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Introduction: In-play modelling in tennis

• We would like to update our win expectation given the points

played so far.

• Challenge: balance between overreacting and ignoring

information.
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Setting the stage: The iid model

• Popular model in tennis: assume player win probabilities θ1

and θ2 on serve constant throughout match

• Useful for in-play prediction because we can quickly calculate

conditional win probabilities P(p1 wins|score, θ1, θ2)

• Example: if θ1 = 0.6 and θ2 = 0.55 and best of three sets:

• Before match: 74.4%

• If p1 wins first game: 80.8%

• If p1 wins first set: 89.9%

• Tennis points are not iid, but the approximation is convenient

and has been shown to be fairly good (Klaassen & Magnus

2001).

• To use the iid model, we need θ1 and θ2, and we may want to

update them during the match.
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Prior work for finding and updating θ1, θ2

• Prior win expectations on serve to use for in-play forecasting
have been found in two ways:

1. By using a model that directly predicts the serve-winning

probabilities (so-called point based models), e.g. by Barnett &

Clarke (2005).

2. By finding θ1 and θ2 that are consistent with a model that

predicts only the probability of winning the match. Klaassen &

Magnus (2002) do this using player rankings; Kovalchik & Reid

(2017) use Elo ratings together with Barnett & Clarke’s model.

• In-play updating of θ1 and θ2 has been done by Barnett

(2011) using an ad hoc method, and Kovalchik & Reid using

an empirical Bayes approach.
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Alternative: Paired comparison models on serve & return

• Another idea: Why not use a dynamic paired comparison

model (Elo / Glicko) directly on serve and return?

• Give each player a serve rating Si and return rating Ri . Then

the Bradley-Terry likelihood (rescaled as usual for Elo) is:

P(i wins serving to j|Si ,Rj) =
10(Si−Rj )/400

1 + 10(Si−Rj )/400
(1)

• With two k factors – one for the server and one for the

returner – we can calculate Elo as usual, and I present a

version of Glicko, too.

• This has been proposed in several blogs online, but not

evaluated as far as I could see.

• Key research questions: How well do these work, and what

insights can they provide?
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Data

• Jeff Sackmann made point-by-point data available on github

• Split data into two parts: training (2011-2014) and test

(2015).

• Data is not particularly clean (duplicate names, exhibitions...).

Corrected problems but probably still not perfect.

train test

Start date 2011-07-28 2015-01-05

End date 2014-11-15 2015-12-20

Matches 8,180 2,482

Points 1,281,672 400,739

Table 1: ATP

train test

Start date 2011-07-28 2015-01-04

End date 2014-11-19 2015-12-20

Matches 7,958 2,549

Points 1,118,680 368,198

Table 2: WTA
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Serve and return Elo

• Think of each point as a “match” between server and

returner.

• After each point, update server rating with a server k-factor,

kserve, and returner rating with returner k-factor, kreturn.

• Three parameters: kserve, kreturn and return Elo mean (serve

fixed at 1500).

ATP WTA

kserve 1.725 1.579

kreturn 1.254 1.207

Return mean 1414.9 1466.5

Figure 1: Optimal values for parameters, obtained by maximising the log

predictive likelihood on the training set. k quite similar for ATP and

WTA; mean is different (≈ 62% win probability on ATP, 55% on WTA). 7



Introduction to Glicko

• Roughly speaking, Glicko is a Bayesian version of Elo devised

by Mark Glickman (1999).

• Each player’s skill is modelled as a normal distribution with a

mean and a variance reflecting the uncertainty about the skill.

• Update sizes are determined by how uncertain we are about

skill: more uncertainty → larger updates.

• Glicko is essentially a Kalman filter, alternating two steps:

“measurement” (update based on measurement) and

“prediction” (updating between measurements)

8



Glicko illustration: “Measurement Step”

Figure 2: One Glicko “measurement step”. Player 1 plays and wins,

updating their mean and reducing their uncertainty. Their initial

uncertainty was greater, so the update is larger.
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Glicko illustration: “Prediction step”

• If we only made updates, the uncertainty would shrink, and

updates would get smaller and smaller.

• The “prediction step” consists of adding in some variance to

reflect our growing uncertainty. In the original Glicko paper

(Glickman 1999), time is broken into periods (e.g. months)

and variance is added after each period.

• (Potentially) neat feature of Glicko:

long absence → large variance → large updates (while

standard Elo has fixed k)
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Serve and return Glicko idea

• Like with serve & return Elo, update each point.

• Glicko breaks time into periods (e.g. months), but unclear

how to do in-play! Update point-by-point instead.

• Introduce sources of uncertainty (all to be optimised):

• Within match, add variance after each point

• Between matches, let variance grow linearly as function of

days, with intercept

• Within-match and between-match variance can tell us about

how much skills are expected to shift during and between

matches.
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Serve and return Glicko parameters

ATP WTA

Point to point stdev 9.18× 10−4 8.00× 10−4

Match to match stdev 3.85 3.25

Per day stdev 1.10 0.985

Prior serve stdev 34.81 36.90

Prior return mean 1415.7 1467.5

Prior return stdev 23.65 24.56

Table 3: Optimal values for serve and return Glicko.

• Point-to-point standard deviation is essentially zero, so no

apparent benefit in allowing for it. (!)

• Considerable uncertainty between matches for both tours.

• Parameters similar between tours, except return mean (again). 12



Serve and return Glicko example vs Elo

• 2015 Wimbledon Final: Djokovic def. Federer, 7-6(1) 6-7(10)

6-4 6-3.

0 50 100 150 200 250
1610

1620

1630

1640

1650

Serve ratings, Elo

Roger Federer
Novak Djokovic

0 50 100 150 200 250

1475
1480
1485
1490
1495
1500
1505
1510

Return ratings, Elo

Roger Federer
Novak Djokovic

0 50 100 150 200 250

1600

1620

1640

1660

Serve ratings, Glicko
Roger Federer
Novak Djokovic

0 50 100 150 200 250

1460

1480

1500

1520

Return ratings, Glicko
Roger Federer
Novak Djokovic

Figure 3: Elo vs. Glicko for Wimbledon final. Note Glicko error bars! 13



Baseline models for evaluation

• Pick two baseline models (and fit parameters using training
data):

1. Elo with static win probabilities

2. Elo with beta binomial update.

• Model (2) is close to Kovalchik & Reid’s model, but optimised

slightly differently (log loss) and using a more naive model to

set the sum of θ1 and θ2. It might therefore be a bit worse.
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Evaluation

• Consider two settings for evaluation:

1. Predicting the outcome of each point in test set.

2. Predicting the outcome of the match, pre-match and in-play.

• For the second, consider three scenarios:

1. Start of match (pre-match)

2. After fifth game (in-play)

3. After first set (in-play)

• Evaluate point-level with log loss; evaluate in-play using

accuracy and log loss.

• Log loss is negative mean (Bernoulli) log likelihood:

log loss =
1

N

N∑
i=1

−yi log pi − (1− yi ) log(1− pi ) (2)

• where pi is the predicted probability and yi is the outcome.
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Point-level evaluation

Log loss

S&R Glicko 0.64788

S&R Elo 0.64794

Elo+Beta 0.64819

Static Elo 0.64939

Table 4: ATP

Log loss

S&R Glicko 0.68286

Elo+Beta 0.68287

S&R Elo 0.68298

Static Elo 0.68394

Table 5: WTA

• Results all seem very close, but important to remember we are

predicting hundreds of thousands of points, so small

differences can be important.

• Serve and return Glicko does best on both tours. Serve and

return Elo does well too, but is beaten by Elo+Beta on WTA.
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To sample or not to sample

• Both Serve & Return Glicko and the Beta binomial model

produce posterior distributions for the serve-winning

probabilities, not just point estimates

• Two options for predicting: (1) just use mean, (2) do the

“proper” thing and integrate over distributions by Monte

Carlo sampling:

P(p1 win|score) ≈ 1

N

N∑
n=1

P(p1 win|score, θ1n, θ2n) (3)

where θ1n and θ2n are draws from the distributions for the

serve-winning probabilities.

• Using samples is more expensive (need to predict N times,

e.g. N = 1000), but is it worth it?

17



Sampling vs. not sampling

S&R Glicko Elo+Beta

Initial 0.610 0.580

Initial MC 0.596 0.588

Fifth Game 0.540 0.529

Fifth Game MC 0.533 0.528

After Set 0.436 0.441

After Set MC 0.433 0.434

Table 6: Log loss ATP. MC denotes

sampling.

S&R Glicko Elo+Beta

Initial 0.677 0.634

Initial MC 0.653 0.630

Fifth Game 0.593 0.579

Fifth Game MC 0.580 0.563

After Set 0.469 0.470

After Set MC 0.463 0.451

Table 7: Log loss WTA. MC

denotes sampling.

• With the single exception of the initial probability for

Elo+Beta on ATP, MC sampling improves log loss everywhere!

• Report with MC sampling from now on.
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Evaluation (match level, ATP)

Start Game 5 After set

Static Elo 68.0 73.7 81.5

S&R Elo 67.5 73.2 81.7

S&R Glicko 68.1 73.3 81.7

Elo+Beta 68.0 73.8 81.7

Table 8: Accuracy

Start Game 5 After set

Static Elo 0.580 0.524 0.433

S&R Elo 0.613 0.540 0.435

S&R Glicko 0.596 0.533 0.433

Elo+Beta 0.588 0.528 0.434

Table 9: Log loss

• All models are fairly close on accuracy, with S&R Elo perhaps

dropping a little short.

• S&R Elo is poor initially for log loss, and S&R Glicko is worse

than Static Elo & Beta binomial.

• Surprisingly, Static Elo has (close to) best metrics throughout!
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Evaluation (match level, WTA)

Start Game 5 After set

Elo+Beta 63.1 71.4 81.6

S&R Glicko 64.1 69.8 81.1

Static Elo 63.1 69.6 81.4

S&R Elo 63.0 69.5 81.0

Table 10: Accuracy

Start Game 5 After set

Elo+Beta 0.630 0.563 0.451

S&R Glicko 0.653 0.580 0.463

Static Elo 0.634 0.569 0.460

S&R Elo 0.686 0.600 0.473

Table 11: Log loss

• Apparently more gains for dynamic models on WTA. S&R

Glicko has higher accuracy initially, but Elo + Beta binomial

does best later.

• On log loss, Elo + Beta binomial does best, improving slightly

on static Elo. S&R Glicko improves on S&R Elo, but lags

behind.
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One possible problem: Surface changes
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Figure 4: Serve Glicko knows nothing about surfaces. Federer’s serve

Glicko gets much better on grass, but part of this is likely just due to the

surface, not improvement in skill.
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Conclusions & Future work

• Serve & Return Glicko improves on Serve & Return Elo in all

metrics.

• Serve & Return Elo and Glicko do well at predicting individual

points, but worse at predicting match outcomes compared to

Static Elo and Elo+Beta binomial. Problem with iid

approximation?

• Static Elo (no within-match updating of θ1 and θ2) is a

surprisingly strong baseline for within-match prediction.

• Using uncertainty when predicting appears to be beneficial

and could perhaps also improve Kovalchik & Reid model if

practical (need fast code for win prediction).
• Future work:

• Accounting for surface changes may improve the model.

• Perhaps optimise match win directly, not points?

22



Thanks!
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Model 1: Elo with static serve probabilities

• You just heard all about Elo!

It does well for tennis.

• First (simplest) model: Use

Elo win probability to

calculate θ1, θ2; keep

constant throughout match,

and update probabilities

with iid conditional on score.

• This model has only one

parameter: the k-factor.

• Optimise match log loss on

training set to find

k = 40.00 on ATP and

43.66 on WTA.
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Figure 5: Elo with no updating
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Model 2: Elo + Beta binomial

• Use the win probabilities θi as

means for Beta priors

• Use parameterisation of Beta using

mean µ and prior sample size ν.

• Start with θi ∼ Beta(µi , ν), setting

µi to Elo probability as before.

• Update with match outcomes

(treat player as biased coin).

• Need to optimise ν, the prior

sample size. ATP: 71.1. WTA:

66.4. ADD IN PLAY PLOT.
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Figure 6: Prior: µ = 0.5,

ν = 4; Posterior is result

after observing 5 points won,

3 lost.
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Beta binomial for Wimbledon final
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Prior work: Use win prediction to get serve probabilities

• How to get serve win

probabilities θ1, θ2 when we

only have match win

probability?

• Trick: fix θ1 + θ2; optimise

θ1 − θ2 to match win

prediction.

• Example (best of 3):

p(win) = 0.7,

θ1 + θ2 = 1.26

→ θ1 = 0.651, θ2 = 0.609
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almost parallel, indicating difference

is much more important.
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How to use the iid model to update in-play expectations?

• We’ll look at two model classes:

1. Class 1: Use a win prediction model and find consistent

serve-winning probabilities θ1 and θ2
2. Class 2: Use a paired comparison model on points to directly

update θ1 and θ2.
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Running example: Federer vs. Djokovic, 2015 Wimbledon

• Djokovic beat Federer in 4 sets, 7-6(1) 6-7(10) 6-4 6-3.

• Federer won 66% of his points on serve; Djokovic won 69%.

• It’s usual for the winner to have a higher percentage of points

won on serve, but not always (!) – at the 2015 US Open e.g.

Federer had higher percentage but lost in 4.
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Serve and return Glicko parameters

TODO: Turn these into (more interpretable) standard deviations.

Also TODO: Illustrate what these mean.

ATP WTA

Point to point variance 8.43× 10−7 6.41× 10−7

Match to match variance 14.845 10.533

Per day variance 1.202 0.971

Prior serve variance 1211.67 1359.68

Prior return mean 1415.7 1467.5

Prior return variance 559.133 603.398

Table 12: Optimal values for serve and return Glicko
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Serve and Return Elo example

• Djokovic beat Federer in the 2015 Wimbledon final, 7-6(1)

6-7(10) 6-4 6-3.
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Figure 8: Serve and return Elo evolving over the match. Updates are

fairly small, but θ1 and θ2 not constant.
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