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Motivation

» FINA rankings are currently used to compare swimmers across
all 34 Olympic events.

» Based on points system,
pij o< (bj/ti))?
pij given to swimmer i in event j is where b; is the base time for
event j.
» Very sensitive to changes in world record.

> Bias between events.
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A good ranking system should be robust to changes in the data,
and quantify uncertainty in the ranks.
Other features of interest:

» What is the ultimate possible swim-time for a given event?
> What will be the swim-time of the next world record?

» When will current world records next be broken?

» Which event will next have a new record set?
>

Can we adjust for technological advances?
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Figure: Data for the men’s 100m butterfly. The fastest 200 times over
the period 2001 to late 2018.
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Theory
» Want to model both rate and distribution of these extreme
events.
> By definition, there are very few observations.
» Data of the swimmer population not available.
» Even if it was, this would not be useful!
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» A Separate framework for analysing extreme events is required.



Extreme Value Theory

kAL

e e e L T o s s e
0 2 4 6 8 10 12 14 16 18 20

years

Figure: Block maxima



Extreme Value Theory

: ’

_|{r§ " l l

e e e L T o s s e
0 2 4 6 8 10 12 14 16 18 20

years
Figure: Block maxima

Generalised extreme value (GEV) dis-
tribution function:

G(x) = exp (~[L+&(x = w)/o1%)

uw, EER, o €RT.



Extreme Value Theory

o .
\\\\\\\\\\\\\\\\\\\\\

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
years years
Figure: Block maxima Figure: Peaks over threshold, u

Generalised extreme value (GEV) dis-
tribution function:

G(x) = exp (~[L+&(x = w)/o1%)

uw, EER, o €RT.



Extreme Value Theory

0 2 4 6 8
—
0 2 4 6 8

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
years years
Figure: Block maxima Figure: Peaks over threshold, u

Generalised extreme value (GEV) dis-  Generalised pareto distribution (GPd)
tribution function: function:
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uw, EER, o €RT.
EER, R,



Extreme Value Theory
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Extreme Value Theory

GEV density function
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Point process

>

Point process framework combines annual maxima (GEV), and
peaks over threshold (GPd), to allow for non-homogeneous rates of
occurrence.

Connects GEV parameters (u, 0, &) to GPd parameters (7, £) via:
& =0+&(u—p).
Model both rate and distribution of extreme data, for any event.

Observations occur via a Poisson random variable with rate
R(u, o, £&|x, t) for a swim-time x at time t.
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Model: independent events
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Data for the men’s 100m butterfly.
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Figure: Data for the men's 100m butterfly.

» A trend in the rates of occurrences.
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Figure: Data for the men's 100m butterfly.

» A trend in the rates of occurrences.
» Observations above threshold have a time independent

distribution.



Model: independent events
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Figure: Data for the men's 100m butterfly.

» A trend in the rates of occurrences.

» Observations above threshold have a time independent
distribution.

» Swim-suit effect.
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Model: independent events

This is achieved via two additional parameters:

(&), 8o Lo gle) Ale)y,

such that:
§(e)(t) — g(e)’

H(e)(t) = ,u(()e) + B¢ 4 v(e)ﬂ{test}a
oO(t) = of + @Ot 4 (41,
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...independent event model

» Have model with with five parameters: ug, g, &, 3, 7.

> For all 34 Olympic swimming events, this means 170
parameters in total.

» Can improve model robustness and predictive power by
pooling information across events.

» Try introducing distance as a covariate.

> A log-log relationship with distance works well for athletics,
but..



Across event model

» The different strokes means this isn't much of an

improvement.
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Figure: Transformed parameter estimates against log threshold swim-time
log(u): log(5), &, log(B), log(—ko), /-



Across event model

Therefore, use the threshold time as a covariate:

“ +
R T

parameter MLE for individual fit

-2 -1
>
>

I- -
&A
Py

et

AD

*%

log threshold swim-time

Figure: Transformed parameter estimates against log threshold
swim-time, log(u): log(), &, log(/3), log(—t0), /7




Across event model

These pooled estimates would result in model:

e = log (ue).

parameter MLE for individual fit
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Across event model

These pooled estimates would result in model:

€9 =¢
log (p(e)) = o + 010,
log (ﬁ(e)) = a2 + 02,
) = az + O3,
log (5(:)) = a4 + Oadle,

e = log (ue).

§ ™ o
g o
2 o4 o e
E 5 e
= +E 4 o
& T +s e 7 %O -" 20
w I+ + ° " Ab
4 o
S O° | ax  BRr TEBE Sk R -
5 oo e
= - _] ] A% a
|5 ] L]
g wme s
I
a T T T T

3 4 5 6

log threshold swim-time




Splines
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Figure: different degree B-spline.
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where ay is the k" element of the spline coefficient vector a.



Final model

parameter MLE for across model fit

log threshold swim-time

Figure: parameters for the final model: log(&), &, log(3), log(—w0), /7.
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log (—u(e)) = a1+ 01,
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&) = az+ Oz,

log (&L,e)) = iakBk(ﬁe)y
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Model fits: rate of observations
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Figure: Data for the men’s 100m

Figure: Fitted rate of occurances.
butterfly.



Model fits: distribution of observations.
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Results: Expected times
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Results:
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Results: Probability of next record in a given event

probability
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..derivations

If re := max(x.), then
P{T® <t} =1-Pr{T® > ¢} (1)

=1- Z Pr{max(Xl(:e,\),t) < re|Ne = m} Pr{N; = m}

m=0

=1- i [H(e)( e)]"’ [A(e) (A(l,t),ue)]mexp [ A (Ao, )] /ml

m=0

=1—exp {f/\(e) (A(Lt),ue) Hl(lj)_("e)}
= FT<e)(t)7



..derivations

Let
T .= min {T®W ke E\{e} }.

Then the probability that the next world record is set in event e is
Pr{T(*) > 79} ()
:/ Pr{TCD > TOITO = 1} Pr{T®) =t} dt
/ H exp [ AK) (.A ) l:ll(,f)(rk)]}

kEE\{e}

(). |
:/ {exp[ > A9 (A ) 55)(,6)]}[1%(%)}:#6)

keE

1
3

I:If,:)(re)exp [—/\(e) (Aa,e),u) I:IL(,:)(re)] dt

where the second equality follows because

PUTCI > TOITO =t = [T {exo [\ (Aw) AL(r)] }
keE\{e}
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Figure: Pooled pp plot over all events, with 95 % tolerance interval.
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Figure: The expected number of observations for Women's 100m
freestyle and 95% confidence intervals, against the number of
observations in the data (red crosses).
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