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Motivation

• Modelling the number of events (goals) has been thoroughly
addressed.

• Little research on modelling the goal arrival times
• Thomas (2007)

Analysis of inter-arrival times of goals in ice hockey using Weibull
and Plateau-Hazard distributions.

• Nevo and Ritov (2013)
Cox model for 1st & 2nd goal (760 Premier League games).

AIM

Since we are considering two arrival times, investigate the possible
modeling of those goal arrival times using Bivariate distributions under a

survival analysis framework.
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Champions League 2017-2018 data layout

Let t1im and t2im be the event times for team 1 and team 2 respectively with 1 = 1, 2, ...n and
m = 1, 2, ...,M the game indicator. To be more precise, part of the data layout in our case is
presented as follows:

Game t1 t2 Home Team Away Team
1 50 NA Benfica PFC CSKA Moskva
1 NA 13 Benfica PFC CSKA Moskva
1 NA 8 Benfica PFC CSKA Moskva
1 NA NA Benfica PFC CSKA Moskva
...
...

Table 1: Data layout for survival modelling of Champions’ League Data which consisted of 528
times (events and censored), 32 teams and 125 games

Properties of the data

− Teams are competing with one another.
− After a team scores, time resets to zero.
− NA-NA means that we are unable to observe at what time would a team have scored

from the time that the last team scored until the end of the game
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Initial Model
Marshall Olkin Bivariate Weibull Distribution

Let U0, U1 and U2 be independent Weibull random variables with the same shape
parameter γ and scale parameters λ0, λ1 and λ2 respectively.
Define

T1 = U0 ∧ U1 T2 = U0 ∧ U2.

Then
(T1,T2) ∼ MOBW (γ, λ0, λ1, λ2)

The Joint Probability Density Function of the Marshall Olkin Bivariate Weibull distribution
is given by

fT1,T2 (t1, t2) =


fW (t1; γ, λ1)fW (t2; γ, λ0 + λ2) if 0 < t1 < t2
fW (t1, γ, λ0 + λ1)fW (t2, γ, λ2) if 0 < t2 < t1

λ0
λ0+λ1+λ2

fW (t ; γ, λ0 + λ1 + λ2) if 0 < t1 = t2 = t

where
fW (x ; γ, λ) = γλxγ−1e−λxγ

The Joint Survivor Function is given by

ST1,T2 (t1, t2) = SW (t1; γ, λ1)SW (t2; γ, λ2)SW (t1 ∨ t2 γ, λ0), ∀λ0, λ1, λ2, γ, t1, t2 > 0

6/18



Initial Model
Marshall Olkin Bivariate Weibull Distribution

Let U0, U1 and U2 be independent Weibull random variables with the same shape
parameter γ and scale parameters λ0, λ1 and λ2 respectively.
Define

T1 = U0 ∧ U1 T2 = U0 ∧ U2.

Then
(T1,T2) ∼ MOBW (γ, λ0, λ1, λ2)

The Joint Probability Density Function of the Marshall Olkin Bivariate Weibull distribution
is given by

fT1,T2 (t1, t2) =


fW (t1; γ, λ1)fW (t2; γ, λ0 + λ2) if 0 < t1 < t2
fW (t1, γ, λ0 + λ1)fW (t2, γ, λ2) if 0 < t2 < t1

λ0
λ0+λ1+λ2

fW (t ; γ, λ0 + λ1 + λ2) if 0 < t1 = t2 = t

where
fW (x ; γ, λ) = γλxγ−1e−λxγ

The Joint Survivor Function is given by

ST1,T2 (t1, t2) = SW (t1; γ, λ1)SW (t2; γ, λ2)SW (t1 ∨ t2 γ, λ0), ∀λ0, λ1, λ2, γ, t1, t2 > 0

6/18



Initial Model
Marshall Olkin Bivariate Weibull Distribution

Let U0, U1 and U2 be independent Weibull random variables with the same shape
parameter γ and scale parameters λ0, λ1 and λ2 respectively.
Define

T1 = U0 ∧ U1 T2 = U0 ∧ U2.

Then
(T1,T2) ∼ MOBW (γ, λ0, λ1, λ2)

The Joint Probability Density Function of the Marshall Olkin Bivariate Weibull distribution
is given by

fT1,T2 (t1, t2) =


fW (t1; γ, λ1)fW (t2; γ, λ0 + λ2) if 0 < t1 < t2
fW (t1, γ, λ0 + λ1)fW (t2, γ, λ2) if 0 < t2 < t1

λ0
λ0+λ1+λ2

fW (t ; γ, λ0 + λ1 + λ2) if 0 < t1 = t2 = t

where
fW (x ; γ, λ) = γλxγ−1e−λxγ

The Joint Survivor Function is given by

ST1,T2 (t1, t2) = SW (t1; γ, λ1)SW (t2; γ, λ2)SW (t1 ∨ t2 γ, λ0), ∀λ0, λ1, λ2, γ, t1, t2 > 0

6/18



Initial Model
Marshall Olkin Bivariate Weibull Distribution

Theoretical problems:

• Not straightforward representation of the BWMO distribution using latent variables unlike
the bivariate Poisson when modelling the number of goals.

• Unclear how λ0 affects the correlation between T1 and T2.

• λ0 is always positive and therefore the dependence between the goal arrival times is
always positive (not realistic).

Computational Problem:

• The BWMO distribution is not available in the well establised Bayesian platforms (like
BUGS or STAN).

To avoid these problems we assumed that the two arrival scoring times are coming from
independent Weibull Distributions truncated at the censoring times of each team.
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Final Model
Independent Weibull Model: Formulation

Let ti1 and ti2 be the goal arrival times (in the sense that was presented above) by home (HT)
and away teams (AT) i = 1, 2, ..., n. Then the "independent Weibull" model can be expressed
by

Tij ∼ Weibull(γ, λij ), j = 1, 2, i = 1, 2, ..., n

with

log
(

E(Ti1)

)
= µ+ home + aHTi + dATi + geGDescri + reGDescri

+ β1gd1i + β2(hfi − 1) + β3gd2i + β4rti + β5gsi

log
(

E(Ti2)

)
= µ+ aATi + dHTi + geGDescri + reGDescri

− β1gd1i + β2(hfi − 1)− β3gd2i + β4rti + β5gsi

with

E(Tij ) = λ
1
γ

ij Γ(1 +
1
γ

)
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Final Model
Independent Weibull Model: Covariates

Offline Covariates
• Team Effects.
• Game Effect.
• Round Effect.

Online Covariates
• Indicator for one goal difference.
• Different effect for goal difference that is higher than 2.
• Half Time indicator.
• Remaining Time.
• Goal Scored by each even time.

Other Parameters
• Home Effect.
• Intercept.
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Final Model
Independent Weibull Model: Prior Distributions

The prior distributions that were assigned to the parameters of our model, are weakly
informative and are presented as follows:

ak , dk ∼ Normal(0, 10−3)

µ, home, geGdescri , gsGdescri ∼ Normal(0, 10−3)

The coefficients in our model are also assumed to have a weakly informative prior namely:

βj ∼ Normal(0, 10−3)

Finally, since the shape parameter γ is a positive parameter, a Gamma distribution as follows

γ ∼ Gamma(10−3, 10−3)

In order to make the model identifiable and make comparisons of the ability of each team with
an overall level of attacking and defensive abilities we imposed Sum-To-Zero constrains on
those parameters. In particular we assumed the following

K∑
k=1

ak = 0,
K∑

k=1

dk = 0
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Final Model
Independent Weibull Model: Bayesian Estimation and Model Fitting.

• Use MultiBUGS to fit out model and sample from the required posterior
distributions using MCMC.

• Conduct Gibbs Variable Selection (Dellaportas et al., 2002) to select a
final model.

• For illustration, make comparisons with the null model.

• Make the required interpretations.

11/18



Final Model
Independent Weibull Model: Bayesian Estimation and Model Fitting.

• Use MultiBUGS to fit out model and sample from the required posterior
distributions using MCMC.

• Conduct Gibbs Variable Selection (Dellaportas et al., 2002) to select a
final model.

• For illustration, make comparisons with the null model.

• Make the required interpretations.

11/18



Final Model
Independent Weibull Model: Bayesian Estimation and Model Fitting.

• Use MultiBUGS to fit out model and sample from the required posterior
distributions using MCMC.

• Conduct Gibbs Variable Selection (Dellaportas et al., 2002) to select a
final model.

• For illustration, make comparisons with the null model.

• Make the required interpretations.

11/18



Final Model
Independent Weibull Model: Bayesian Estimation and Model Fitting.

• Use MultiBUGS to fit out model and sample from the required posterior
distributions using MCMC.

• Conduct Gibbs Variable Selection (Dellaportas et al., 2002) to select a
final model.

• For illustration, make comparisons with the null model.

• Make the required interpretations.

11/18



Final Model
Independent Weibull Model: Bayesian Estimation and Model Fitting.

• Use MultiBUGS to fit out model and sample from the required posterior
distributions using MCMC.

• Conduct Gibbs Variable Selection (Dellaportas et al., 2002) to select a
final model.

• For illustration, make comparisons with the null model.

• Make the required interpretations.

11/18



Final Model
Independent Weibull Model: Results

Parameter Mean SD 2.5% 97.5%

home -0.197 0.071 -0.345 -0.050
µ 1.045 0.451 0.370 2.301
γ 1.357 0.057 1.247 1.468
hf -0.533 0.112 -0.762 -0.314

gd2 -0.110 0.038 -0.179 -0.041
rt -0.031 0.002 -0.035 -0.026

Model DIC Covariates
Null Model 4069.7 None
GVS Model 3826.7 hf + gd2 + rt
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Final Model
Independent Weibull Model: Attacking and Defensive abilities’ estimates

Figure 1: Credible intervals for attacking ability for best and worst teams.
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Final Model
Independent Weibull Model: Attacking and Defensive abilities’ estimates

Figure 2: Credible intervals for defensive ability for best and worst teams.
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Final Model
Survival Curve for the final game.

Score: Real Madrid 3 - 1 Liverpool

Figure 3: Survival Curves for the Champions League’s final game. The vertical green lines represent the goal times.
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Further work

• To reset or not to reset?

• Use only the gap times and an indicator for H/A team (logistic
approach).

• Model the goal arrival times as Recurrent Events for the same
subject (game).

• Investigate the use of alternative bivariate distributions for
modelling allowing for positive and negative dependence
between the goal arrival times.

• Use Copulas to model the dependence.

• Goodness of Fit.

• Predictions.

16/18



Further work

• To reset or not to reset?

• Use only the gap times and an indicator for H/A team (logistic
approach).

• Model the goal arrival times as Recurrent Events for the same
subject (game).

• Investigate the use of alternative bivariate distributions for
modelling allowing for positive and negative dependence
between the goal arrival times.

• Use Copulas to model the dependence.

• Goodness of Fit.

• Predictions.

16/18



Further work

• To reset or not to reset?

• Use only the gap times and an indicator for H/A team (logistic
approach).

• Model the goal arrival times as Recurrent Events for the same
subject (game).

• Investigate the use of alternative bivariate distributions for
modelling allowing for positive and negative dependence
between the goal arrival times.

• Use Copulas to model the dependence.

• Goodness of Fit.

• Predictions.

16/18



Further work

• To reset or not to reset?

• Use only the gap times and an indicator for H/A team (logistic
approach).

• Model the goal arrival times as Recurrent Events for the same
subject (game).

• Investigate the use of alternative bivariate distributions for
modelling allowing for positive and negative dependence
between the goal arrival times.

• Use Copulas to model the dependence.

• Goodness of Fit.

• Predictions.

16/18



Further work

• To reset or not to reset?

• Use only the gap times and an indicator for H/A team (logistic
approach).

• Model the goal arrival times as Recurrent Events for the same
subject (game).

• Investigate the use of alternative bivariate distributions for
modelling allowing for positive and negative dependence
between the goal arrival times.

• Use Copulas to model the dependence.

• Goodness of Fit.

• Predictions.

16/18



Further work

• To reset or not to reset?

• Use only the gap times and an indicator for H/A team (logistic
approach).

• Model the goal arrival times as Recurrent Events for the same
subject (game).

• Investigate the use of alternative bivariate distributions for
modelling allowing for positive and negative dependence
between the goal arrival times.

• Use Copulas to model the dependence.

• Goodness of Fit.

• Predictions.

16/18



Further work

• To reset or not to reset?

• Use only the gap times and an indicator for H/A team (logistic
approach).

• Model the goal arrival times as Recurrent Events for the same
subject (game).

• Investigate the use of alternative bivariate distributions for
modelling allowing for positive and negative dependence
between the goal arrival times.

• Use Copulas to model the dependence.

• Goodness of Fit.

• Predictions.

16/18



Further work

• To reset or not to reset?

• Use only the gap times and an indicator for H/A team (logistic
approach).

• Model the goal arrival times as Recurrent Events for the same
subject (game).

• Investigate the use of alternative bivariate distributions for
modelling allowing for positive and negative dependence
between the goal arrival times.

• Use Copulas to model the dependence.

• Goodness of Fit.

• Predictions.

16/18



17/18



References

Dellaportas, P., Forster, J. J., and Ntzoufras, I. (2002). On bayesian
model and variable selection using mcmc. Statistics and
Computing, 12(1):27–36.

Nevo, D. and Ritov, Y. (2013). Around the goal: Examining the effect
of the first goal on the second goal in soccer using survival analysis
methods. Journal of Quantitative Analysis in Sports, 9(2):165–177.

Thomas, A. C. (2007). Inter-arrival times of goals in ice hockey.
Journal of Quantitative Analysis in Sports, 3(3).

18/18


	References

