Random Walks with Memory Applied to Grand Slam Tennis Matches Modeling

Ing. Tomáš Kouřim

Institute of Information Theory and Automation, AS CR Prague

2.7.2019

(日) (同) (日) (日)

Ing. Tomáš Kouřim

Outline

Prepare mathematical model

- 2 Apply it on tennis modeling
- Use it in real life betting

Ing. Tomáš Kouřim

Random Walks with Memory Applied to Grand Slam Tennis Matches Modeling

(日) (同) (日) (日)

Outline

Prepare mathematical model

2 Apply it on tennis modeling

3 Use it in real life betting

Ing. Tomáš Kouřim

Random Walks with Memory Applied to Grand Slam Tennis Matches Modeling

イロト イボト イヨト イヨト

イロト イボト イヨト イヨト

Outline

- Prepare mathematical model
- Apply it on tennis modeling
- Use it in real life betting

Ing. Tomáš Kouřim

Random walk

Definition

A man starts from a point O and walks I yards in a straight line; he then turns through any angle whatever and walks another I yards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between r and $r + \delta r$ from his starting point, O.

イロト イボト イヨト イヨト

[Karl Pearson: The problem of the random walk. (1905)]

"Drunken sailor?"

Random walk

Definition

A man starts from a point O and walks I yards in a straight line; he then turns through any angle whatever and walks another I yards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between r and $r + \delta r$ from his starting point, O.

イロト イボト イヨト イヨト

[Karl Pearson: The problem of the random walk. (1905)]

"Drunken sailor?"

Random walk properties

- *n*−dimensional, on a matrix, graph, finite or infinite set
- Discrete random process
- Self avoiding, reinforced
- Brownian motion, polymer creation, games simulation, sports simulation

(日) (同) (日) (日)

Random walks with varying transition probabilities

- Random walk with memory
- Memory coefficient $\lambda \in (0, 1)$ affecting the transition probabilities
- First step of the walk X₁ depends on an initial transition probability p₁
- Further steps depending on a transition probability pt evolving as

$$X_{t-1} = 1 \rightarrow p_t = \lambda p_{t-1}$$
$$X_{t-1} = 0 \rightarrow p_t = 1 - \lambda (1 - p_{t-1})$$

"Success punished"

Ing. Tomáš Kouřim

Random Walks with Memory Applied to Grand Slam Tennis Matches Modeling

イロト イボト イヨト イヨト

Random walks with varying transition probabilities

- Random walk with memory
- Memory coefficient $\lambda \in (0, 1)$ affecting the transition probabilities
- First step of the walk X₁ depends on an initial transition probability p₁
- Further steps depending on a transition probability pt evolving as

$$egin{aligned} X_{t-1} &= 1
ightarrow eta_t &= \lambda eta_{t-1} \ X_{t-1} &= 0
ightarrow eta_t &= 1 - \lambda (1 - eta_{t-1}) \end{aligned}$$

"Success punished"

Ing. Tomáš Kouřim

Random Walks with Memory Applied to Grand Slam Tennis Matches Modeling

イロト イボト イヨト イヨト

Model
000000000

- "Success rewarded"
- Different coefficients for different events
- Generally n possible steps and m different coefficients affecting the transition probabilities
- Possible applications in
 - sports modeling
 - reliability and survival analysis
 - medical research
- Discrete alternative to random processes with memory

(日) (同) (日) (日)

Model
000000000

"Success rewarded"

$$X_{t-1}=1 \rightarrow p_t=1-\lambda(1-p_{t-1})$$

$$X_{t-1} = 0 \rightarrow p_t = \lambda p_{t-1}$$

- Different coefficients for different events
- Generally n possible steps and m different coefficients λ affecting the transition probabilities
- Possible applications in
 - sports modeling
 - reliability and survival analysis
 - medical research
- Discrete alternative to random processes with memory

Ing. Tomáš Kouřim

Model
0000000000

- "Success rewarded"
- Different coefficients for different events

$$X_{t-1} = 1 \rightarrow p_t = \lambda_1 p_{t-1}$$

$$X_{t-1} = 0 \rightarrow p_t = 1 - \lambda_2(1 - p_{t-1})$$

- Generally n possible steps and m different coefficients *n* affecting the transition probabilities
- Possible applications in
 - sports modeling
 - reliability and survival analysis
 - medical research
- Discrete alternative to random processes with memory

Ing. Tomáš Kouřim

Model
000000000

Alternative definitions

- "Success rewarded"
- Different coefficients for different events
- Generally n possible steps and m different coefficients *n* affecting the transition probabilities

$$p_t = f(p_{t-1}, X_{t-1}, \lambda_1, \ldots, \lambda_m)$$

イロト イポト イヨト イヨト

- Possible applications in
 - sports modeling
 - reliability and survival analysis
 - medical research

Discrete alternative to random processes with memory

Ing. Tomáš Kouřim

Model
00000000

- "Success rewarded"
- Different coefficients for different events
- Generally n possible steps and m different coefficients *n* affecting the transition probabilities
- Possible applications in
 - sports modeling
 - reliability and survival analysis
 - medical research
- Discrete alternative to random processes with memory

Model
00000000

- "Success rewarded"
- Different coefficients for different events
- Generally n possible steps and m different coefficients *n* affecting the transition probabilities
- Possible applications in
 - sports modeling
 - reliability and survival analysis
 - medical research
- Discrete alternative to random processes with memory

Application in tennis

- Matches, sets, games, points or strokes can be considered steps of a discrete random walk
- Data suggest that tennis evolves according to the random walk with varying transition probabilities, namely to the option with "Success rewarded"
- Sets considered as steps of the random walk
- Men Grand Slam tournaments played as best-of-five

イロト イポト イヨト イヨト

Application in tennis

- Matches, sets, games, points or strokes can be considered steps of a discrete random walk
- Data suggest that tennis evolves according to the random walk with varying transition probabilities, namely to the option with "Success rewarded"
- Sets considered as steps of the random walk
- Men Grand Slam tournaments played as best-of-five

イロト イポト イヨト イヨト

Application in tennis

- Matches, sets, games, points or strokes can be considered steps of a discrete random walk
- Data suggest that tennis evolves according to the random walk with varying transition probabilities, namely to the option with "Success rewarded"
- Sets considered as steps of the random walk
- Men Grand Slam tournaments played as best-of-five

イロト イボト イヨト イヨト

- www.oddsportal.com
- Sport matches, results and odds
- Some statistics
- Ten seasons of tennis data since 2009
- 4255 matches, 432 players
- Novak Djokovic played 188 times

Image: A math a math

- ∢ ≣ →

Model application

- Two parameters, p_1 and λ
- p₁ used to predict result of the first set
- Once set is finished, apply λ and previous p_i to obtain p_{i+1}

э

イロト イボト イヨト イヨト

Odds to probability

- Pinnacle Sports bookmaker market leading oddsmaker
- Closing first set odds as a base
- Bookmaker margin removal

$$g_j(a_j) = rac{a_j \cdot (M-1)}{(M-1) + a_j \cdot (1 - rac{1}{f_j(a_j)}) \cdot S(a)}$$

 $f_j(a_j) = a_j \cdot (1 - S(a))$
 $S(a) = 1 - \sum_{i=1}^M rac{1}{a_i}$

Ing. Tomáš Kouřim

Random Walks with Memory Applied to Grand Slam Tennis Matches Modeling

э

<ロ> (日) (日) (日) (日) (日)

Optimal λ

- Given set of matches
- Optimal λ found using maximal likelihood estimates

$$L = \prod_{i=1}^{N} (x_i p_i + (1 - x_i)(1 - p_i))$$

$$L_{I} = \sum_{i=1}^{N} log(x_{i}p_{i} + (1 - x_{i})(1 - p_{i}))$$

Ing. Tomáš Kouřim

Random Walks with Memory Applied to Grand Slam Tennis Matches Modeling

2

(ロ) (四) (三) (三)

Model evaluation

- One year training, next year testing ightarrow 9 splits
- \blacksquare λ optimized for each training set and applied to corresponding testing set
- Ljapunov CLT yields:

$$egin{aligned} y &= rac{\sqrt{N}(ar{x}-\hat{
ho})}{\hat{\sigma}} \sim \mathcal{N}(0,\,1) \ & H_0: ar{
ho} &= \hat{
ho} \;\; vs. \;\; H_1: ar{
ho}
eq \hat{
ho} \end{aligned}$$

Ing. Tomáš Kouřim

Random Walks with Memory Applied to Grand Slam Tennis Matches Modeling

э

<ロ> (日) (日) (日) (日) (日)

Model evaluation

- Bookmaker's favorite predicted
- \blacksquare CLT assumes independence \rightarrow only 1 set per match can be in testing set \rightarrow 36 testing sets
- Optimal testing
 - every subset
 - 95% of subsets within 95% confidence interval
- Real life testing
 - per tournament
 - grouped by initial probabilities p₀
 - 93.9% of subsets within 95% confidence interval

< ロ > < 回 > < 回 > < 回 > < 回 >

Ing. Tomáš Kouřim

Model evaluation

- Bookmaker's favorite predicted
- \blacksquare CLT assumes independence \rightarrow only 1 set per match can be in testing set \rightarrow 36 testing sets
- Optimal testing
 - every subset
 - 95% of subsets within 95% confidence interval
- Real life testing
 - per tournament
 - grouped by initial probabilities p₀
 - 93.9% of subsets within 95% confidence interval

<ロ> <四> <四> <三</p>

Ing. Tomáš Kouřim

Model evaluation

- Bookmaker's favorite predicted
- \blacksquare CLT assumes independence \rightarrow only 1 set per match can be in testing set \rightarrow 36 testing sets
- Optimal testing
 - every subset
 - 95% of subsets within 95% confidence interval
- Real life testing
 - per tournament
 - grouped by initial probabilities p_0
 - 93.9% of subsets within 95% confidence interval

(日) (同) (日) (日)

Results

- In-play betting tool
- Betting against Tipsport bookmaker
- Men Grand Slam tournaments Wimbledon 2019
- If $p_i > \frac{1}{odd_i}$ then bet $p_i \cdot BU$
- Results available at www.tomaskourim.com

э

<ロ> <四> <四> <三</p>

Results

- In-play betting tool
- Betting against Tipsport bookmaker
- Men Grand Slam tournaments Wimbledon 2019
- If $p_i > \frac{1}{odd_i}$ then bet $p_i \cdot BU$
- Results available at www.tomaskourim.com

э

<ロ> <四> <四> <三</p>

Model implementation

- λ optimization
- *p*₁ optimization
- Model improvement
 - Other versions of random walk with memory
 - Combination with other approaches
- Model testing
 - Model evaluation granularity
 - Performance on a larger dataset
 - Betting module for more bookmakers
 - Application of the model to *best-of-three* matches
- Application in other domains

< ロ > < 回 > < 回 > < 回 > < 回 >

- Model implementation
 - λ optimization
 - *p*₁ optimization
- Model improvement
 - Other versions of random walk with memory
 - Combination with other approaches
- Model testing
 - Model evaluation granularity
 - Performance on a larger dataset
 - Betting module for more bookmakers
 - Application of the model to *best-of-three* matches
- Application in other domains

< ロ > < 回 > < 回 > < 回 > < 回 >

- Model implementation
 - λ optimization
 - *p*₁ optimization
- Model improvement
 - Other versions of random walk with memory
 - Combination with other approaches
- Model testing
 - Model evaluation granularity
 - Performance on a larger dataset
 - Betting module for more bookmakers
 - Application of the model to *best-of-three* matches
- Application in other domains

イロト イポト イヨト イヨト

- Model implementation
 - λ optimization
 - *p*₁ optimization
- Model improvement
 - Other versions of random walk with memory
 - Combination with other approaches
- Model testing
 - Model evaluation granularity
 - Performance on a larger dataset
 - Betting module for more bookmakers
 - Application of the model to best-of-three matches
- Application in other domains

(日) (同) (日) (日)

Thank you.

tomaskourim.com

Thank you.

tom@skourim.com

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?