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My only previous experience in volleyball...

Scout guy for a female’s volleyball team in my city!
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Modelling volleyball data

• Unlike what happens for other major sports, modelling
volleyball match outcomes has not been much addressed by
statisticians and mathematicians [Ferrante and Fonseca,
2014].
• Game complexity:

1. the number of sets is a random variable (from 3 to 5);
2. the number of points achieved by the two teams in each set

varies depending on whether they are in the fifth set or not;
3. the number of final set points for two competing teams may

exceed 25 when both the teams reach 24 points (24-deuce).
Natural hierarchy of points within sets.
• In our perspective, the task of modelling volleyball match

results should follow a top-down strategy, from the sets to the
single points. Challenging from a statistical point of view!
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Modelling volleyball data

• We maintain with the idea to replicate the hierarchy of the
game into our models.
• Set-by-set negative binomial model for the points achieved by

the team loosing the single set: the distribution of the points
is then conditional to the set result.
• Strengths’ difference among the teams: in the Bayesian

approach teams’ abilities are easily incorporated into the
model by use of some weakly-informative prior
distributions [Gelman et al., 2008].
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Three possible models



Modelling volleyball data: models’ likelihood

. YAg , YBg : the points for each set g = 1, 2, . . . ,G collected by
the two competing teams, A and B.
. Wg : the binary indicator for the win of the home team. Wg = 1
if team A wins the set, 0 otherwise.
. Yg : the number of points for the team loosing the g-th set,
Yg = WgYBg + (1−Wg )YAg :

. Three possible models are proposed:

Yg ∼ NegBin(25, pg )I(Yg ≤ 23) (1)
Yg ∼ Bin(n, 1− pg ) (2)
Yg ∼ Pois(γg ), (3)

where NegBin,Bin,Pois denote the negative binomial, the binomial
and the Poisson distribution, respectively. I(Yg ≤ 23) is the right
truncation.
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Modelling volleyball data: teams’ abilities and priors i

. {αA(g), αB(g)}, {βA(g), βB(g)}: set teams and point teams
abilities for teams A(g) and B(g), respectively.

. Hs , Hp; µ: set home and point home advantage for the hosting
team; common baseline parameter.

. Set probabilities Team A wins the set with probability ωg :

Wg ∼ Bernoulli(ωg ),
logit(ωg ) = Hs + αA(g) − αB(g),

(4)

. Point probabilities The logit probability of realizing a point when
loosing the set is defined as:

log 1− pg
pg

= µ+ (1−Wg )Hp + (βA(g) − βB(g))(1− 2Wg ) (5)
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Modelling volleyball data: teams’ abilities and priors ii

. Average points (Poisson model) The logarithm of the average
number of points realized by the team loosing the g-th set is

log γg = µ+ (1−Wg )Hp + (βA(g) − βB(g))(1− 2Wg ). (6)

. Prior distributions The Bayesian model is completed by assigning
some weakly informative priors [Gelman et al., 2008] to the set and
point abilities, for each team t = 1, . . . , nteams:

αt , βt ∼ N (0, 1)
µ,Hp,Hs ∼ N (0, 103)

(7)

. Identifiability constraints set and point abilities need to be
constrained; in such a framework we impose a sum-to-zero
constraint for both the vectors α and β.
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Models’ extensions i

• Dynamic abilities Teams performance are likely to change over
an entire season. An auto-regressive prior distribution for both
the point and the set abilities is a common choice for a
dynamic assumption of the abilities [Owen, 2011]
• Attacking and defensive abilities Separately model the abilities

arising from attack and defense phases, as in football [Karlis
and Ntzoufras, 2003].
• Connecting the abilities Joint modelling of both set and point

abilities.
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Models’ extensions ii

• Extra-points after 25. The three models (1), (2) and (3) may
be extended specifying a zero-inflated Poisson (ZIP) model for
the extra points collected Og by the loosing-set team in case
of 24-deuce:

Yg = Og + WgYBg + (1−Wg )YAg

Og ∼ ZIPoisson(p0g , λg ),
(8)

where pog describes the proportion of extra zeros (no
24-deuce) and λg is the rate parameter:

logit(p0g ) =m + δ(αA(g) − αB(g)) + γ(βA(g) − βB(g))
log(λg ) = η

δ, γ ∼N (0, 1); η ∼ N+(0, 102)
(9)
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Data: Italian SuperLega 2017-2018



Data: Italian SuperLega 2017-2018

We use the regular season of the Italian SuperLega 2017-2018
dataset to validate and fit models (1), (2) and (3). The dataset
consists of the results - considered both at set and points levels -
of:

• 182 matches
• 680 sets
• 14 teams

At the end of the regular season, Sir Safety Perugia achieved the
greatest number of points (70), whereas BCC castellana Grotte
achieved the lowest number of points (10).

MathSport ’19 July 2nd, 2019 10 / 20



Results



Model fitting: model choice

• We fit the model via the rjags R package [Plummer, 2018]
performing Gibbs sampling (500 MCMC iterations, burn-in
period: 100 iterations).
• DIC (Deviance Information Criteria) for each model with the

corresponding number of parameters. The ZIP truncated
negative binomial model is the best fitted model.
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Truncated negative binomial: posterior estimates

• Posterior estimates for the set home advantage Hs , the point
home advantage Hp, the grand intercept µ and the ZIP
parameters η,m, δ, γ. There is a clear signal of home
advantage both at the set and at the single point level.
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Set and point abilities

• Estimated set and point abilities (posterior means ± s. e.),
following the actual rank of the Italian SuperLega 2017-2018:
the global pattern mirrors almost perfectly the final rank.
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Posterior checks



Posterior predictive checks

• To evaluate the overall goodness of fit of our final model, we
could draw hypothetical values from the posterior predictive
distribution of the model and check how plausible are these
replications in comparison with the observed data.
• For each set g , we denote by dg the set points difference

YAg − YBg , and with d̃ (s)
g , s = 1, . . . ,S the corresponding

points difference arising from the s-th MCMC replication,
ỹ (s)

Ag − ỹ (s)
Bg . Once we replicate new existing values from our

model, it is of interest to assess how far they are if compared
with the actual data we observed.
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Posterior checks: league reconstruction

• League reconstruction: replication of hypothetical results from
the posterior predictive distribution and league reconstruction.
Both simulated rank positions and points are quite close to
the observed ones.

MathSport ’19 July 2nd, 2019 15 / 20



Posterior checks: global measure of fit

• Predictive distribution of each d̃ (s)
g (light blue).
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Concluding remarks and ongoing work

• The truncated negative binomial model is the best to predict
volleyball outcomes.
• The in-sample predictive accuracy is quite good.
• ZIP part for the extra points seems to be a suitable

assumption.

Ongoing work:

• Including game’s covariates.
• Including points’ correlation.
• Predictions on some test set data.
• Other measures of goodness of fit.
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Contacts

For further curiosities and analysis related to statistical methods
for sports data:

• visit the webpage https://www.leonardoegidi.com/

• write me at legidi@units.it
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