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ON REGULARITY OF BANACH-VALUED PROCESSES
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For the study of the paths of stochastic processes, the upcrossing-down-
crossing arguments are available in the real-valued case but not in the vector-
valued case. We use in this article stopping time methods and the Kadec-Klee
renorming theorem to obtain regularity properties for Banach-lattice valued
submartingales and Banach-valued pramarts.

It is known that real-valued properly bounded processes (X,, t € R™") that are
martingales, submartingales, quasimartingales or amarts have almost surely left
and right limits (see [17], [8]). The same is true if (X;) is a martingale,
quasimartingale [19] or a uniform amart [4], taking values in a Banach space
with the Radon-Nikodym property (RNP). The proofs depend on convergence
theorems for the analogous processes indexed by N and —N, and thus there
cannot be any regularity results for nonnecessarily positive submartingales (X,)
taking values in a Banach lattice E with RNP because L,-bounded nonpositive
E-valued submartingales (X,, n € N) need not converge (see [10]). However,
Heinich [11] proved that there is convergence if X, = 0, n € N. Here the same
is proved for reversed positive submartingales (X,, n € —N) assuming only order-
continuity instead of RNP (Proposition 3.3). The stage is thus set for obtaining
regularity theorems for vector-valued positive submartingales (X,, t € R*)
(Theorem 3.4). We accomplish the translation of convergence results into regu-
larity properties by using stopping time methods, passing to the real valued case,
and returning to the vector-valued processes via the Kadec-Klee renorming
theorem. The method, embodied in Theorems 2.2 and 2.3. below, is quite general
and can be applied to other processes; thus we prove regularity properties for
continuous parameter vector-valued pramarts (Theorem 3.7). The class of pra-
marts includes the class of martingales, quasimartingales and uniform amarts.
Exact definitions are given below.

1. Definitions and basic notions. Let (Q, % P) be a complete probability
space. For each t € R* = [0, »), let % be a sub-o-field of # which contains all
the P-null sets. The collection (%, ¢ € R") is assumed increasing and right
continuous (i.e., % = N>, % for all t € RY).

A function 7: @ — R* U{+} is a stopping time for (%) if {w: 7(w) < t} € &
for all £ € R*. An increasing sequence 7, < 7, < - - - of stopping times is said to
announce 7 if lim, .7, = 7 and 7, < r (except on {r = 0}). Similarly a decreasing
sequence of stopping times is said to recall 7 if lim, .7, = 7 and 7, > 7 (except
on {r = ®}). A predictable time is a stopping time that is announced by some
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sequence (7,). A stopping time is called simple if it takes finitely many finite
values. Let T denote the set of all simple stopping times and T'(S) the set of all
simple stopping times with values in S, where S is a countable dense subset of
R* containing 0.

Let (E, || - |I) be a Banach space. Let (X;, t € R*) be a family of E-valued,
Bochner integrable random variables adapted to (%). The process (X,) is called
separable S if there exists a P-null set N such that for each w outside N the
sample path, ¢t — X;(w) of w, is separable with respect to S in the strong topology
of E. The process (Y;) is a modification of (X,) if X, = Y, a.s. for all t € R*.

2. Convergence. We start with the following Proposition which can be
found in [8].

PROPOSITION 2.1. Let 7 be a bounded stopping time (not necessarily simple)
and let (X,, t € R") be a real-valued process adapted to ().

(a) There is a sequence 7y = 7_5 = - - - in T(S) which recalls  and such that,
for almost all w € Q, the two nets (X;, (w))nj—w and (X:(w))sj+(w)es have the same
cluster points in [—o, ).

(b) Suppose that 7 is a predictable stopping time, announced by a sequence in
T(S). Then there is a sequence (r,) in T(S) announcing r and such that, for
almost all w € Q, the two nets (X,,(w))nto and (Xi(w))et-(w),ces have the same cluster
points in [—o, ©].

THEOREM 2.2. Let E be a separable Banach space. Let (X;, t € R*) be an
E-valued process with E || X;|| < o for each t € S.

(a) Let 7 be a bounded stopping time. Suppose that for every sequence (7_,) in
T(S) recalling 7, lim,_, . X,__ exists strongly almost surely. Then limy} - (u),ces Xe(w)
exists strongly for almost all w (the exceptional null set depends on 7).

(b) Let 7 be a bounded predictable stopping time which is announced by a
sequence in T(S). Suppose that, for every sequence (r,) in T(S) announcing r,
lim, . X, exists strongly almost surely. Then limgy, (. es X:(w) exists strongly for
almost all w (the exceptional set depends on 7).

PrOOF. (a) Let X = lim,_,,. X,_ . It is easy to see that X does not depend
on the choice of the sequence (7_,) which recalls 7. Consequently lim,,_, x(X,)
= x(X) as. for all x € E’ and lim, ... | X,_ || = || X || a.s. Now using Proposition
2.1, we can choose sequences (7-,) and (7.,) in T'(S) so that both (r—,) and
(r.,) recall + and the two nets (x(X;_, (@)t and  (x (X (@)))ejr(w)iess
(I (X,.,(@)) Dnteo and (] Xe(w) |)¢jrwrccs, have the same cluster points in

T-n

[—o0, «]. But if a net has only one cluster point in [—, «], then it converges; so
limg ) esx (Xe(w)) = x(X(w)) as. and limyj ) ies | Xi(@) | = | X(0) || as.

Since E is a separable Banach space it admits an equivalent norm || - ||* which
is Kadec-Klee with respect to a countable norming subset D of E’ (whenever
x(x,) = x(x) for all x € D and || x,|* — || x |* then x, — x strongly) [2, page
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176]). Thus

(i) for all X (S D, limtlﬂw),tesx(Xt) = X(X) a.s.

(i) limgp @) ees | Xell* = | X ||* as.
The Kadec-Klee property of the norm gives the strong convergence of (X,),,, a.s.
to X.

(b) The proof of (b) is identical.

THEOREM 2.3. Let E be a Banach space, and (X;, t € R*) an E-valued process.

(a) Suppose that, for every bounded stopping time 7, limy,()es Xi(w) exists
strongly for all w € Q, with P(Q,) = 1. Then for almost all w, the imit X+(w) =
lim,}; ses X, (w) exists strongly for all t € R™.

(b) Suppose that, for every bounded predictable stopping time 7, announced by
a sequence (7,) in T(S), lims),.es Xi(w) exists strongly for all v € Q, with P(Q,)
= 1. Assume also that (X;) has right limits. Then for almost all w, the limit X~ =
limgy,ses X (w) exists strongly for all t € R™.

The proof (but not the statement) appears in [4] pages 90 and 93. See also
[7].

3. Applications. As a first application, we show that almost all the paths
of a positive submartingale in a Banach lattice E with the Radon-Nikodym
property have left and right limits. We begin with a discrete parameter conver-
gence result. The following Lemma can be found in [1].

LEMMA 3.1. Let E be an order continuous Banach lattice. If (x,) C E is such
that 0 < x,, < x and (x,) converges weakly to 0 then (x,) converges strongly to 0.

REMARK. If0 < x, <y, and (x,) converges weakly to 0 and (y,) converges
strongly to y € E then (x,) converges strongly to 0. Indeed 0 < x, A y < x,
implies that (x, A ¥) converges weakly to 0 and therefore strongly. The inequality
y<x,Vy=<y,V yimplies that (x, V y) converges strongly to y. The equality
2, ANy + x,Vy=x,+y finishes the proof.

The next Proposition, a result of Brunel and Sucheston [3], is stated for easy
reference.

PROPOSITION 3.2. Let (X,) be an E-valued sequence of random variables such
that for almost all w, (X, (w)) is weakly sequentially compact. If for every x € E’,
(x (X, (w))) converges to a finite limit for all w in some set O, with P(Q,) =1 then
(X,.) converges weakly a.s.

PROPOSITION 3.3. Let E be an order continuous Banach lattice. Let
(X, n € — N) be an E-valued, positive, integrable reversed submartingale. Then
(X,., n € — N) converges strongly a.s. to an E-valued integrable random variable.

PROOF. By the definition of reversed submartingale [18] 0 < X, < E¥*(X,.+1)
< E*X_.1), n € = N. Thus 0 < E™(X,+1) — X, < E"(X_1), n € —N. It is well
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known that the reversed martingale (E“+(X_,), n € —N) converges strongly a.s.
and in L, to E7=(X_,) (see, e.g., [16]).

If Z, = E“"(X,+1) — X, then EX~(X_,) < Z, V E¥~(X_,) < E®(X_,) V
E7=(X_,) thus lim,_, wZ, V E*~(X_;) = E"=(X_,) a.s. in the strong topology
of E. On the other hand, the equality Z, V E*=(X_,) + Z, A E~(X_,) = Z, +
E“=(X_,), n € — N and the fact that for each x € E’(x(Z,), n € —N) converges
a.s. to 0, imply that for each x € E’(x(Z, AN E”~(X_;))(w)) converges to 0 for
all w in some set Q, with P(Q,) = 1. Since order intervals in order continuous
Banach lattices are weakly compact, we deduce from Proposition 3.2 that
(Z, N E*-=(X_,), n € —N converges to 0 weakly a.s. Thus (Z,, n € —N) converges
weakly to 0 a.s. and by the Remark strongly a.s. Since submartingales have the
optional sampling property, we have that (Z, , n € —N) converges strongly to 0
a.s. for every increasing sequence (r,, n € —N) of simple stopping times. But
then the stochastic limit of the net (|| E*(X,) — X, ||, 0 < 7)is 0 as 7 — —oo [18]
page 96. This is just the definition of reversed pramart [15, 9]. It has been proved
in [9] Theorem 3.3. that if E is any Banach space then E-valued integrable
reversed pramarts (X,, n € —N) converge strongly a.s.

REMARK. The necessity of order continuity is trivial since any decreasing
sequence is a deterministic reversed submartingale.

THEOREM 3.4. (a) Let E be an order continuous Banach lattice. If
(X, t € R") is an E-valued separable, positive, integrable submartingale, then
almost all paths have right limits.

(b) Let E be a Banach lattice with the Radon-Nikodym property.
If (X, t € R") is an E-valued, separable, positive, L,-bounded submartingale, then
almost all paths have left limits.

PrOOF. (a) Let 7 be a bounded stopping time and (7,, n € —N) a sequence
in T(S) recalling 7. Then (X, , n € —N) is a reversed submartingale. The
assertion now follows from Proposition 3.3, Theorem 2.2(a) and Theorem 2.3(a).

(b) Let 7 be a bounded predictable stopping time and (7,, n € N) a sequence
in T'(S) announcing 7. Then (X, n € N) is an L;-bounded positive submartingale
which converges by Heinich’s Theorem [11], thus Theorem 2.2(b) applies. Since
E has the Radon-Nikodym property, it does not contain c, ([6], pages 60 and
81]) and therefore E is weakly sequentially complete ([13], page 34), hence order
continuous. Because order continuity implies the existence of right limits the
result now follows from Theorem 2.3(b).

The following result about continuous modifications is known for the real-
valued case [17], and the proof (from Theorem 3.4.) is the same.

THEOREM 3.5. Let E be an order continuous Banach lattice. Let (X,, t € R*)
be an E-valued, separable, positive integrable submartingale. Then (X,) admits a
right continuous modification if and only if the function E(X,) of t is right
continuous in the norm topology of E.
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The second application is that pramarts taking values in a Banach space have
right limits whereas pramarts taking values in a Banach space with the Radon-
Nikodym property have both right and left limits.

DEFINITION. An adapted family (X;, t € R") of Bochner integrable random
variables is an ascending (reversed or descending) pramart at a stopping time 7 if
for each increasing sequence (7,, n € N) [(r,, n € —N)] in T, converging to 7
one has

s = lim, | X;, — EZ(X,,,) Il =0

(s-lim means limit in probability) [15].

(X:, t € R) is an ascending [reversed] pramart if it is an ascending [reversed]
pramart at each stopping time.

(X;, t € R") is a pramart if it is both an ascending and reversed pramart.

If the stochastic limit above is replaced by the L; limit, then the process is
called uniform amart [4].

It is clear that the class of pramarts contains the class of uniform amarts and
hence also the class of quasimartingales [4]. We say that )

(i) (X,, t € R") is of class (B) if, sup,erE | X, || < =

(i) (X;, t € RY) is of class (AL) if, for all uniformly bounded increasing
sequences (r,) C T, we have sup,E | X, || <  [8]. Now we observe the following
Lemma, the proof of which uses the optional sampling theorem for pramarts [15]
and Theorem 2.4. of [12].

LEMMA 3.6. Let (X;, t € R") be a pramart of class (AL) then (X, ,n € N) is
a discrete parameter pramart of class (B), for every increasing sequence () in T
converging to a bounded stopping time 7.

THEOREM 3.7. (a) Let E be an arbitrary Banach space. If (X,, t € R") is an
E-valued, separable, integrable, reversed pramart, then almost all paths have right
limits. ‘

(b) Let E be a Banach space with the Radon-Nikodym property. If (X;, t € R*)
is an E-valued, separable, pramart of class (AL), then almost all paths have left
limits.

The proof is similar to that of Theorem 3.4. We use discrete parameter results
proved in [9] (reversed pramarts), [14] (pramarts) and Lemma 3.6.

Acknowledgement. I wish to express my gratitude to my advisor Professor
L. Sucheston for suggesting this problem and for his constant encouragement
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