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QUADRATIC VARIATION FOR A CLASS OF L log * L-BOUNDED
TWO-PARAMETER MARTINGALES

By Nikos E. FRANGOs AND PETER IMKELLER

The Ohio State University

Let M = (M,); <012 be a two-parameter L log* L-bounded (not neces-
sarily continuous) martingale. Assume that the marginal filtrations in the
first and second directions are quasi-left continuous. We prove the existence -
of quadratic variation in the sense of convergence in probability. This is done
first for bounded martingales. The extension to the general case is obtained
by approximating a given martingale by its bounded truncations and using a
two-parameter version of the square function inequality of Burkholder.

Introduction. One of the basic notions in the development of stochastic
calculus is quadratic variation.

In the theory of one-parameter (semi-)martingales the existence of quadratic
variation is immediate from the definition of the stochastic integral (see Métivier
[17, pages 175, 176]). Moreover, once its existence is established for L2-bounded
martingales, the concept of localization based upon the notion of stopping time
allows a simple extension to the larger class of local martingales.

In the theory of two-parameter processes, however, stopping and consequently
localization are more difficult and by far less important (see, for example, [14]).
The development of the notion of quadratic variation for two-parameter
martingales reflects this fact. To mention only a few steps: In their pioneering
paper, Cairoli and Walsh [5] initiated a stochastic calculus for two-parameter
martingales. Tn [6], the same authors established the existence of quadratic
variation in LP”-sense p > 1 for bounded martingales with the Wiener filtration.
Zakai [26] extends Cairoli’s and Walsh’s proof to continuous (locally) L*-bounded
martingales. Assuming that every L%-bounded martingale admits a continuous
version and using the inequalities of Burkholder, Davis and Gundy as an
essential tool like his predecessors, Chevalier [7] constructs quadratic variation
for a class of continuous martingales. Nualart [23] deals with L2-bounded
continuous martingales and, besides constructing the quadratic variation, proves
sample continuity of it. Guyon and Prum [13], for their stochastic calculus of
representable martingales (w.r.t. Wiener filtration), construct quadratic variation
for these processes and also have a very detailed bibliography containing further
references. Among the few papers containing results for noncontinuous
martingales, we only mention Mishura [20], [21]. In the latter, which treats the
existence of quadratic variation via decomposition of the (L?-bounded) martingale
into jump parts and a continuous component, some regularity assumptions are
made concerning the martingale and the quadratic variation of its one-parameter
sections.
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Here, we prove that L log* L-bounded martingales (not necessarily continu-
ous) possess a quadratic variation provided the one-parameter “marginal” filtra-
tions F! and 2 are quasi-left continuous. To do this, we use a weak Burkholder-
type inequality for square functions together with a truncation argument which
allows one to reduce the L log* L-bounded case to the bounded case. Given the
facts that stopping and localization are poor concepts in the two-parameter
theory, L log™ L seems to be a “natural” boundary for the existence theorems of
quadratic variation (see Cairoli and Walsh [5, page 137] and Bakry [1]). How-
ever, we could not make this statement precise.

In Section 1 we prove a weak Burkholder-type inequality for the square
function of martingales indexed by N2. We first show that the one-parameter
version can be extended from real-valued to Hilbert-valued martingales. Then,
expressing the two-dimensional difference sequence of the martingale as a one-
dimensional difference sequence of a Hilbert space-valued martingale, we obtain
the desired generalization (Theorem 1.2).

In Section 2, we discuss the problem of the existence of quadratic variation for
(continuous parameter) bounded martingales M first. Using some basic facts on
the dual previsible projections (in the i direction of parameter space) A (A?%),
i = 1,2, of M?, and Burkholder’s L *-inequalities for uniform integrability of the
square sums, we prove that quadratic variation exists provided M, ., and M,. ,,
are quasi-left continuous (Theorem 2.6). Finally, by means of Theorem 1.2, we
are able to trace back the existence of quadratic variation for L log* L-bounded
martingales to the case of the bounded truncations E((—m V M;) A m| %)),
m € N (Theorem 2.9). Since quasi-left continuity of M, ., and M. may not be
preserved by truncation, we have to make a slightly stronger assumption
whereby F! and F? are quasi-left continuous. We could not decide whether
Theorem 2.9 remains true under weaker assumptions than these.

Notation, preliminaries and definitions. We consider processes with
parameter set T, where T'= N or N2 in Section 1 and T = I = [0, 1]? in Section
2. T is endowed with the usual partial order, i.e., (coordinatewise) linear order.
Time points in | are denoted by ¢ = (¢, t,); intervals in | by J = J; X oJ,. For
J =1s, t], we write J! =]s, t,] X [0, s,], J? = [0, 5,] X ]s,, ¢,]. If the corners
are not specified in advance, we denote by s and #7 the lower and upper corner
of an interval J. A partition of | by intervals is always understood to be
generated by axial parallel lines. Its intervals are supposed to be left open and
right closed in the relative topology of 1. The mesh of a partition J is defined
to be

sup (|s{’— tf| v|sy - t§’|)
Jed
An 0-sequence (J,,), <n Of partitions is a sequence such that the mesh of J, goes
to zero as n — oo. For a partition J, J; is the set of all J;, i = 1,2, such that
J=JdXJJ,elI.ForreR, r=(r,r). )
Given a function f: T > R, s,t € T, s < t and setting J =]s, ¢], denote
A f_{f(t)—f(s), if T C R,
I f(t)_f(tI’SZ)_f(sl’t2)+f(s)’ if T c R
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If J=Im,m+1] or Im,m+ 1] X Jn,n + 1] for m,n € N, we write A, f,
respectively, A, f. If A is an increasing function, i.e., A ;A > 0 for any interval
J of T, we write A(J) instead of A A.

Our basic probability space (2, %, P) is assumed to be complete, the basic
filtration F = (#,),cr to be augmented by the zero sets of &%, and right
continuous.

If Tc R for t = (¢, t,) € T, X T, = T, define

1 _ 2 _
gr‘l - V Zthtz)’ ‘%2 - v ’Z‘htz)

LEeT, 4LeT

P (ers (57

)tleTl’ )tzeTz’

F! and F? are always assumed to fulfill the well known (F4) condition of Cairoli
and Walsh [5]:

forall t € T, X bounded, #— %(R)-measurable, we have .
E(X|#) = E(E(X|#,)|#2).

Let (o#, ( - ,-)) be a Hilbert space, || - || = ( -, - /% Stochastic processes X
with values in 57 are always assumed to be (strongly) #® #(T) — B(¥)-
measurable. In talking about s#valued processes, “integrable” means Bochner
integrable w.r.t. P and E, the Bochner integral.

For p € {0} U [1,0[, L?(2, %, P) is the usual space of real-valued p-inte-
grable random variables. It is a Banach space with norm || - ||, if p > 1 and a
metrizable topological vector space with the topology of convergence in probabil-
ity if p = 0. Llog*L is the space of real-valued random variables X such that
E(|X|log*|X]) < oo.

An s#valued F-adapted integrable process M = (M,), c r is called a martingale
(strong martingale, submartingale) if for all s, ¢t € T, s < t, we have

E(M)|%) = M,(T €R2 and E(A s, . M|Z! V £2) =0,
#=Rand E(M|%) = M,).

M is Llog*L-bounded if sup,.rE(|Mlog*|M,) < co. If T =1, we assume
M,=0for telnJR%.

1. A two-parameter Burkholder inequality. Let M be a real-valued
martingale indexed by N, M, = 0. Let [M] = (T, cn(A,M)?)"/2 be the square
function of M. The following weak inequality for square functions, due to
Burkholder [2], [3], is well known:

(1.1) AP([M] =)) < 3sup E(|M,))

neN

for every A > 0.
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Let (&,( -, -)) be a Hilbert space, M an s#valued martingale indexed by N.
Assume that each M is Bochner integrable. Define

1/2

IM1 = ¥ (MM, 8,0)) .
keN

Then for every A > 0,

(1.2) AP(IM]1 = ) < 3sup E(||M,)).

neN
The proof of (1.2) follows verbatim the lines of (1.1) given in [3]. Only the
following well-known identity is needed:

(a, E(X)) = E(a, X)),

where a € 5 and X is any s#valued Bochner integrable random variable.

Considering a martingale difference sequence, indexed by N2, as a difference
sequence of a Hilbert-valued martingale indexed by N and using (1.2), one can
deduce an analogue of (1.1) for two-parameter martingales (Theorem 1.2). A
similar result using basically the same ideas was proved by Shieh.[25], whose
work was communicated to us by the referee. The second part of [25], dealing
with continuous parameter martingales, however, is not correct. For the sake of
completeness and because our inequality (1.4) is slightly different from that in
[25], we present the main ideas of the proof. Let M be an L log*L-bounded
real-valued martingale indexed by N2, M, = 0. Then there exists an L log*L-
integrable random variable M_ such that

M,,= E(M,|%,,) = E(E(M_|%})|%2).

M, is the a.s. limit of M. Let [M] = (£, ;cn(AM)?)"/2 be the square function
of M. In the proof of Theorem 1.2, we need a strengthening of Doob’s inequality,
due to Millet and Sucheston [19, page 23], which we recall for convenience.

LEMMA 1.1. Let M be a real-valued L log* L-bounded martingale indexed by
N. Then for every 8 > 0,0 < & < 1, there exists a constant A(8) such that

(18)  E(sup |3,]) < 8+ A(®)max| E(M,.), (1M, Jlog"|M,,))].

neN

THEOREM 1.2. Let M be a real-valued L log* L-bounded martingale indexed
by N2, Then for every § > 0, 0 < § < 1, there exists a constant A(8) such that

(1.4)  AP([M]=X) <8+ A(8)max[ E(|M,,)), E(|1M,,[log*|M,,))]
for every A > 0.
PROOF. (See also [25] and [12, page 183].) First define the /,-valued random

variable,

f=(A0,M,A0,M,...),
where
AM = E(M|#}) - E(M,|#}_,), keN.
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Then by Davis’ inequality [8],

1/2
(1.5) E(||f||)=E((k§N(AkM)2) )SCE(SIEIEIE(Mw|5‘;1)|)~

Let F = (E(f|%2)),en- Then F is an l,-valued martingale. Observe that
AuM = E(AM|F2) — E(AM\F2,);
thus
[M]=IFI.
Hence for every A > 0,
AP([M]=A)=AP([F] =A)

(1.6) <3sup E(IE(f1Z2)1) [oy (1.2)]

< 3E(|If )
Inequality (1.5) and Lemma 1.1 finish the proof. O

We note the following consequence of Theorem 1.2.

COROLLARY 1.3. Let M be a real-valued L log™ L-bounded martingale in-
dexed by N2, Then the square function [M] of M is a.s. finite.

2. Existence of the quadratic variation. We now consider continuous
parameter martingales with parameter set [. Before we start to discuss quadratic
variation, let us have a brief comparative look at the one-parameter case. In this
case, the technique of localization works. With its help, the existence theorem for
quadratic variation can be easily transferred from the central LZtheory to
“L°theory,” to yield quadratic variation for the large classes of local L2
martingales (see for example Métivier [17, pages 175, 176], where the “ transfer”
works by having available a local stochastic integral of the martingale). For
example, every continuous martingale, being locally bounded, possesses a con- -
tinuous quadratic variation.

In the two-parameter case, however, things change drastically. Due to the
nontotal order of the parameter space, the analogues of stopping times are much
less important and, therefore, localization is a poor concept. Indeed, there are
continuous LZ2-martingales for which there exists no sequence of stopping do-
mains (D,),cn converging to R%2 such that the stopped martingales MP-,
n € N, are bounded (see [14]). Therefore, unlike the one-parameter case, there is
no easy way of extending results from the space of L%martingales to larger
spaces.

Yet, L%theory is central and powerful for two-parameter martingales also,
and we want to take advantage of that fact. Therefore, given an L log* L-bounded
martingale M, we need a sequence of “approximating martingales” (M"), <
which (a) is L%integrable and (b) approximates M well enough to guarantee
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convergence of the corresponding quadratic variations to be constructed with the
help of L%theory. According to the preceding remarks we cannot expect to be
able to work with a localizing sequence, so we resort to the truncated martingales

Mr=E((-nV M) An|%), neN.

(M?"), «n certainly fulfills (a) and, as will be shown later, also (b), but the
operation of truncating and taking conditional expectation is too “rough” to
provide M” with the same regularity properties as M. The trouble lies in the
fact that continuity properties of M and the filtration do not coincide, as will be
seen in the following example.

ExaMPLE 2.1. Let B = (B,),cg, be a Brownian motion on (A, ®, @), en-
dowed with the completed, continuous filtration G = (®,),c g . Let

Y=110,1/5 * 1(8,-B,5> 0l 12/3,11-
Y is previsible and the stochastic integral process
N = [vdB
defines a continuous martingale w.r.t. G. But N is even a martingale w.r.t. the
filtration H = ($,);cr , Where
$,=6, fort<j,
$,=6,Va(B,3—B,,;) fort>1},

completed by the zero sets of &. Indeed, let s < ¢ be given. In order to prove
E(N,|9,) = N,, it is enough to consider the only nontrivial case 1< s < 2.
If t < %, we have

N, = Bl/3 = N,

and if ¢ > 2,

E(N|$,) = E(E(NJ$5/5)19.) = E(E(NJ/®,,5)|9,)
= E(Bl/3|'5§s) = B1/3 = N,.

Of course, the filtration H is not quasi-left continuous (see Dellacherie [9, page
57]). We now concentrate on the parameter set [0,1]. We will prove that the
truncations '

N =E((—aV N)Aq$.), a>0,

“feel” the jump of the filtration at 1. For convenience, we use the notation
(—a,x,a)=(—aVx)Aa x€R, a>0 Fix a > 0. For ¢ < 1 we have

Nta = E - a, Bl/3 + (Bl - 32/3)1(32/3_Bl/a>0}’ a>|®t)

(¢
= %[E« - a, 31/3’°‘>|@t) + E(< —a,B, 5+ (B, - Bz/s)"">|@z)],

|



QUADRATIC VARIATION 1103

whereas by definition of §, 3,
Ntys=E(( =« B s+ (B, — Byy)lin, g >0 0)|D1/)
= 1(32/3—31/350}< -a Bl/3’ a>

+1(Bz/3—B,/3>0)E(< - a, Bl/3 + (B1 - 32/3)’ “>|®1/3)'
Therefore, using the abbreviations
X,=(—a,B,;,a), X, = E(< —a,B, 5+ (B, - 32/3),a>|@51/3),
the left continuity of G gives

Nf[/a— = é(Xl + X2)’
(2.1)

Nf/3 = l(Bz/a—Bl/aso}Xl + 1(32/3—31/3>0}X2'

It is clear from (2.1) that N* is not continuous at } for all « > 0. N* being a
bounded martingale, (2.1) even implies that (N%)? is not quasi-left continuous in
the usual sense (see Dellacherie [9, page 119]), i.e.,

(2.2) E((Njs_)’) # E((Ngy)) forall a > 0.

Finally, to have a two-parameter model of a martingale whose truncations do
not inherit its regularity properties, simply take (A, ®, @) as before and

Fo= Q4 nty M, = E(N,|#,), tel.

Now, as it happens and will be seen, even for bounded two-parameter
martingales N we cannot establish the existence of quadratic variation unless
N, ., and N, are quasi-left continuous. Therefore, our plan to obtain the
quadratic variation of an L log*L-bounded martingale M from those of its
truncations will not work out if we only assume that M, ., and M., are
quasi-left continuous, since the preceding example shows that truncations do not
necessarily inherit this property. But we can do with a slightly stronger assump-
tion, namely, that filtrations F! and F? are quasi-left continuous. Then M, .,
and M., together with their truncations are quasi-left continuous (see
Dellacherie [9, page 112]). Taking this into account, we proceed along the
following lines: (1) Prove the existence of quadratic variation for bounded
martingales, thus for the truncations M " of M under the assumption of quasi-left
continuity; (2) using the inequality (1.4) to reduce the problem to the bounded
case, obtain the quadratic variation of M under the assumption of (1).

Until further notice, assume now that M is a bounded martingale which is
right continuous and possesses limits in all quadrants (see Bakry [1, page 46] and
Meéyer [18, page 35]). Let (J,),<n be a O-sequence of partitions of I. We will
show that for any ¢ € 1 the sequence (X;c (A, np0, M )2),,en is a Cauchy
sequence in L2%(Q, #, P). By standard arguments, the existence of quadratic
variation follows from this and we may confine our attention to ¢ = 1. We may
also assume that (J,), <y is “increasing,” i.e., J, ., is a refinement of J, for all
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n € N (see Neveu [29, page 96]). The point of departure for the proof is the
following decomposition of (A,M)? the J interval in I, into one-parameter
“boundary” terms, an M2-term and two martingale terms (see Nualart [23, page
448)):

A,M2 = 2M A, M + 2 A, MA .M
(2.3) J J J J

+2A;MA M + 2 A,MA .M + (A,M)>°.
Summation of (2.3) over J € J, and some algebra give

> (AJM)2= b (AJIX[O,I]M)2+ > (A[O,I]XJZM)Z

Jed, J e, S (),
(2.4)
-ME+2 Y MyAM+2 Y A MARM,
Jed, Jed,

n € N. We will now establish the convergence in L%Q, %, P) of the terms of
(2.4) separately, beginning with the first two. Obviously, they are square sums
approximating the quadratic variations of the one-parameter martingales M, .
and M,.,,, respectively. It is enough to recall well-known results from one-
parameter theory (see, for example, Dellacherie and Méyer [10, pages 250-255]).
We can therefore concentrate on the last two terms, the martingale components
of the square sum: The well-behaved first one converges in general, as the
following proposition shows.

PROPOSITION 2.2. Let M be a bounded martingale. Then for any 0-sequence
(J,).en Of partitions of 1, the sequence (¥ o3, Mys A M), o converges in
L*Q, #, P). ‘

ProOF. Let A be the unique previsible increasing process of M? (see
Merzbach [15, page 51] and Méyer [18, page 21]). For m, n € N, n < m, we get,
using the martingale property,

2
Y MyAM~— Y MxAgM

JEJn KEJm 2

2

=l X X (My-Mu)AuM
Jed, JOHeJ,

2

2
= Z Z ”(Ms" - Ms”) AHMMZ
Jed, JOHeJ,,

Y X E((My— Mn)E((AgM)*Fn))
Jed, JoHeJ,

Y Y E((My-Mu)E(A(H)Fx))

Jed, JOHeJ,

+{ )
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where Y, ., = X,c, X 5hcy (Mg — M)l Since M is bounded,
(Y, »:N>n<meN) is uniformly bounded. Moreover, since M possesses
limits in the third quadrant, Y, ,, = 0 (n,m - oo, n < m) as. Therefore,
Lebesgue’s dominated convergence theorem yields the desired result. O

The convergence of the last term in (2.4) is more delicate. Due to its structure,
we can again make use of some knowledge on dual previsible projections of M2,
but, unlike Proposition 2.2, only in the two coordinate directions of parameter
space separately. In the general case, the difficult part is then the control of the
behavior of the term in the respective other direction. In case the i-projections
A%, i =1,2, of M2, however, are increasing processes, things simplify consider-
ably (for definition and basic properties of A%, i = 1,2, see Cairoli and Walsh
[5, pages 117-121] and Merzbach [15, pages 50, 51]).

PROPOSITION 2.3. Let M be a bounded martingale. Assume the dual previsi-
ble projections of M? in i-direction A, i =1,2, are increasing processes.
Then for every O0-sequence of partitions (J,),en Of 1, the sequence
(ZyesApMA M) converges in LX(Q, %, P).

neN

ProOF. Let m,n € N, n < m, be given. Use the martingale property of M
and the inequality (x + y)? < 2(x% + ¥?), x, y € R, to get

2
Y A MAM— Y AgMAM

Jed, KeJ, 2

2 Z [AHIX[O,s‘{]MA[O,s,H]tzM_ AH‘MAHZM]
Jed, JOHeJ,

2
2

Y X ||AH1><[0,S§I]MA[0,SF]><H2M—AHlMAHzM”z

Jed, JOHeJ,

Z Z ”AHIX]SEI,S?]MA[O,S{']XH2M
Jed, JoHEJ,

(2.5)

2
+ Ao, 1M Ayt sty M |

2
<2l X X [Amw M Ap M |
Jed, JOHeJ,

2
S DERED M [ VNS 7. Sopromees L4 W B
Jed, JOHeJ,

The arguments for the second term being symmetric, it is enough to estimate
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only the first one on the right-hand side of (2.5). By (F4) in Cairoli and Walsh [5]
and elementary properties of increasing processes,

2
Z Z ||AHl x1s¢, s;’]lu A[O, slH]tzM ||2
Jed, JOHEe,

= JZJ i g, , E(AI(H1 X |sg, SQI’])AZ’([O, sH] ><H2))

JEJ ) ;J E(AY(H, x]1s{, s#1)A%([0,1] X H,))

r Y E(AY[0,1] x1s{, sF1)A%([0,1] x H,))

S €(J,)e S Hy€(y)e

-E Z dA% .|,
(f[o,u mom ))

where Z,, , = ZJ2E(Jn)ZZJonZE(Jm)zAl([O’ 1] X Jsg, szH])ng’ n,meN, n<m.
Since M is bounded, A] is p-integrable for any p > 0. Since A?l, .y is increasing,
it possesses left limits. Therefore, (Z, ,,: N © n < m € N) is uniformly bounded
by an integrable process and Z, ,, = 0 (n, m - o0, n < m) a.s. Again, an appeal
to Lebesgue’s dominated convergence theorem finishes the proof. O

IA

COROLLARY 24. Let M be a bounded martingale. If M has orthogonal
increments or path independent variation (see Merzbach and Nualart [16]), it
possesses quadratic variation. In particular, this holds if M is a strong
martingale.

ProoF. If M has orthogonal increments or path independent variation, the
hypotheses of Proposition 2.3 hold true (see [16], Proposition 2.5 and Theorem
2.7). Strong martingales have orthogonal increments. O

REMARK 1. For square integrable martingales with orthogonal increments
and under an additional regularity assumption, Mishura’s [20] paper has results
on the existence of quadratic variation.

REMARK 2. Truncation martingales do not necessarily inherit the property
of having orthogonal increments or path independent variation. Therefore,
Proposition 2.3 and its corollary do not yield quadratic variations of L log*L-
bounded martingales with these properties via the methods of this paper.

Now assume that A! for instance, is not increasing. In this case, it is rather
difficult to control its dependence on the second time parameter. We were not
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able to prove the existence of the limit of the last term in (2.4) without further
assumptions. More precisely, we could not modify the proof of Proposition 2.3 to
make it work if the dual previsible projections A, i = 1,2, have jumps.

PROPOSITION 2.5. Let M be a bounded martingale. Assume the processes
M, ., and M,. ,, are quasi-left continuous, i.e., for any previsible F'-stopping
time S (F’-stopping time T), we have M, = Mg ., (My =M, 1 ).
Then for every O0-sequence (J,),<n Of partitions of 1 the sequence
(ZscsApMA M), _\ converges in LYQ, #, P).

ProoF. We resume the proof of Proposition 2.3 after (2.5). To estimate the
first term on the right-hand side of (2.5) again, we use a submartingale argument
and (F4) (in [5]) repeatedly to obtain for n,m € N, n < m,

E Z IIAHM]S‘z’,sé’]MA[O. SF]XHzM”z

Jed, JOHed,

)y )y E(E((AHlxlsé.sfl M)2

Jed, JOHEeJ,

Y X E(E((Am oM )% A%, (H))

Jed, JOHeJ,

IA

‘Z")E((A[O,l]tzM)2

o

(2.6) .

IA

Y sup

Jhe(d,), JyDHye(Jy,)2

o\ 11/2
Z Z E((AHI X]sé’,sf]M)zlzl}"):l )]
J €W, HOH EWL),

1/2

X (Cauchy-Schwarz).

B ¥ [ )]

S E(Jp)2

Now observe that for previsible F 2-stopping times T we have
E(M(%,m) = E(M(ﬁ.T—))’

i.e.,, the process M({,) is regular in the sense of Dellacherie [9, page 119].
Consequently, A(zl’ .y is continuous (Dellacherie [9]). Furthermore, M being
bounded, A? is p-integrable for all p > 0. Therefore, the second factor on the
right-hand side of (2.6) converges to zero as n — oo. To finish the proof, we have
to show that the first factor is uniformly bounded in n, m € N, n < m. Apply
Doob’s inequality, Burkholder’s LP”-inequalities twice for p =2 and an in-
equality for previsible projections (see Burkholder, Davis and Gundy [4, page
232)) to find constants ¢,,..., ¢, independent of M such that for all n,m € N,
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2
E Z sup Z E ((AHIX]s2,32 ]M)2|-9;1}")] )
€S,y DHEIy)2 | J€,), JDH, e(J,),
2
<cE| ¥ [ ry X E((AHMMYI@)] ) (Doob)
S €W [ €W SOH EW,)
2
<ec ( > (a x5 M )2] ) (projection inequality)
€I, )2 Jle(J'n)l SO H, €(,),
< ¢E ( A[O xsM) ) (Burkholder)
Jye
1/2 2\ ]2
<c [ ( sup (A[o l]xJM) )} E )y (A[o,uxJzM) ] )
J2€(J,) S &€ (J,)2
' (Cauchy-Schwarz)
< c¢,E(M{) < 0 (Doob, Burkholder). ]

Together with the preceding remarks, Propositions 2.3 and 2.5 yield the
following result.

THEOREM 2.6. Let M be a bounded martingale. Assume that M(1 .y and
M., are quasi-left continuous. Then M possesses quadratic variation in

L¥Q, &, P).

Finally, since quasi-left continuity of the filtration implies quasi-left continu-
ity of the martingale, we get the following corollary.

COROLLARY 2.7. Assume F! and F? are quasi-left continuous, i e for any
previsible F'-stopping time S (F >-stopping time T) we have % = (FE=
F£.). Then every bounded martingale possesses quadratzc vanatzon in
LXQ, #, P).

ProOF. See Dellacherie [9, page 112]. O

REMARKS. Mishura [21] proves the existence of quadratic variation for
square integrable martingales by a different method. He decomposes M into its
various jump components and a continuous part and treats them separately. His
results are valid under regularity assumptions which are not completely com-
parable with our assumptions. The fact that in the proof of Proposition 2.3
missing regularity of A? in the first time variable was, in a seemingly unnatural
way, replaced by additional regularity in the second, may indicate that quasi-left
continuity is not the crucial thing for the existence of quadratic variation. We
were unable to see in which way a jump of A2 ., might influence the conver-
gence of the left-hand side of (2.6).
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To turn to the second step of our program now, let M be an L log* L-bounded
martingale. Again, we may assume that M is right continuous and possesses
limits in all quadrants. Given a 0-sequence of partitions (J,),<n of I as in
Proposition 2.3, we will show that the sequence (E Je Jn( Ajnp, M )?nEN is a
Cauchy sequence in L%, #, P), i.e., in probability, taking ¢ =1 for conve-
nience again. Of course, we will hereby apply the knowledge we gained in the
bounded case on the truncations M™, m € N, of M. This in particular means
that we need quasi-left continuity of F! and F 2. The following lemma relates the
square sums of M and its truncations and will be essential in reducing the
desired L°-convergence to L2-convergence in the bounded case.

LEMMA 2.8. Let M be an L log* L-bounded martingale,
M™=E((-mV M) AmZ),
m € N, and (J,),,cn @ sequence of partitions of 1. Then we have

Y (AM) - ¥ (A,M™)* >0 (m- ) inL%Q, F,P)
Jed, Jed,

uniformly in n € N.

Proor. First observe that for n, m € N (see also Doléans [11, page 287])

Y (AM) = X (a,Mm)

Jed, Jed,
m 2 m
(2.7) = Y (A (M-M™)" +2 ) |AM||A,(M—M™)
Jed, Jed,
9 2 9 1/2
< Y (A (M-Mm™)" +2[ 3} (A,M) ) (A,(M—-M™))
JEJ, Jed, Jed,
Now denote
X, = ¥ (A (M-M™)?, Y= ¥ (A,M)’, n,meN.
Jed, Jed,

By Theorem 1.2, applied to the discrete two-parameter martingales
(M.: JeJd,), (M-—M™),u: J €J,), n,m €N, we have on the one hand

(2.8) lim sup P(Y,>A) =0,

Ao penN
and on the other hand, for any A, § > 0 with A(8) according to Theorem 1.2,
limsup sup P(X, , =)

m—oo neN

1
—(8 + A(8)limsupmax| E(|M, - M), E(|M, — M{"llog*| M, — Ml'"l)])

m— oo

IA

A
)
A

’
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which implies
(2.9) lim sup P(X, ,,>A)=0 forany A > 0.

m—=o peN

Now combine (2.8) and (2.9) to obtain for A, p > 0,

limsup sup P(X, ,Y,>A) < sup P(Y, > p) + lim sup P(X, , >A/p)

m
,
m—o0 neN neN m=o peN

= sup P(Y, > p)

neN

and therefore

(2.10) lim sup P(X, ,Y,>)\)=0 foranyA > 0.

m=®0 peN

Finally use (2.9) and (2.10) to show that the left-hand side of (2.7) converges to
zero as m — oo, uniformly in n € N. This completes the proof. O

The main result of this paper is now an easy consequence of Lemma 2.8 and
Corollary 2.7.

THEOREM 2.9. Assume F' and F? are quasi-left continuous. Then every
L log* L-bounded martingale possesses quadratic variation in L(Q, &, P).

Proor. For &k, n, m € N we have

Y (A,M)P - Y (AM)

Jed, Jed,

T (aM) = X (a,Mm)

Jed, Jed,

Y (A,Mm) - ¥ (a,Mm)

Jed, Jed,

Y (A,M™ - Y (AM)

Jed, JeJ,

<

(2.11)
+

+

Apply Lemma 2.8 to the first and last terms on the right-hand side of (2.11) and
Corollary 2.7 to the second term to show that the left-hand side goes to zero in
L%Q, #,P)as k,n > 0.0
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