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Motivation

I FINA rankings are currently used to compare swimmers across
all 34 Olympic events.

I Based on points system,

pi ,j ∝ (bj/ti ,j)
3

pi ,j given to swimmer i in event j is where bj is the base time for
event j .

I Very sensitive to changes in world record.

I Bias between events.
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A good ranking system should be robust to changes in the data,
and quantify uncertainty in the ranks.
Other features of interest:

I What is the ultimate possible swim-time for a given event?

I What will be the swim-time of the next world record?

I When will current world records next be broken?

I Which event will next have a new record set?

I Can we adjust for technological advances?
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Figure: Data for the men’s 100m butterfly. The fastest 200 times over
the period 2001 to late 2018.
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Theory

I Want to model both rate and distribution of these extreme
events.

I By definition, there are very few observations.
I Data of the swimmer population not available.
I Even if it was, this would not be useful!
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Extreme Value Theory
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Point process

I Point process framework combines annual maxima (GEV), and
peaks over threshold (GPd), to allow for non-homogeneous rates of
occurrence.

I Connects GEV parameters (µ, σ, ξ) to GPd parameters (σ̃, ξ) via:

σ̃ = σ + ξ(u − µ).

I Model both rate and distribution of extreme data, for any event.

I Observations occur via a Poisson random variable with rate
R(µ, σ, ξ|x , t) for a swim-time x at time t.

2005 2010 2015

50
.0

51
.0

52
.0

Year

S
w

im
−

T
im

e(
s)



Point process
I Point process framework combines annual maxima (GEV), and

peaks over threshold (GPd), to allow for non-homogeneous rates of
occurrence.

I Connects GEV parameters (µ, σ, ξ) to GPd parameters (σ̃, ξ) via:

σ̃ = σ + ξ(u − µ).

I Model both rate and distribution of extreme data, for any event.

I Observations occur via a Poisson random variable with rate
R(µ, σ, ξ|x , t) for a swim-time x at time t.

2005 2010 2015

50
.0

51
.0

52
.0

Year

S
w

im
−

T
im

e(
s)



Point process
I Point process framework combines annual maxima (GEV), and

peaks over threshold (GPd), to allow for non-homogeneous rates of
occurrence.

I Connects GEV parameters (µ, σ, ξ) to GPd parameters (σ̃, ξ) via:

σ̃ = σ + ξ(u − µ).

I Model both rate and distribution of extreme data, for any event.

I Observations occur via a Poisson random variable with rate
R(µ, σ, ξ|x , t) for a swim-time x at time t.

2005 2010 2015

50
.0

51
.0

52
.0

Year

S
w

im
−

T
im

e(
s)



Point process
I Point process framework combines annual maxima (GEV), and

peaks over threshold (GPd), to allow for non-homogeneous rates of
occurrence.

I Connects GEV parameters (µ, σ, ξ) to GPd parameters (σ̃, ξ) via:

σ̃ = σ + ξ(u − µ).

I Model both rate and distribution of extreme data, for any event.

I Observations occur via a Poisson random variable with rate
R(µ, σ, ξ|x , t) for a swim-time x at time t.

2005 2010 2015

50
.0

51
.0

52
.0

Year

S
w

im
−

T
im

e(
s)



Point process
I Point process framework combines annual maxima (GEV), and

peaks over threshold (GPd), to allow for non-homogeneous rates of
occurrence.

I Connects GEV parameters (µ, σ, ξ) to GPd parameters (σ̃, ξ) via:

σ̃ = σ + ξ(u − µ).

I Model both rate and distribution of extreme data, for any event.

I Observations occur via a Poisson random variable with rate
R(µ, σ, ξ|x , t) for a swim-time x at time t.

2005 2010 2015

50
.0

51
.0

52
.0

Year

S
w

im
−

T
im

e(
s)



Model: independent events
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Figure: Data for the men’s 100m butterfly.

I A trend in the rates of occurrences.

I Observations above threshold have a time independent
distribution.

I Swim-suit effect.
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Model: independent events

This is achieved via two additional parameters:

(ξ(e), µ
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0 , β(e), γ(e)),

such that:

ξ(e)(t) = ξ(e),

µ(e)(t) = µ
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0 + β(e)t + γ(e)1{t∈St},

σ(e)(t) = σ
(e)
0 + ξ(e)β(e)t + ξ(e)γ(e)1{t∈St},
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...independent event model

I Have model with with five parameters: µ0, σ0, ξ, β, γ.

I For all 34 Olympic swimming events, this means 170
parameters in total.

I Can improve model robustness and predictive power by
pooling information across events.

I Try introducing distance as a covariate.

I A log-log relationship with distance works well for athletics,
but..
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Across event model

I The different strokes means this isn’t much of an
improvement.
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Across event model

Therefore, use the threshold time as a covariate:
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Across event model
These pooled estimates would result in model:
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log (σ̃(ũ)) =

q∑
k=1

akBk(ũ)

where ak is the kth element of the spline coefficient vector aaa.



Final model
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Model fits: rate of observations
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Model fits: distribution of observations.
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Results: Rankings
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Results: Expected times
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Figure: Expected next world record swim-time. Ultimate possible
swim-time



Results: Time of next record
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Results: Probability of next record in a given event
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Thanks



...derivations

If re := max(xxxe), then

Pr{T (e) < t} = 1− Pr{T (e) > t} (1)

= 1−
∞∑
m=0

Pr{max(X
(e)
1:Nt

) < re |Nt = m}Pr{Nt = m}

= 1−
∞∑
m=0

[
H(e)

ue (re)
]m [

Λ(e) (A(1,t),ue

)]m
exp

[
−Λ(e) (A(1,t),ue

)]
/m!

= 1− exp
{
−Λ(e) (A(1,t),ue

) ¯
H

(e)
ue (re)

}
= FT (e)(t),



...derivations
Let

T (−e) := min
k
{T (k), k ∈ E \ {e} }.

Then the probability that the next world record is set in event e is

Pr{T (−e) > T (e)} (2)

=

∫ ∞
1

Pr{T (−e) > T (e)|T (e) = t}Pr{T (e) = t} dt

=

∫ ∞
1

∏
k∈E\{e}

{
exp

[
−Λ(k) (A(1,t),uk

)
H̄(k)

uk (rk)
]}

[
1 + ξ

(
ue − µ(e)(t)

σ(e)(t)

)]− 1
ξ

+

H̄(e)
ue (re) exp

[
−Λ(e) (A(1,t),ue

)
H̄(e)

ue (re)
]
dt

=

∫ ∞
1

{
exp

[
−
∑
k∈E

Λ(k) (A(1,t),uk

)
H̄(k)

uk (re)

]}[
1 + ξ

(
ue − µ(e)(t)

σ(e)(t)

)]− 1
ξ

+

H̄(e)
ue (re) dt,

where the second equality follows because

Pr{T (−e) > T (e)|T (e) = t} =
∏

k∈E\{e}

{
exp

[
−(Λ(k) (A(1,t),uk

)
H̄(k)

uk (rk)
]}
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Figure: Pooled pp plot over all events, with 95 % tolerance interval.
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Figure: The expected number of observations for Women’s 100m
freestyle and 95% confidence intervals, against the number of
observations in the data (red crosses).



L(θ;xxx , ttt) =
∏
e∈E

{
exp

[
−Λ(e) (A1,ue )

] 200∏
i=1

∫ x
(e)
i +si/2

x
(e)
i −si/2

λ(e)(ti , x) dx

}
exp [−(φ1pr + φ2pm)] ,
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Figure: Expected next world record swim-time. Ultimate possible
swim-time


