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Abstract: A synopsis of probability models for over- and underdispersion is provided, look-
ing at their origins, motivation, first main contributions, important milestones, and appli-
cations. As the field of accident studies has received much attention, and various theories
have been developed for the interpretation of factors underlying an accident situation,
most of the models will be presented in accident or actuarial contexts. Of course, with
appropriate parameter interpretations, the results are adaptable in a great variety of other
situations in fields ranging from economics, inventory control, and insurance through to
demometry, biometry, psychometry, and web access modeling.

1 Introduction

Very often, in connection with applications, one is faced with data that exhibit a variability, which differs
from that anticipated under the hypothesized model. This phenomenon is termed overdispersion, if the
observed variability exceeds the expected variability, or underdispersion, if it is lower than expected.

Such discrepancies between the empirical variance and the nominal variance can be interpreted to be
induced by a failure of some of the basic assumptions of the model. These failures can be classified by how
they arise, that is, by the mechanism leading to them. In traditional experimental contexts, for example,
they are caused by deviations from the hypothesized structure of the population, such as lack of inde-
pendence between individual item responses, contagion, clustering, and heterogeneity. In observational
study contexts, they are the result of the method of ascertainment, which can lead to partial distortion of
the observations. In both cases, the observed value x does not represent an observation on the random
variable X, but an observation on a random variable Y whose probability distribution (the observed prob-
ability distribution) is a distorted version of the probability distribution of X (original distribution). This
can have a variance greater than that anticipated under the original distribution (overdispersion) or, much
less frequently in practice, lower than expected (underdispersion).

Such practical complications have been noticed for over a century[1,2]. The Lexis ratio[1] appears to be the
first statistic for testing for the presence of over- or underdispersion relative to a binomial hypothesized
model when, in fact, the population is structured in clusters. In such a setup, Y , the number of successes,
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Under- and Overdispersion

can be represented as the series of the numbers Yi of successes in all clusters. Then, assuming N clusters
of size n, the Lexis ratio, defined as the ratio of the between-clusters variance to the total variance Q =
n
∑N

i=1 (pi − p̂)2∕(p̂(1 − p̂)) with p̂i = Yi∕n and p̂ = Y∕(Nn), indicates over- or underdispersion if its value
exceeds or is exceeded by unity. In addition, for count data, Fisher[3] considered using the sample index of
dispersion

∑n
i=1(Yi − Y )∕Y , where Y =

∑n
i=1 Yi∕n for testing the appropriateness of a Poisson distribution

for Y , on the basis of a sample Y 1, Y 2,… , Yn of observations on Y .

2 Modeling Over- or Underdispersion

Analyzing data using single-parameter distributions implies that the variance can be determined by the
mean. Over- or underdispersion leads to failure of this relation with an effect that practice has shown not
to be ignorable, as using statistics appropriate for the single-parameter family may induce low efficiency,
although, for modest amounts of overdispersion, this may not be the case[4]. So, detailed representation
of the over- or underdispersion is required. There are many ways in which these two concepts can be
represented. The most important are described in the sequel.

2.1 Lack of Independence between Individual Responses

In accident study-related contexts, the mean and variance of Y =
∑x

i=1 Yi, the total number of reported
accidents in a total of x accidents that actually occurred, if individual accidents are reported with prob-
ability p=P(Yi = 1)= 1−P(Yi = 0), but not independently (Cor(Yi, Yj)= 𝜌 ≠ 0), will have mean E(Y )= np

and variance V (Y ) = V
(∑x

i=1 Yi
)
= xp(1 − p) + 2

(
x
2

)
𝜌p(1− p)= xp(1− p) (1+ 𝜌(x− 1)). The variance of

Y exceeds that anticipated under a hypothesized independent trial binomial model if 𝜌> 0 (overdispersion)
and is exceeded by it if 𝜌 < 0 (underdispersion).

2.2 Contagion

Another way in which variance inflation may result is through a failure of the assumption that the proba-
bility of the occurrence of an event in a very short interval is constant, that is, not affected by the number
of its previous occurrences. This leads to the classical contagion model[5,6], which in the framework of
data-modeling problems faced by actuaries, for example, postulates that initially, all individuals have the
same probability of incurring an accident, but later, this probability changes by each accident sustained. In
particular, it assumes that none of the individuals has had an accident (e.g., new drivers or persons who are
just beginning a new type of work), and that the probability with which a person with Y = y accidents by
time t will have another accident in the time period from t to t + dt is of the form (k +my)dt, thus yielding

the negative binomial as the distribution of Y with probability function P(Y = y) =
(

k∕m
y

)
e−kt(1 − e−mt)y

and mean and variance given by 𝜇=E(Y )= k(emt − 1)/m, and V (Y )= kemt(emt − 1)/m=𝜇emt, respectively.

2.3 Clustering

A clustered structure of the population, frequently overlooked by data analysts, may also induce over- or
underdispersion. As an example, in an accident context again, the number Y of injuries incurred by persons
involved in N accidents can naturally be thought of, as expressed by the sum Y =Y 1 +Y 2 + · · · +YN, of
independent random variables representing the numbers Yi of injuries resulting from the ith accident.
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Under- and Overdispersion

These are assumed to be identically distributed independently of the total number of accidents N . So,
an accident is regarded as a cluster of injuries. In this case, the mean and variance of Y will be E(Y ) =
E
(∑N

i=1 Yi

)
= 𝜇E(N) and V (Y ) = V

(∑N
i=1 Yi

)
= 𝜎2E(N) + 𝜇2V (N) with 𝜇 and 𝜎2 denoting the mean and

variance of the common distribution of Y 1. So, with N being a Poisson variable with mean E(N)= 𝜃 equal
to V (N), the last relationship leads to over- or underdispersion accordingly as 𝜎2 +𝜇2 is greater or less
than 1.

The first such model was introduced by Cresswell and Froggatt[7] in a different accident context, in which
they assumed that each person is liable to spells of weak performance during which all of the person’s acci-
dents occur. So, if the number N of spells in a unit time period is a Poisson variate with parameter 𝜃

and assuming that within a spell a person can have 0 accidents with probability 1−mlogp and n acci-
dents (n≥ 1) with probability m(1− p)n/n; m, n > 0, one is led to a negative binomial distribution as the
distribution of Y with probability function

P(Y = y) =
(
𝜃m + y − 1

y

)
p𝜃m(1 − p)y

This model, known in the literature as the spells model, can also lead to other forms of overdispersed
distributions (see, e.g., Refs 6, 8, 9).

2.4 Heterogeneity

Another sort of deviation from the underlying structure of a population that may give rise to over- or
underdispersion is assuming a homogeneous population when in fact the population is heterogeneous,
that is, when its individuals have constant but unequal probabilities of sustaining an event. In this case,
each member of the population has its own value of the parameter 𝜃 and probability density function
f (⋅ ; 𝜃), so that 𝜃 can be considered as the inhomogeneity parameter that varies from individual to individual
according to a probability distribution G(⋅) of mean 𝜇 and variance 𝜎2, and the observed distribution of Y
has probability density function given by

fY ( y) = E𝜃(f (y; 𝜃)) = ∫Θ
f ( y; 𝜃)dG(𝜃) (1)

where Θ is the parameter space and G(⋅) can be any continuous, discrete, or finite-step distribution. Mod-
els of this type are known as mixtures (For details on their application in the statistical literature, see
Refs 10–13). Under such models, V (Y )=V (E(Y | 𝜃))+E(V (Y |𝜃)), that is, the variance of Y consists of
two parts, one representing variance owing to the variability of 𝜃 and one reflecting the inherent variabil-
ity of Y if 𝜃 did not vary. Letting 𝜃 vary acts as a means of “loosening” the structure of the initial model,
thus offering more realistic interpretations of the mechanisms that generated the data. One can recog-
nize that a similar idea is the basis for ANOVA models where the total variability is split into the “between
groups” and the “within groups” components. The above variance relationship offers an explanation as to
why mixture models are often termed as overdispersion models. In the case of the Poisson (𝜃) distribu-
tion, we have, in particular, that V (Y )=E(𝜃)+V (𝜃). More generally, the factorial moments of Y are the
same as the moments about the origin of 𝜃, and Carriere[14] made use of this fact to construct a test of the
hypothesis that a Poisson mixture fits a data set.

Historically, the derivation of mixed Poisson distributions was first considered by Greenwood and
Woods[15] in the context of accidents. Assuming that the accident experience X|𝜃 of an individual
is Poisson distributed with parameter 𝜃 varying from individual to individual according to a gamma
distribution with mean 𝜇 and index parameter 𝜇/𝛾 , they obtained a negative binomial distribution as the

distribution of Y with probability function P(Y = y) =
(
𝜇∕𝛾 + y − 1

y

)
{𝛾∕(1 + 𝛾)}y(1 + 𝛾)−𝜇∕𝛾 . Under
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such an observed distribution, the mean and variance of Y are E(Y )=𝜇, V (Y )=𝜇(1+ 𝛾), where now 𝛾

represents the overdispersion parameter. The mixed Poisson process has been popularized in the actuarial
literature by Dubourdieu[16] and the gamma mixed case was treated by Thyrion[17].

A large number of other mixtures have been developed for various overdispersed data cases, such
as binomial mixtures[18], negative binomial mixtures[6,9,19,20], normal mixtures[21], and exponential
mixtures[22].

Often in practice, a finite-step distribution is assumed for 𝜃 in Equation (1), and the interest is on creating
clusters of data by grouping the observations on Y (cluster analysis). A finite mixture model is applied and
each observation is allocated to a cluster using the estimated parameters and a decision criterion[12]. The
number of clusters can be decided on the basis of a testing procedure for the number of components in
the finite mixture[23].

2.5 Treating Heterogeneity in a More General Way

Extending heterogeneity models for models with explanatory variables, one may assume that Y has a
parameter 𝜃, which varies from individual to individual according to a regression model 𝜃 = 𝜂(x;𝜷)+ 𝜀,
where x is a vector of explanatory variables, 𝜷 is a vector of regression coefficients, 𝜂 is a function of a
known form, and 𝜀 has some known distribution. Such models are known as random effect models, and
have been extensively studied for the broad family of generalized linear models. Consider, for example,
the Poisson regression case. For simplicity, we consider only a single covariate, say X. A model of this type
assumes that the data Yi, i= 1, 2,… , n follow a Poisson distribution with mean 𝜃 such that log𝜃 = 𝛼 + 𝛽x+ 𝜀

for some constants 𝛼, 𝛽 and with 𝜀 having a distribution with mean equal to 0 and variance say 𝜑. Now,
the marginal distribution of Y is no longer the Poisson distribution, but a mixed Poisson distribution,
with mixing distribution clearly depending on the distribution of 𝜀. From the regression equation, one can
obtain that Y ∼ Poisson (t exp(𝛼 + 𝛽x))t g(t), where t = e𝜀 with a distribution g(⋅) that depends on the dis-
tribution of 𝜀. Negative Binomial and Poisson Inverse Gaussian regression models have been proposed as
overdispersed alternatives to the Poisson regression model[24–26]. If the distribution of t is a two finite–step
distribution, the finite Poison mixture regression model of Wang et al.[27] results. The similarity of the
mixture representation and the random effects one is discussed in Ref. 28.

In meta-analysis contexts, overdispersion (or underdispersion) refers to variance inflation (or deflation)
relative to that anticipated by the fixed effects model with the population structure in clusters or some
form of mixing leading a compound distribution as the two commonly assumed factors. Kulinskaya and
Olkin[29] proposed approaching the problem of specification of a random effects model in such contexts
with a multiplicative model for the distribution of the effect size parameters. Their model was motivated
by overdispersion induced by intra-class correlation in the model assumed for the distribution of the ith
effect-size estimate. In particular, the variance of the estimator 𝜃i of the effect size parameter 𝜃i in the
ith study is assumed to be of the form 𝜎2

𝜃i
= (1 + 𝛼(ni)𝛾)𝜎2

i , where 𝛼(ni) are some known functions of the
sample sizes ni, 𝜎2

i is the within the ith study variance, i= 1, 2, … , k, and 𝛾 is interpreted as an intraclass
correlation parameter.

2.6 Estimation and Testing for Overdispersion Under Mixture Models

Mixture models including those arising through treating the parameter 𝜃 as the dependent variable
in a regression model allow for different forms of variance to mean relationships. So, assuming that
E(Y )=𝜇(𝛽), V (Y )= 𝜎2(𝜇(𝛽), 𝜆) for some parameters 𝛽, 𝜆, a number of estimation approaches exist in the
literature based on moment methods[25,30,31] and quasi- or pseudolikelihood methods[32–34]. The above
formulation also allows for multiplicative overdispersion or more complicated variance parameters as in
Ref. 33.
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Testing for the presence of over- or underdispersion in the case of mixtures can be done using asymptotic
arguments. Under regularity conditions, the density of Yi in a sample Y 1, Y 2,… , Yn from the distribution
of Y is fY(y)=EΘ (f (y; 𝜃)) = f (y;𝜇𝜃) + (1∕2)𝜎2

𝜃
(𝜕2f (y;𝜇𝜃)/𝜕𝜇2

𝜃
)+O(1/n), where 𝜇𝜃 =E(𝜃), 𝜎2

𝜃
= V (𝜃), that

is, of the form f (y;𝜇𝜃) (1+ 𝜀h(y;𝜙𝜃)), where h(y;𝜇𝜃)= [𝜕log f (y;𝜇𝜃)/𝜕𝜇𝜃]2 + 𝜕2logf (y;𝜇𝜃)/𝜕𝜇2
𝜃
.

This family represents overdispersion, if 𝜀 > 0, underdispersion, if 𝜀 < 0, and none of these complica-
tions, if 𝜀= 0. The above representation was derived by Cox[4], who suggested a testing procedure for the
hypothesis 𝜀= 0, which can be regarded as a general version of standard dispersion tests.

2.7 Zero Adjusted Models

It would be interesting to note that often over- or underdispersion can be thought of as caused by the
presence of an excess or a scant number of zeros. The models discussed so far cannot capture excess or
scarcity of zeros. In the literature, this question has been addressed by two types of models known as zero-
inflated (or zero-deflated) models and hurdle models. A unified representation of the models is provided
by f (y;𝜔)=𝜔I{0}(y)+ (1−𝜔)f Y (y), where Y is the count variable, I{0}(⋅) is the indicator function, and 𝜔 is a
constant, whose values, if in (0,1), render a hurdle model for f Y (0)= 0, a zero-inflated model for f Y (0)≠ 0,
while negative values of it render a zero-deflated model (see, e.g., Ref. 35 and the references therein).

Obviously,𝜔 can be interpreted as the proportion of excess zeros in the case of the first two models and as
noted by Xekalaki[35], the above representation explains why they can be regarded as having a dual nature.
They are (finite) mixtures, which account for heterogeneity, while at the same time they are capturing a
population structure in two clusters. However, in the case𝜔< 0 (zero-deflation), the model ceases to admit
a mixture interpretation.

Zero-inflated and hurdle models have mostly been used for Poisson, generalized Poisson or negative
binomial count distributions in various contexts[36–38]. Gupta et al.[39] proposed a zero-adjusted gen-
eralized Poisson distribution and studied the effect of not using an adjusted model for zero-inflation or
-deflation when the occurrence of zeroes differs from the anticipated one. Reviews of such models can be
found in Refs 40–42.

A shortcoming of all the three of the above accident models is that they treat the data as if the individuals
under observation were exposed to the same environmental risk. Being critical of this, Irwin[43] introduced
a model that allowed separately for proneness and exposure leading to a Waring distribution. Xekalaki[6]
showed that this distribution could also arise in contagion and spells contexts under the assumption of
variable exposure to risk.

As noted by Xekalaki[35], the contagion derivation of the negative binomial and generalized Waring
distributions closely relates to a modeling approach, whereby the distribution of accident occurrences
in a time interval (0, t) is regarded as underpinned by a pure birth process {Xt , t = 0, 1, 2, … } with the
probability of a person to incur an accident in (t, t + dt), having had x accidents by time t given by
P(Xt + 𝛿t = x+ 1|Xt = x)= f 𝜆(n, t)𝛿t + o(𝛿t).

Irwin[44] derived the negative binomial distribution with parameters k/m and (1− e− 𝜆mt)− 1 on this
hypothesis. Relaxing Irwin’s implicit assumption that all individuals were exposed to the same accident
risk, Xekalaki[45] treated the parameter 𝜆 as referring to a variable risk exposure according to an expo-
nential distribution with density ae− a𝜆, a> 0 and obtained the generalized Waring distribution as the
accident distribution with parameters k/m, 1 and a/(mt).

Looking more generally into modeling temporally evolving data through the spectra of the proneness
and spells models, but in the presence of variable external risk, the generalized Waring process can be
employed as demonstrated by Xekalaki and Zografi[46].

Faddy[47] approached under- and overdispersion relative to the Poisson distribution proposing a scheme
of a similar nature, which generalizes the simple Poisson process that underpins the Poisson distribution.
He demonstrated that any count distribution can be obtained by a suitable choice of f 𝜆(x, t).
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Finally, Winkelmann[48] looked at under- and overdispersion using renewal theory by demonstrating
that such discrepancies are conveyed by the monotonicity of an appropriately chosen hazard function of
the waiting times.

3 The Effect of the Method of Ascertainment

In collecting a sample of observations produced by nature according to some model, the original distribu-
tion may not be reproduced owing to various reasons. These include partial destruction or enhancement
(augmentation) of observations. Situations of the former type are known in the literature as damage mod-
els, while situations of the latter type are known as generating models. The distortion mechanism is usually
assumed to be manifested through the conditional distribution of the resulting random variable Y , given
the value of the original random variable X. As a result, the observed distribution is a distorted version of
the original distribution obtained as a mixture of the distortion mechanism. In particular, in the case of
damage,

P(Y = r) =
∞∑

n=r
P(Y = r|X = n)P(X = n)

r = 0, 1, … (2)

while, in the case of enhancement

P(Y = r) =
r∑

n=1
P(Y = r|X = n)P(X = n)

r = 1, 2, … (3)

Various forms of distributions have been considered for the distortion mechanisms in the above two
cases. In the case of damage, the most popular forms have been the binomial distribution[49], mixtures
on p of the binomial distribution[50,51] whenever damage can be regarded as additive (Y =X −U , U inde-
pendent of Y ), or in terms of the uniform distribution in (0, x)[52–54] whenever damage can be regarded
as multiplicative (Y = [RX], R independent of X and uniformly distributed in (0, 1)). The latter case has
also been considered in the context of continuous distributions by Krishnaji[55]. The generating model was
introduced and studied by Panaretos[56].

In actuarial contexts, where modeling the distributions of the numbers of accidents, of the damage claims,
and of the claimed amounts is important, these models provide a perceptive approach to the interpretation
of such data. This is justified by the fact that people have a tendency to underreport their accidents, so
that the reported (observed) number Y is less than or equal to the actual number X(Y ≤ X), but tend to
overreport damages incurred by them, so that the reported damages Y are greater than or equal to the true
damages X(Y ≥ X).

Another type of distortion is induced by the adoption of a sampling procedure that gives to the units
in the original distribution, unequal probabilities of inclusion in the sample. As a result, the value x of X
is observed with a frequency that noticeably differs from that anticipated under the original density func-
tion fX(x;𝜃). It represents an observation on a random variable Y whose probability distribution results
by adjusting the probabilities of the anticipated distribution through weighting them with the probabil-
ity with which the value x of X is included in the sample. So, if this probability is proportional to some
function w(x;𝛽), 𝛽 ∈ R(weight function), the recorded value x is a value of Y having density function
fY(x;𝜃, 𝛽)=w(x;𝛽)fx(x;𝜃)/E(w(X;𝛽)). Distributions of this type are known as weighted distributions (see, e.g.,
Refs. 57–60). For w(x;𝛽)= x, these are known as size-biased distributions (see Size-Biased Sampling).

In modeling data that are of interest to actuaries, the weight function can represent reporting bias and
can help model the over- or underdispersion in the data induced by the reporting bias. In the context of
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reporting accidents or placing damage claims, for example, it can have a value that is directly or inversely
analogous to the size x of X, the actual number of incurred accidents, or the actual size of the incurred
damage. The functions w(x;𝛽)= x and w(x;𝛽)= 𝛽x (𝛽 > 1 or 𝛽 < 1) are plausible choices. For a Poisson (𝜃)
distributed X, these lead to distributions for Y of Poisson type. In particular, w(x;𝛽)= x leads to

P(Y = x) = e−𝜃𝜃x−1

(x − 1)!
x = 1, 2, …

(shifted Poisson(𝜃)) (4)

while w(x;𝛽)= 𝛽x leads to

P(Y = x) = e−𝜃𝛽(𝜃𝛽)x

x!
, x = 0, 1, …

(Poisson(𝜃𝛽)) (5)

The variance of Y under Equation (4) is 1+ 𝜃 and exceeds that of X (overdispersion), while under
Equation (5) it is 𝜃𝛽 implying overdispersion for 𝛽 > 1 or underdispersion for 𝛽 < 1.

Related Articles

Hidden Markov Models; Truncated Distributions; Zero-Modified Frequency Distributions.
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