0	3	4	0	32
	Ε	2	0	1	3	0	2	1	2	0	1	0	0	24
sme	F	1	2	2	2	2	0	0	0	2	0	0	1	22
Теа	G	1	0	1	1	3	0	0	1	0	3	1	1	24
	Н	0	2	0	0	2	0	1	0	2	1	3	1	24
	Т	2	1	1	0	0	2	0	2	0	0	2	2	22
	J	0	1	1	1	1	0	3	3	0	0	1	1	24
	К	1	0	0	4	0	0	3	1	2	1	0	0	32
	L	2	2	4	0	0	1	1	1	0	1	0	0	28

coe: 308

01/07/2019

Carryover Effects (coe) Value

- Carry-over effects value optimization
 - [2a] Russell (1980)
 - [2b] Anderson (1997)
 - [2c] Guedes ve Ribeiro (2011)
 - [2d] Lambrechts et al. (2016)
- Carryover effect and practical implications
 - [3a] Goossens (2018)
- Impact of carryover effect on match results
 - [4a] Goossens ve Spieksma (2012)

п	n (n-1)	best coe
8	56	56 ^[2a]
10	90	108 ^[2b]
12	132	160 ^[2c]
14	182	234 ^[2b]
16	240	240 ^[2a]
18	306	340 ^[2b]
20	380	380 ^[2b]

Canonical schedules maximize coe value. E.g. $n = 18 \rightarrow coe = 3876$

Integrated Break and Carryover Minimization

- Problem: Determine a <u>schedule</u> to minimize break and carryover simultaneously
- <u>Schedule</u> implies: (1) the games of each round and (2) H/A pattern of each team
- [5a] Günneç and Demir (2018)

п	any # of break	# of break for each team ≤ 1
8	56 ^[2a]	104 ^[5a]
10	108 ^[2b]	192 ^[5a]
12	160 ^[2c]	318 ^[5a]
14	234 ^[2b]	446 ^[5a]
16	240 ^[2a]	626 ^[5a]
18	340 ^[2b]	944 ^[5a]
20	380 ^[2b]	

Integrated Break and Carryover Minimization Problem

Solution Method

How to solve:

- 1. Construct a canonical schedule (with *circle method*)
- 2. Run a <u>round swapping</u> algorithm which randomizes the order of rounds to construct schedules isomorphic to the canonical schedule
- 3. Identify the schedule with the smallest coe value
- 4. Solve a *break minimization problem* for this particular schedule

Solution Method – STEP 1: Circle Method

• Rotate in counter-clockwise direction

Round	Games										
1	12-1	11-2	3-10	9-4	5-8	7-6					
2	2-12	1-3	4-11	10-5	6-9	8-7					
3	12-3	2-4	5-1	11-6	7-10	9-8					

Solution Method – STEP 2: Round Swapping

• Randomize rounds

Round 1	12 vs 1	11 vs 2	3 vs 10	9 vs 4	5 vs 8	7 vs 6
Round 2	2 vs 12	1 vs 3	4 vs 11	10 vs 5	6 vs 9	8 vs 7
Round 3	12 vs 3	2 vs 4	5 vs 1	11 vs 6	7 vs 10	9 vs 8
Round 4	4 vs 12	3 vs 5	6 vs 2	1 vs 7	8 vs 11	10 vs 9
Round 5	12 vs 5	4 vs 6	7 vs 3	2 vs 8	9 vs 1	11 vs 10
Round 6	6 vs 12	5 vs 7	8 vs 4	3 vs 9	10 vs 2	1 vs 11
Round 7	12 vs 7	6 vs 8	9 vs 5	4 vs 10	11 vs 3	2 vs 1
Round 8	8 vs 12	7 vs 9	10 vs 6	5 vs 11	1 vs 4	3 vs 2
Round 9	12 vs 9	8 vs 10	11 vs 7	6 vs 1	2 vs 5	4 vs 3
Round 10	10 vs 12	9 vs 11	1 vs 8	7 vs 2	3 vs 6	5 vs 4
Round 11	12 vs 11	10 vs 1	2 vs 9	8 vs 3	4 vs 7	6 vs 5

Solution Method – STEP 3: Identifying Best coe

# of teams (n)	10		12		14		16		18	
	Coe	Coe Break		Break	Coe Break		Coe	Break	Coe	Break
Best coe	136	26	192	60	254	68	330	118	406	126
Best break	468	8	392	16	634	22	660	40	884	44

01/07/2019

Solution Method – STEP 4: Break Min. Problem

• Minimize the sum of breaks (for a given schedule)

Subject to

- If one of the two opposing teams plays at home (away), the other team plays away (at home).
- If a team plays at home (away) in two successive rounds, a break occurs.
- [Optional] Number of breaks for each team should not exceed a certain value.

Solution Method – STEP 4: Break Min. Problem

- *n* : Number of teams (even)
- Sets
 - *T* : Teams, *i* = 1, ..., *n R* : Rounds, *r* = 1, ..., *n*-1
- Parameters
 - $x_{i,j,r} = 1$ if team *i* plays against team *j* in round *r*, and 0 otherwise.
- Decision variables
 - $h_{i,r} = 1$ if team *i* plays at home in round *r*, and 0 otherwise
 - $b_{i,r} = 1$ if there is an occurrence of break for team *i* in round *r*, and 0 otherwise
 - z : sum of breaks

Solution Method – STEP 4: Break Min. Problem

$$\min \quad z = \sum_{i \in T} \sum_{r \in R} b_{i,r} \tag{1}$$

Subject to:
$$h_{i,r} + h_{j,r} \ge x_{i,j,r} \quad \forall i, j \in T \mid i \neq j, \forall r \in R$$
 (2)

$$2 - h_{i,r} + h_{j,r} \ge x_{i,j,r} \quad \forall i, j \in T \mid i \neq j, \forall r \in R$$
(3)

$$h_{i,r} + h_{i,r+1} \le 1 + b_{i,r+1} \quad \forall i \in T, \forall r \in R$$
(4)

$$2 - h_{i,r} - h_{i,r+1} \le 1 + b_{i,r+1} \quad \forall i \in T, \forall r \in R$$
(5)

$$h_{i,r}, b_{i,r} \in \{0, 1\} \quad \forall i \in T, \forall r \in R$$
(6)

Integrated Break and Carryover Minimization Problem

Computational Experiments

- Intel i5-4570 CPU 3.2 GHz
- 8Gb RAM
- GAMS/Gurobi
- For each n = 10, 12, 14, 16, 18
 - We randomized the rounds <u>1 million times</u> and computed coe value for each.
 - We solved the break minimization problem for the schedule with the best coe value.
 - We compared our results with "[5a] Günneç and Demir (2018)".

Computational Experiments

# of teams (n)	10	12	14	16	18
$n \cdot (n-1)$	90	132	182	240	306
any $\#$ of breaks	$108 \ ^{[2b]}$	$160 \ ^{[2c]}$	$234 \ ^{[2b]}$	$240 \ ^{[2a]}$	$340^{[2b]}$
$b_i \leq 1$	192 (8) [5a]	$318 (10) ^{[5a]}$	$446 (12) ^{[5a]}$	$626 \ (14)^{[5a]}$	944 (16) $^{[5a]}$
$b_i \leq 2$	$144 (12) ^{[5a]}$	$212 (18) ^{[5a]}$	$344 \ (26) \ ^{[5a]}$	$472 (30) ^{[5a]}$	$646 (30) ^{[5a]}$
$b_i \leq 3$	144 (12) [5a]	$212 \ (16) \ ^{[5a]}$	$302 (24) ^{[5a]}$	$396(34)^{[5a]}$	$556 (40) ^{[5a]}$

Best coe values in the literature (values in parenthesis are the number of breaks)

# of teams (n)	6%	10 0%	9%	12 13%	16%	14 8%	17%	16 0%	27%	18 15%
	Coe	Break	Coe	Break	Coe	Break	Coe	Break	Coe	Break
$b_i \leq 2$		12		18		infsbl		infsbl		infsbl
$b_i \leq 3$	136	12	192	18	254	26	330	34	406	46
b_i unbounded		12		18]	26		32		42

Conclusion: A template for n = 18

Round					Games				
1	11-1	10-12	13-9	8-14	15-7	6-16	17-5	4-18	2-3
2	1-10	9-11	12-8	7-13	14-6	5 - 15	16-4	3-17	18-2
3	6-1	7-5	4-8	9-3	10-2	11-18	17-12	13-16	15-14
4	1-9	8-10	7-11	12-6	5-13	14-4	3-15	16- 2	18-17
5	1-7	6-8	9-5	4-10	11-3	2-12	13-18	17-14	15-16
6	12-1	13- 11	10-14	9- 15	16-8	7-17	18-6	5-2	3-4
7	1-13	14-12	11-15	10- 16	17-9	8-18	2-7	6-3	4-5
8	1-17	18-16	15-2	3-14	13-4	12-5	11-6	7-10	9-8
9	16-1	17-15	14-18	2-13	3 -12	4-11	5-10	6-9	8-7
10	1-5	6-4	7-3	8-2	9-18	10-17	11-16	12-15	13-14
11	14-1	15-13	16-12	17-11	18-10	2-9	3-8	4-7	5-6
12	1-4	5-3	6-2	7-18	8-17	9-16	15 - 10	11-14	12-13
13	18-1	17-2	3-16	4-15	14-5	13-6	7 -12	11-8	10-9
14	1-3	2-4	5-18	6-17	16-7	15-8	9-14	10-13	12-11
15	1-15	14-16	13-17	18-12	11-2	3-10	4-9	8-5	7-6
16	8-1	9-7	10-6	5-11	12-4	3- 13	2-14	15-18	17-16
17	1-2	18-3	4-17	16-5	6-15	7-14	13-8	9 -12	11-10

coe value: 406
number of breaks: 42
(2 teams with no break,
2 teams with one break,
6 teams with two breaks,
6 teams with three breaks,
2 teams with five breaks).

Teams having break are highlighted with **bold text**.

Burak Cavdaroglu: burak.cavdaroglu@khas .edu.tr Tankut Atan: sabritankut.atan@eng.bau.edu.tr