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Assessing the Proportion of Conformance of a
Process from a Bayesian Perspective
Michael Perakisa*† and Evdokia Xekalakib
A Bayesian technique for assessing the posterior probability that the proportion of conformance of a normally distributed
process exceeds a particular value is suggested. Both exact and approximate formulae for the assessment of this probability
are derived. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

T
he question of assessing the capability of a process to produce according to some specifications connected with a measurable
characteristic (X) of the items produced through it is of great importance in statistical process control. These specifications
consist of the lower specification limit (L), which is the minimum acceptable process value; the upper specification limit (U),

which is the maximum acceptable process value; and the target value (T), which coincides with the most desirable process value.
Process capability indices constitute the most commonly used tool for measuring process capability. Every process capability index

combines the values of process specifications, with those of the parameters of the process, that is, the mean (μ) and the standard
deviation (σ), takes non-negative values, and its large values provide evidence of a capable process.

The development and the estimation of a process capability index simplify substantially when the studied process is assumed to
be normally distributed and most of the work that has appeared in the literature on this issue has been based on this assumption. For
more details on various aspects of process capability indices, such as properties, estimation techniques, and interrelations, the reader
is referred to Kotz and Johnson,1,2 Kotz and Lovelace,3 Pearn and Kotz,4 and Wu et al.5 Furthermore, Spiring et al.6 and Yum and Kim7

provide an extensive coverage of the bibliography on process capability indices.
It should be noted that after the publication of the paper by Kane,8 which undoubtedly motivated many authors to deal with

process capability indices, several papers on this issue have been published. The appearance of new papers concerning process
capability indices is continuous even in the last 3 years; almost 30 years after the publication of the paper by Kane,8 many new papers
have been published, introducing new process capability indices or new findings on existing ones (see, e.g., Negrin et al.,9 Pearn
et al.,10 Perakis and Xekalaki,11 Jalili et al.,12 Jose and Luke,13 and Shiau et al.14).

Another measure that provides information on the capability of a process is the proportion of conformance (yield), which is
defined as the probability of producing within the so-called specification area, that is, the interval that consists of all the acceptable
process values. Under the assumption that the process is normally distributed, it is defined as

p ¼ P L < X < Uð Þ ¼ Φ
U � μ
σ

� �
� Φ

L� μ
σ

� �
(1)

where Φ(.) denotes the cumulative distribution function of the standard normal distribution. The proportion of conformance of a
process is associated with the values of the most commonly used capability indices, as several authors, such as Boyles,15 and Kotz
and Lovelace,3 have shown. Carr16 suggested its direct use for measuring process capability, while Perakis and Xekalaki17

suggested a process capability index whose value is based on that of the yield of the studied process. Hence, the proportion of
conformance plays an important role in statistical process control, and the development of new methods for its estimation is a
rather interesting issue.
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In most of the cases, the parameters of the examined process are unknown, and an estimate of the actual value of the yield of a

process is required. If X1, …, Xn are the elements of a random sample taken from the process, and X ¼ n-1∑n
i¼1Xi; S ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n� 1ð Þ-1∑n
i¼1 Xi � X
� �2q

are the corresponding sample mean and standard deviation, respectively; a point estimator of p can be

obtained by substituting X and S for μ and σ in (1), respectively. The resulting estimator of p is thus given by

p̂ ¼ Φ
U � X

S

� �
� Φ

L� X

S

� �
(2)

The estimator of p given in (2) differs from its minimum variance unbiased estimator given by (see, e.g., Kotz and Johnson1)

ep ¼ Iθ1 X;Sð Þ 0:5 n-1ð Þ; 0:5 n-1ð Þð Þ-Iθ2 X;Sð Þ 0:5 n-1ð Þ; 0:5 n-1ð Þð Þ

where the functions θ1 X; S
� �

and θ2 X; S
� �

are defined as

θ1 X; S
� � ¼ 0:5 1þ U-X

S

n-1ð Þ2
n

þ U-X

S

� �2
( )-0:5" #

and

θ2 X; S
� � ¼ 0:5 1þ L-X

S

n-1ð Þ2
n

þ L-X

S

� �2
( )-0:5" #

respectively, and Iθ(a,b) denotes the incomplete beta function ratio defined as

Ic a; bð Þ ¼ Bc a; bð Þ
B a; bð Þ

with B(a,b) denoting the beta function, given by

B a; bð Þ ¼ ∫
1

0

ya�1 1-yð Þb-1dy; a; b > 0

and Bc(a,b) denoting the incomplete beta function, given by

Bc a; bð Þ ¼ ∫
c

0

ya�1 1-yð Þb-1dy; a; b > 0; 0 < c < 1

However, the estimator p̂ is much more convenient than the minimum variance unbiased estimator of p, and as pointed out by
Kotz and Johnson,1 it is quite adequate for most occasions. For more details on the minimum variance unbiased estimator of the
proportion of conformance, the interested reader is referred to Folks et al.,18 Wheeler,19 and Kotz and Johnson.1

In this paper, we focus on the estimation of process yield, and we suggest a Bayesian technique that enables one to assess the
posterior probability that the actual value of the proportion of conformance of a normally distributed process exceeds a certain value.
Both exact and approximate formulae for the assessment of this probability are derived. Specifically, in Section 2, a brief presentation
of the existing techniques for obtaining lower confidence limits for the true value of the proportion of conformance is made. In
Section 3, the suggested technique is presented. Plots that clarify various aspects on it are also provided. In Section 4, an illustrative
example is given, while in Section 5, a discussion of the advantages of the suggested technique over the existing ones is provided.
Further, the use of the proposed technique is considered in connection with process capability index Cpc, suggested by Perakis
and Xekalaki.17
2. Some methods for obtaining confidence limits for the yield of a process

In this section, a concise presentation of some techniques suitable for obtaining a lower confidence limit for the actual value of the
yield of a process is given. More details on these techniques are provided by Owen and Hua,20 Chou and Owen,21 Wang and Lam,22

and Perakis and Xekalaki.17

Owen and Hua20 sought confidence limits for the probabilities p1 = P(X< L) and p2 = P(X>U), and Chou and Owen21 constructed
one-sided simultaneous confidence regions on the lower (p1) and the upper (p2) tail areas of the normal distribution. Extensive tables
containing the values of the confidence limits obtained from these two methods are included in the corresponding articles. Denoting
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 381–387
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the upper confidence limits for p1 and p2 obtained by any of these two methods by p�1 and p�2, respectively; Wang and Lam22 argue
that a 100(1� α)% lower confidence limit for p is given by

1-p�1-p
�
2 (3)

An obvious drawback of the approaches described earlier is that their implementation requires knowledge of the entries of the
tables provided in the corresponding articles. This restricts their use, and thus Wang and Lam22 introduced another method for
constructing an approximate lower confidence limit for p, which is much simpler and does not require any special tables. In particular,
Wang and Lam22 sought a value p′ such that P(p ≥ p′) = 1� α and concluded that the desired 100(1� α)% approximate lower
confidence limit for p is given by

p′ ¼ Φ
1ffiffiffi
n

p þ C1

� �
-Φ

1ffiffiffi
n

p -C2

� �
(4)

where

C1 ¼ max K1; K2ð Þ
ffiffiffiffiffiffiffiffiffiffiffi
χ2n-1;α
n-1

s

C1C2 ¼ min K1; K2ð Þ
ffiffiffiffiffiffiffiffiffiffiffi
χ2n-1;α
n-1

s

K1 = X � L
� �

=S, K2 = U � X
� �

=S, and χ2n�1;α denotes the α quantile of the chi-square distribution with n� 1 DOF.

Finally, Perakis and Xekalaki17 argue that the coverage of lower confidence limit (4) can be improved using a variant of it given by

p″ ¼ Φ
1ffiffiffi
n

p þ 1þ 1

n

� �
C1

� �
-Φ

1ffiffiffi
n

p - 1þ 1

n

� �
C2

� �
(5)

Extensive tables that compare the performances of lower confidence limits (3), (4), and (5) for several combinations of process
parameters and sample sizes are provided by Wang and Lam22 and Perakis and Xekalaki.17
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3. The suggested technique

The techniques described in the previous section result in a bound that the actual value of the proportion of conformance exceeds
with a certain confidence level. However, sometimes one may be interested (from a Bayesian perspective) in obtaining the probability
that the actual value of the proportion of conformance exceeds a certain value. In such cases, the techniques described in Section 2
cannot be used and, hence, arises the need for the development of a new technique.

In the sequel, a Bayesian technique that enables one to assess the posterior probability that the proportion of conformance of a
normally distributed process exceeds a particular value is suggested. The implementation of this technique is meaningful provided
that the mean of the process coincides with the midpoint of the specification area, that is, μ=Μ= (L+U)/2. Actually, under this
assumption, the proportion of conformance of a normally distributed process, given in (1), simplifies to

p ¼ 2Φ d=σð Þ-1 (6)

where d denotes the half-length of the specification area, that is, d= (U - L)/2.
Let X= (X1,…,Xn) be a random sample of size n taken from the studied process. Then, the posterior probability that the true value

of the proportion of conformance exceeds a particular value p* (0< p*< 1) is given by

G p�ð Þ ¼ P p > p� X ¼ xÞjð (7)

Using (6), this probability can be written as

G p�ð Þ ¼ P 2Φ d=σð Þ-1 > p� X ¼ xÞjð

or, equivalently

G p�ð Þ ¼ P σ <
d

Φ-1 p� þ 1ð Þ=2ð Þ jX ¼ x

� �
(8)

where Φ- 1(.) denotes the inverse of the cumulative distribution function of the standard normal distribution.
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 381–387
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The probability given in (8) can be evaluated following an approach similar to that followed by Chan et al.23 for the assessment of
the posterior probability that the actual value of the process capability index Cpm exceeds a particular value. Specifically, under the
assumption that μ=M, the only unknown parameter involved is σ, and thus, the likelihood function is given by

l σ jX ¼ xð Þ ¼ 2πð Þ�n=2σ�n exp �∑n
i¼1 Xi �Mð Þ2

2σ2

 !

Box and Tiao24 have shown that in the case where one is interested in making inference on the standard deviation of a normal
distribution with known mean, a non-informative prior distribution should be locally uniform in log σ and thus have a density
function proportional to σ� 1, that is,

f σð Þ∝σ�1

Consequently, assuming a non-informative prior distribution for σ with density function of the previous form, the posterior
distribution of σ has a density function given by

f σ jX ¼ xð Þ ¼ 2

Γ n=2ð Þ
� �

n-1ð Þeσ ′2

2

 !n=2

σ - nþ1ð Þexp -
n-1ð Þeσ ′2

2σ2

( )
; 0 < σ <∞

where

eσ ′2 ¼ n-1ð Þ-1 ∑
n

i¼1
Xi-Mð Þ2 ¼ S2 þ n

n-1
X-M
� �2

(9)

Therefore, the probability given in (8) can be written as

G p�ð Þ ¼ ∫
c1

0
f σ X ¼ xÞdσjð (10)

where

c1 ¼ d

Φ�1 p� þ 1ð Þ=2ð Þ
Using the transformation

Y ¼ n� 1ð Þeσ ′2

2σ2

relationship (10) reduces to

G p�ð Þ ¼ ∫
¥∞
c2

1

Γ n=2ð Þ y
n
2�1e�ydy (11)

where

c2 ¼ n� 1

2
Φ�1 p� þ 1ð Þ=2ð Þ� �2 eσ ′2

d2
;

Looking at equation (11), one may notice that the function involved in the integral is the Gamma distribution with parameters
α= n/2 and β =1. Therefore, the required probability can also be expressed in terms of the cumulative distribution function of the
chi-square distribution with n DOF given by (see, e.g., Johnson et al.25)

Fχ2n xð Þ ¼ Γ x=2 n=2ð Þ
Γ n=2ð Þ ; x > 0;

where Γ x(α) is the incomplete gamma function defined as

Γ x αð Þ ¼ ∫
x

0
e�ttα�1dt; x > 0

In particular,

G p�ð Þ ¼ 1� 1

Γ n=2ð Þ ∫
c2

0
y

n

2
� 1

e�ydy ¼ 1� Fχ2n 2c2ð Þ (12)
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 381–387
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Note that using Wilson and Hilferty’s26 approximation of Fχ2n �ð Þ, the posterior probability that the actual value of p exceeds p* can be

approximated by

G p�ð Þ»≈1� Φ

ffiffiffiffiffi
9n

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ�1 p� þ 1ð Þ=2ð Þ� �2 n� 1ð Þ eσ ′2

nd2
3

s
�1þ 2

9n

8<:
9=;

0@ 1A (13)

Figures 1 and 2 depict the values of the ratio eσ ′2
=d2 for which G p�ð Þ ¼ P p > p� eσ ′2

=d2
� �

Þ
			�

equals 0.90, 0.95, and 0.99 versus the

sample size and for p* equal to 0.95 and 0.99, respectively. These figures provide some insight into the behavior of the suggested
technique as the sample size and the values of G(p*) and p* vary. In particular, from these figures, one may notice the following:

• For fixed sample size and p*, the values of the ratio eσ ′2
=d2 decrease as the value of G(p*) increases.

• For fixed values of G(p*) and p*, the values of the ratio eσ ′2
=d2 increase as the sample size increases.

• For fixed sample size and G(p*), the values of the ratio eσ ′2
=d2 decrease as the value of p* increases.
4. An illustrative example

In order to illustrate the assessment of (12) and (13), we use an artificial example taken from Wang and Lam.22 A sample of size n= 30
has been collected from a process with specifications L= 68 and U= 78. For this sample, the mean is equal to x = 72.8, and the
standard deviation s=2. Using (3), Wang and Lam22 obtained an estimate of the 95% lower confidence limit for p equal to
0.93798 using the approach by Owen and Hua20 and equal to 0.9214 using the approach by Chou and Owen.21 Further, using (4),
the estimate of the corresponding lower confidence limit obtained by them was 0.9414. It can be readily seen that the modified form
of (4) given in (5) results in p″= 0.94915.
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Figure 1. The values of the ratio R= eσ ′2
=d2 for which G 0:95ð Þ ¼ P p > 0:95 eσ ′2

=d2
� �			 ��

equals 0.90, 0.95, and 0.99 versus the sample size.
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Figure 2. The values of the ratio R= eσ ′2
=d2 for which G 0:99ð Þ ¼ P p > 0:99 eσ ′2

=d2
� �			 ��

equals 0.90, 0.95, and 0.99 versus the sample size.
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These methods are applicable in cases where one considers a fixed level of confidence (e.g. 95%) and looks for a value that the
actual proportion of conformance exceeds at this level of confidence. The new technique suggested in Section 3 estimates the
probability that the proportion of conformance will exceed a certain value.

Obviously, the assumption that is required for the implementation of this technique seems to be realistic because the p-value for
the t-test of the hypothesis H0:μ=M= 73 is equal to 0.59. Using (9), we obtain

eσ′2 ¼ S2 þ n

n� 1
X �M
� �2 ¼ 22 þ 30

29
72:8� 73ð Þ2 ¼ 4:04138

and, thus, the probability that the actual value of the proportion of conformance exceeds 0.95 is given by

G 0:95ð Þ ¼ ∫
∞
c2

1

Γ 30=2ð Þ y
30
2 -1e-ydy

where

c2 ¼ 30-1

2
Φ-1 0:95þ 1ð Þ=2ð Þ� �2 4:04138

52
¼ 9:00471

Hence, the value of the required probability is 1-Fχ230 18:00942ð Þ ¼ 0:958381

Alternatively, one may use the approximation given in (13), which results in

G 0:95ð Þ»≈1-Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 30

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ-1 0:95þ 1ð Þ=2ð Þ� �2 30-1ð Þ4:04138

30� 52
3

r
-1þ 2

9� 30

( ) !
¼ 0:958319

Figure 3 illustrates the behavior of G(p*) = P(p> p*|X= x) as a function of p* for this particular example. From this plot, one may
observe that G(p*) is equal to unity for all the values of p* that are smaller than 0.9. For values of p* that exceed 0.9, the value of G(p*)
decreases rapidly and tends to zero as p* approaches unity.
5. Discussion

A new technique has been suggested that enables the assessment of the posterior probability that the proportion of conformance of
a normally distributed process exceeds a particular value. As already pointed out, this technique can be a useful tool in the statistical
process control and can be used supplementarily to the existing techniques for assessing lower confidence limits for p according to
the value that one seeks for. Thus, one should use the existing techniques when seeking for a lower confidence limit with a given
confidence level and the suggested technique whenever seeking for the probability that p exceeds a given value.

It should be noted that the suggested technique may also be used in connection with the index Cpc suggested by Perakis and
Xekalaki.17 This index is defined as

Cpc ¼ 1-p0
1-p

where p0 denotes the minimum allowable proportion of conformance.
Figure 3. The values of G(p*) = P(p> p*|X= x) versus p
*
for the data of the example considered in Section 4.
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In particular, the suggested technique enables one to assess the probability

G′ cð Þ ¼ P Cpc > c X ¼ xÞj�
(14)

where c is a positive constant. Indeed, it can be verified that relationship (14) reduces to

G p�ð Þ ¼ P p > 1� 1� p0
c

jX ¼ x

� �
Hence, assessing the probability in (14) is equivalent to assessing the probability in (7), with

p� ¼ 1-
1-p0
c
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