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Abstract

An overview of the evolution of probability models for over-dispersion is given
looking at their origins, motivation, first main contributions, important milestones
and applications. A specific class of models called the Waring and generalized Waring
models will be a focal point. Their advantages relative to other classes of models and
how they can be adapted to handle multivariate data and temporally evolving data
will be highlighted.
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1. Introduction
Data analysts have often to deal with data that exhibit a variability that differs from

what they expect on the basis of the hypothesized model. The phenomenon is known

as overdispersion if the observed variability exceeds the expected variability or under-

dispersion if it is lower than expected.

Such differences between observed and nominal variances can be interpreted as

brought about by failures of some of the basic assumptions of the model. These can be

classified by the mechanism leading to them. As summarized by Xekalaki (2006), in

traditional experimental contexts, they may be caused by deviations from the hypothe-

sized structure of the population, due to lack of independence between individual item

responses, contagion, clustering, and heterogeneity. In observational study contexts, on

the other hand, they are the result of the method of ascertainment, which can lead to

partial distortion of the observations. In both contexts, the observed value x no longer

represents an observation on the original variable X, but constitutes an observation on

a random variable Y whose distribution (the observed distribution) is a distorted ver-

sion of the distribution of X (original distribution).

Such practical situations have been noticed since over a century ago (e.g. Lexis 1879;

Student 1919). The Lexis ratio appears to be the first statistic suggested for testing for

the presence of over- or under-dispersion relative to a binomial hypothesized model in

populations structured in clusters. Also, for count data, Fisher (1950) considered using

the sample index of dispersion for testing the appropriateness of a Poisson distribution

for an observed variable Y.

The paper is structured as follows. Section 2 introduces the reader to the various ap-

proaches to modelling overdispersion in the case of traditional experimental contexts.

Section 3 highlights approaches in the case of observational study contexts. Section 4
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focuses on the case of heterogeneous populations followed by Sections 5 and 6, which

look into a particular type of distribution, the generalized Waring distribution, and its

relevance in the context of applications under the various scenaria leading to over-

dispersion mentioned above. Through the prism of these scenaria, a bivariate version of

it is also presented, and its use in applied contexts is discussed in Section 7. A multi-

variate version of it is also given, and its application potential is outlined in Section 8.

Finally, Sections 9 and 10 present a model for temporally evolving data, the multivari-

ate generalized Waring process, and an application illustrating its practical potential.

As the field of accident studies has received much attention, and various theories

have been developed for the interpretation of factors underlying an accident situation,

most of the models will be presented in accident or actuarial data analysis contexts. Of

course the results can be adapted in a great variety of situations with appropriate par-

ameter interpretations so that they can be applied in several other fields ranging from

economics, inventory control and insurance through to demometry, biometry, psych-

ometry and web access modeling, as the case is with the application discussed in

Section 10.

2. Modelling over - or under - dispersion in traditional experimental contexts
One important, but often ignored by data analysts, implication of using single parameter

distributions such as the Poisson distribution to analyse data is that the variance can be de-

termined by the mean, a relation that collapses by the presence of overdispersion. If this is

ignored in practice, any form of statistical inference may induce low efficiency, although,

for modest amounts of overdispersion this may not be the case (Cox 1983). So, insight into

the mechanisms that induce over (or under) dispersion is required when dealing with such

data. Such insight can be gained by looking at the above-mentioned potential triggering

sources as classified by Xekalaki (2006).

2.1 Lack of independence between individual responses

In accident study related contexts, where one is interested in the total number of re-

ported accidents Y ¼
Xn
i¼1

Y i in a total number of accidents, n, that actually occurred,

when accidents are reported with equal probabilities p = P(Yi = 1) = 1 − P(Yi = 0), but

not independently (Cor(Yi,Yj) = ρ ≠ 0), the mean of Y will still be E(Y) = np, but its vari-

ance will be V Yð Þ ¼ V
Xn
i¼1

Y i

 !
¼ np 1−pð Þ þ 2

n
2

� �
ρp 1−pð Þ ¼ np 1−pð Þ 1þ ρ n−1ð Þð Þ,

which exceeds that anticipated under a hypothesized independent trial binomial model

if ρ > 0 (over-dispersion) and is exceeded by it if ρ < 0 (under-dispersion).

2.2 Contagion

Another common reason for a variance differing from what is anticipated, is that when

the assumption that the probability of the occurrence of an event in a very short inter-

val is constant fails. This framework is the classical contagion model (Greenwood and

Yule 1920; Xekalaki 1983a).

In data modelling problems faced by actuaries, for example, this model postulates

that initially all individuals have the same probability of incurring an accident, but later
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this probability changes by each accident sustained. It is assumed, specifically, that

none of the individuals has had an accident (e.g. new drivers or persons who are just

beginning a new type of work), but later the probability with which a person with Y = y

accidents by time t will have another accident in the time period from t to t + dt is of

the form (k +my)dt. This leads to the negative binomial as the distribution of Y with

p.f. P Y¼yð Þ¼ k=m
y

� �
e−kt 1−e−mtð Þy with μ=E(Y)=k(emt−1)/m, andV(Y)=kemt(emt−1)/m=μemt.

2.3 Clustering

A frequently overlooked clustered structure of the population may also induce over -

or under - dispersion.

In an accident context again, an accident is regarded as a cluster of injuries:

The number Y of injuries incurred by persons involved in N accidents can naturally be

thought of as expressed by the sum Y = Y1 + Y2 +… + YN of the numbers Yi of injuries

resulting from the i ‐ th accident, assumed to be i.i.d. independently of the total number of

accidents N, with mean μ and variance σ2. In this case, E Yð Þ ¼ E
XN
i¼1

Y i

 !
¼ μE Nð Þ and

V Yð Þ ¼ V
XN
i¼1

Y i

 !
¼ σ2E Nð Þ þ μ2V Nð Þ.

So, when N is a Poisson variable with mean E(N) = θ =V(N), the last relationship

leads to overdispersion or underdispersion according as σ2 + μ2 is greater or less than 1.

The first such model was introduced by Cresswell and Froggatt (1963) in a different

accident context whereby each person is liable to spells of weak performance during

which all of the person? s accidents occur. So, if the number N of spells in a unit time

period is Poisson distributed with mean θ, and within spells a person can have 0 acci-

dents with probability 1 −m log p, m > 1/log p, 0 < p < 1 and n accidents (n ≥ 1) with

probability m(1 − p)n/n, m, n > 0 the observed distribution of accidents is the negative

binomial distribution with probability function P Y ¼ yð Þ ¼ θmþ y−1
y

� �
pθm 1−pð Þy .

This model, known in the literature as the spells model, can also lead to other forms of

overdispersed distributions (e.g. Xekalaki 1983a, 1984a).

2.4 Heterogeneity

Assuming a homogeneous population when in fact the population is heterogeneous,

i.e., when its individuals have constant, but unequal probabilities of sustaining an event

can also lead to overdispersion. In this case, each member of the population has its

own value of the parameter θ and probability density function f(⋅ ; θ).

So, with θ regarded as the inhomogeneity parameter and varying from individual to

individual according to any continuous, discrete, or finite step distribution G(⋅) of mean

μ and variance σ2, one is led to an observed distribution for Y with probability density

function fY(y) = EG(f(y; θ)) = ∫ Θf(y; θ)dG(θ), where Θ is the parameter space. Models of

this type are known as mixtures. (For details on their application in the statistical litera-

ture see e.g. Karlis and Xekalaki 2003; McLachlan and Peel 2001; Titterington 1990).

Under such models, the variance of Y consists of two additive components, one represent-

ing the variance part due to the variability of θ and one due to the inherent variability of Y
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if θ did not vary, i.e., V(Y) =V(E(Y|θ)) + E(V(Y|θ)). This offers an explanation as to why

mixture models are often referred to as overdispersion models.

It should be noted that a similar idea forms the basis for analysis-of-variance

(ANOVA) models, where the total variability can be split into additive components, the

? between groups ? and the ?within groups ? components. In the case of the Poisson (θ) dis-

tribution, we have in particular that V(Y) = E(θ) +V(θ). Based on the fact that in this

case, the factorial moments of Y coincide with the moments of θ about the origin,

Carriere (1993) proposed a test of the hypothesis that a Poisson mixture fits a data set.

Mixed Poisson distributions were first introduced by Greenwood and Woods (1919) in

the context of accident studies. Assuming that an individual? s accident experience Y|θ is

Poisson distributed with parameter θ that was varying from individual to individual ac-

cording to a gamma distribution with mean μ and index parameter μ/γ, they obtained a

negative binomial distribution for Y with probability function P Y ¼ yð Þ ¼ μ=γ þ y−1
y

� �
γ= 1þ γð Þf gy 1þ γð Þ−μ=γ and with mean and variance given respectively by E(Y) = μ and

V(Y) = μ(1 + γ), where γ represents the over-dispersion parameter.

The mixed Poisson process has been popularised in the actuarial literature by

Dubourdieu (1938) gamma mixed case was treated by Thyrion (1969).

Numerous other mixtures have since then been proposed in the literature for inter-

preting overdispersion in data, such as binomial mixtures (e.g. Tripathi et al. 1994),

negative binomial mixtures (e.g., Xekalaki 1983a, c, 1984a; Irwin 1975), normal mix-

tures (e.g. Andrews and Mallows 1974) and exponential mixtures (e.g. Jewell 1982).

Discrete Poisson mixtures with finite step distributions for the Poisson parameter θ

have also been proposed, the interest being on creating clusters of data by grouping the

observations on Y according to some criterion (cluster analysis). The number of clus-

ters can be decided on the basis of a testing procedure for the number of components

in the finite mixture (Karlis and Xekalaki 1999).

2.4.1 Heterogeneity in mixture models treating the parameter θ as the dependent variable

in a regression model

Heterogeneity in models with explanatory variables can be modelled, by assuming that

Y has a parameter θ varying from individual to individual according to some regression

model θ = η(x; β) + ε, where x is a vector of explanatory variables, β is a vector of regres-

sion coefficients, η is a function of a known form and ε has some known distribution.

Such models are known in the literature as random effect models and have been exten-

sively studied within the broad family of Generalized Linear Models. As a simple ex-

ample in the case of a single covariate, say X, consider data Yi , i = 1, 2, … , n coming

from a Poisson population with mean θ determined by log θ = α + βx + ε for some con-

stants α, β and with ε having a distribution with mean 0 and variance say ϕ. In this

case, the marginal distribution of Y is no longer the Poisson distribution. It is a mixed

Poisson distribution, with some mixing distribution g(⋅) clearly depending on the distri-

bution of ε. In particular, Y∼Poisson te αþβxð Þ� �̂
t g tð Þ where t = eε.

Negative Binomial and Poisson Inverse Gaussian regression models have also been pro-

posed as overdispersed alternatives to the Poisson regression model (e.g. Lawless 1987;

Dean et al. 1989; Xue and Deddens 1992). The case of a two finite step distribution, the fi-

nite Poison mixture regression model of Wang et al.? s (1996) results. The similarity of the
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mixture representation and the random effects one is discussed in Hinde and Demetrio

(1998).

In meta-analysis contexts, overdispersion (or underdispersion) refers to variance in-

flation (or deflation) relative to that anticipated by the fixed effects model. Two possible

causes of such phenomena are a population structure in clusters or mixing resulting in

a compound distribution. Kulinskaya and Olkin (2014) proposed approaching the prob-

lem of specification of a random effects model in meta-analysis in terms of a multi-

plicative model for the distribution of the effect size parameters that allows inflation or

deflation. The model considered was motivated by overdispersion induced by intra-

class correlation in the model assumed for the distribution of the i-th effect size esti-

mate. In particular, the variance of the estimator θ̂ i of the effect size parameter θi in

the i-th study is assumed to be of the form σ2
θ̂ i
¼ 1þ α nið Þγð Þσ2i , where α(ni) are some

known functions of the sample sizes ni; σ2i is the within the i-th study variance, i = 1,

2, …, k and γ is interpreted as an intra class correlation parameter.

2.4.2 Estimation and testing for overdispersion under mixture models

The structure of mixture models, including random effect models, entails different forms

of variance-to-mean relationships. So, viewing the mean and variance of Y as represented

by E(Y) = μ(β), and V(Y) = σ2(μ(β), λ) respectively for some parameters β, λ a number of

estimation approaches have been proposed in the literature based on moment methods

(e.g. Breslow 1990; Lawless 1987; Moore 1986) and quasi or pseudo likelihood methods

(e.g. Davidian and Carroll 1988; McCullagh and Nelder 1989; Nelder and Pregibon 1987).

The above representation for the mean and variance of Y allows also estimation in the

case of multiplicative overdispersion as in McCullagh and Nelder (1989).

Testing for the presence of overdispersion or underdispersion, on the other hand, can

be done by means of asymptotic arguments. Let f(y; θ) denote the density function of a

random variable Y in the initial model. Cox (1983) showed that, under regularity condi-

tions, the density of y in the overdispersed model, fY(y), admits a representation of the

form f Y yð Þ ¼ EΘ f y; θð Þð Þ ¼ f y; μθð Þ þ 1
2 σ

2
θ
∂2f y;μθð Þ

∂μ2
θ

þ Ο 1=nð Þ, with μθ ¼ Ε θð Þ; σ2
θ ¼ V θð Þ

and Θ is the parameter space. This in turn implies that fY(y) can be put in the form

f(y; μθ)(1 + εh(y, ϕθ)), where h y;ϕθð Þ ¼ ∂ logf y;μθð Þ
∂μθ

h i2
þ ∂2 logf y;μθð Þ

∂μ2
θ

.

This representation entails overdispersion if ε > 0, underdispersion if ε < 0 and, of course,

none of these complications if ε = 0. Cox (1983) suggested a testing procedure for the hy-

pothesis ε = 0, which can be regarded as a general version of standard dispersion tests.

2.5 Zero adjusted models

It would be interesting to note that another aspect of the population structure that is

often responsible for the phenomenon of over-dispersion or under-dispersion is the pres-

ence of an excess or a scant number of zeros. Though the models discussed in Sections 2.3

and 2.4 may capture over-dispersion or under-dispersion rather well, they cannot capture

excess or scarcity of zeros. In the literature, this question has been addressed by two types

of models known as zero-inflated (or zero-deflated) models, and hurdle models. A unified

representation of the models is provided by f(y;ω) =ωI{0}(y) + (1 −ω)fY(y), where Y is the

count variable, I{0}(⋅) is the indicator function and ω is a constant, whose values, if in (0,1)
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render a hurdle model for fY(0) = 0, a zero-inflated model for fY(0) ≠ 0, while negative

values of it render a zero-deflated model.

Obviously, ω can be interpreted as the proportion of excess zeros in the case of the

first two models and the above representation explains why there can be regarded as

having a dual nature. They are (finite) mixtures, which account for heterogeneity, while

at the same time, they are capturing a population structure in two clusters. However, in

the case ω < 0 (zero-deflation), the model ceases to admit a mixture interpretation.

Zero-inflated and hurdle models have mostly been used for Poisson, generalized Pois-

son or negative binomial count distributions in various contexts (e.g. Ridout et al. 2001;

Gupta et al. 2004; Famoye and Singh 2006). Gupta et al. (1996) proposed a zero-

adjusted generalized Poisson distribution and studied the effect of not using an ad-

justed model for zero-inflation or -deflation when the occurrence of zeroes differs from

the anticipated one. Reviews of such models can be found in Ridout et al. (1998),

Gschlößl and Czado (2008) and Ngatchou-Wandji and Paris (2011).
3. Over– or under–dispersion in observational study contexts - the effect of
the method of ascertainment
Often, in connection with data collection based on observation or on recording values

as produced by nature, the original distribution may not be reproduced due to various

reasons. These may lead to partial destruction or partial enhancement (augmentation)

of observations. The models that have been introduced to deal with such situations are

respectively known as damage models introduced by Rao (1963) and generating models

introduced by Panaretos (1983). The distortion mechanism is usually assumed to be

manifested through the conditional distribution of the resulting random variable Y

given the value of the original random variable X. Hence, the resulting (observed) dis-

tribution is a distorted version of the original distribution that can be represented as a

mixture of the distortion mechanism. In particular, in the case of damage,

P Y ¼ rð Þ ¼
X∞
n¼r

P Y ¼ r X ¼ nÞP X ¼ nð Þ; r ¼ 0; 1; 2; …jð , while, in the case of enhancement,

P Y ¼ rð Þ ¼
Xr
n¼1

P Y ¼ r X ¼ nÞP X ¼ nð Þ; r ¼ 1; 2; …jð .

Various forms of distributions have been considered for the distortion mechanism in the

above two cases. In the case of damage, the most popular forms have been the binomial dis-

tribution Rao (1963), mixtures on p of the binomial distribution (e.g. Panaretos 1982;

Xekalaki and Panaretos 1983) whenever damage can be regarded as additive (Y =X −U, U

independent of Y) or in terms of the uniform distribution in (0, x) (e.g. Dimaki and Xekalaki

1990, 1996; Xekalaki 1984b) whenever damage can be regarded as multiplicative (Y = [RX],

R independent of X and uniformly distributed in (0, 1)). The latter case has also been con-

sidered in the context of continuous distributions by Krishnaji (1970). The generating model

was introduced and studied by Panaretos (1983).

Both, the generating model and the damage model offer a perceptive approach in actu-

arial contexts where one is interested in modelling the distributions of the numbers of ac-

cidents, of the damage claims, and of the claimed amounts. These models become

relevant due to the fact that people have in general a tendency to under report their acci-

dents, so that the reported (observed) number Y is less than or equal to the actual number
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X (Y ≤X), but tend to over report damages incurred by them, so that the reported damage

Y is greater than or equal to the true damage X (Y ≥X).
Another type of distortion is induced by the adoption of a sampling scheme that as-

signs to the units in the original distribution unequal probabilities of inclusion in the

sample. As a result, the value x of X is observed with a frequency that noticeably differs

from that anticipated under the original density function fX(x; θ). It represents an obser-

vation on a random variable Y whose probability distribution is the results of adjusting

the probabilities of the anticipated distribution through weighting them with the prob-

ability with which the value x of X is included in the sample. So, if this probability is

proportional to some weight function, w(x, β), β ∈ R, the recorded value x is a value of

Y having density function fY(x; θ, β) = w(x; β)fx(x; θ)/E(w(X; β)).

Distributions of this type are known as weighted distributions (see, e.g. Cox 1962;

Fisher 1934; Patil and Ord 1976; Rao 1985). For w(x; β) = x, these are known as size

biased distributions. In actuarial data modelling contexts again, the weight function can

represent reporting bias. In the context of reporting accidents or placing damage

claims, for example, it can have a value that is directly or inversely analogous to the size

x of X, the actual number of incurred accidents or the actual size of the incurred dam-

age. The functions w(x; β) = x and w(x; β) = βx (β > 1 or β < 1) are plausible choices. So,

for example, in the case of a Poisson (θ) distributed X, these lead to distributions for Y

that are of Poisson type. In particular, the weight function w(x; β) = x leads to a shifted

Poisson distribution with probability function P(Y = x) = e− θθx − 1/(x − 1) !, x = 1, 2, …,

while the choice w(x; β) = βx leads to a Poisson distribution P(Y = x) = e− θβ(θβ)x/x !, x =

0, 1, …. The value of the variance of the observed variable Y under the first assump-

tion for w(x; β) is 1 + θ and exceeds that of X (overdispersion), while under the second

assumption it is θβ implying overdispersion for β > 1 or underdispersion for β < 1.
4. Looking closer into the case of heterogeneity
Assuming a specific form for the distribution of the population that generated a data

set implies that the mean to variance relation is given for this distribution, e.g. the Pois-

son distribution with a mean to variance ratio equal to unity. As has become obvious

from the above, this relationship ceases to hold in real data sets however. This being

rarely the case, flexible families have been sought in the literature by allowing the par-

ameter θ of the original distribution to vary according to a distribution with probability

density function, say g(⋅).
As mentioned before, a density function fX(⋅) is a mixture on the parameter θ of the

distribution function f(⋅ ; θ) with some mixing distribution Gθ(⋅), which can be continu-

ous, discrete or a finite step distribution, if it can be written in the form fX(x) =

EG(f(x; θ)) = ∫Θ f(x; θ)dG(θ), where Θ is the parameter space. An appropriate choice of a

mixing distribution allows its parameter to vary and acts as a means of ? loosening” the

structure of the initial model, thus offering more realistic interpretations of the mecha-

nisms that generated the data.

A large number of Poisson mixtures have been developed. (For an extensive review,

see Karlis and Xekalaki 2003, 2005). The derivation of the negative binomial distribu-

tion, as a mixture of the Poisson distribution with a gamma distribution as the mixing

distribution, originally obtained by Greenwood and Yule (1920) constitutes a typical
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example. Mixtures of the negative binomial distribution have also been widely used in

connection with applications in a plethora of fields. These include the Yule distribution

(Yule 1924; Irwin 1941; Xekalaki 1983c, 1984b) the Waring distribution (Irwin 1963)

and the generalized Waring distribution (Irwin 1968, 1975; Xekalaki 1981, 1983a,

1984a), which contains the Yule distribution and the Waring distribution as a special

cases.

In what follows, we focus on the generalized Waring distribution and its relevance in

accident data modeling contexts.

5. The generalized Waring distribution
This was introduced by Irwin (1968) in connection to biological data and later was

shown by him to arise as an accident distribution (Irwin 1975). It is the distribution

with probability generating function given by

G sð Þ ¼ ρ kð Þ
aþ ρð Þ kð Þ

2F1 a; k; aþ k þ ρ; sð Þ; α; k; ρ > 0

with 2F1(a, b; c; z) denoting the Gauss hypergeometric function
Xx

r¼a
a rð Þb rð Þzr
� �

=

c rð Þr!
� �

, where h(l) = Γ(h + l)/Γ(h), h > 0, l ∈ R.
Irwin ? s starting point was Waring ? s expansion (hence the distribution ? s name) given

by 1
x−a ¼

X∞
r¼0

a rð Þ
x rþ1ð Þ

, which he then generalized to 1
x−að Þ kð Þ

¼
X∞
r¼0

a rð Þk rð Þ
x kþrð Þ

1
r!
; α; k > 0.

Hence, by multiplying both sides by ρ(k), where ρ = x − a > 0, the successive terms of

the resulting series could he regarded as defining a probability function, which he

termed the generalized Waring distribution with parameters α, k, ρ. In particular, the

probability function of the generalized Waring distribution with parameters α, k, ρ is

given by

pr ¼
ρ kð Þ

aþ ρð Þ kð Þ

a rð Þk rð Þ
aþ k þ ρð Þ rð Þ

1
r!
; α; k; ρ > 0; r ¼ 0; 1; 2; …

where h(l) = Γ(h + l)/Γ(h).
Notwithstanding the complexity of its structure, this distribution was shown to offer

an insightful tool in the interpretation of accident data as will be seen below. Among

its aspects that can be of practical value, is that, as shown by Xekalaki (1983b), it is a

discrete self-decomposable distribution in Steutel and van Harn ? s (1979) sense, hence

infinitely divisible, implying that its probability generating function can be put in the

form G sð Þ ¼ exp −λ∫
1

s

1−g uð Þ
1−u

du

� 	
, where λ = p1/p0 and g(⋅) denotes the probability

generating function of the distribution with probability function satisfying the recurrence

relation

qn ¼ λ n
ak þ ρ aþ k þ ρð Þ
ak aþ k þ ρþ nð Þ−

Xn−1
j¼0

qj
n
j

� �
aþ k þ ρþ n−1

j

� �
= aþ n−1

j

� �
k þ n−1

j

� �
 �( )
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6. The generalized Waring distribution in relation to accident theory
The hypotheses that have formed the basis of investigations into the occurrence of

accidents since almost a century ago are

(i) Pure chance, giving rise to the Poisson distribution

(ii) True contagion, i.e. the hypothesis that initially all individuals have the same

probability of incurring an accident but that this probability is modified by each

accident sustained.

(iii) Apparent contagion (heterogeneity), i.e. the hypothesis that individuals have

constant but unequal probabilities of having an accident - the resultant distribution

being a compound Poisson distribution (“accident proneness” model).

(iv)The “Spells” Model, i.e each person is liable to periods of time during which the

person’s performance is weak (spells). All of the person’s accidents occur within

those spells. The numbers of accidents within different spells are independent and

independent of the number of spells.

As already seen, the negative binomial distribution can be given a an accident proneness

and a ? spells” interpretation in the context of accident theory in terms of a gamma mixed

Poisson distribution and a Poisson distribution generalized by a logarithmic distribution

(Kemp 1967).

Therefore, a good fit of the negative binomial is no help at all in distinguishing among the

? proneness”, ? contagion” and ? spells” hypotheses. This is known as the discrimination prob-

lem between the compounded, contagion and generalized models for the negative binomial

distribution and has been discussed by Arbous and Kerrich (1951); Bates and Neyman

(1952); Gurland (1959) and Cane (1974, 1977). For an extensive bibliography on the acci-

dent hypotheses mentioned, see Kemp (1970).

6.1 Irwin’s “Proneness” model

As evident, in all three of the above models, the data are treated as if the individuals

under observation were exposed to equal environmental risk, a fact criticized by Irwin

(1968), who suggested a three-parameter distribution, which he called the ? univariate

generalized Waring distribution” (UGWD). He derived this distribution in a framework

that allows separately for random factors, differences in the exposure of individuals to

external risk of accident, and differences in proneness.

In particular, his model assumes a non homogeneous population with respect to per-

sonal and environmental attributes affecting the occurrence of accidents.

Let the distribution of the number, X, of accidents for individuals of equal proneness

ν, and of equal exposure to external risk of accident λ|ν, i.e. λ for given ν), have

probability generating function

GXjλ sð Þ ¼ exp λ νÞ s−1ð Þgjðf

in a unit time interval (0, 1). If the distributions of λ|ν and ν in the population at risk
can be described by the probability density functions (pdf )

ν−k exp −λ=νð Þλk−1� �
=Γ kð Þ; v; k > 0

and
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Γ aþ ρð Þνa−1 1þ νð Þ− aþρð Þ
n o

= Γ ρð ÞΓ að Þf g; a; ρ > 0

respectively, the pgf of the resulting distribution of accidents will be {ρ(k)2 F1(a, k; a +

k + ρ; s}/(a + ρ)(k), i.e. the univariate generalized Waring distribution with parameters a,

k and ρ, which will be denoted by UGWD(a, k; ρ). Here, 2 F1(a, b; c; z) denotes the

Gauss hypergeometric function
Xx

r¼a
a rð Þb rð Þzr
� �

= c rð Þr!
� �

, where h(l) = Γ(h + l)/Γ(h),

h > 0, l ∈ R. For more information about the UGWD the reader is referred to the work

of Irwin (1963, 1968, 1975); Xekalaki (1981) and the references therein and Xekalaki

(1983a).

6.2 The “Contagion” model

Xekalaki (1983a), extended the assumptions of the classical contagion model developed

by Greenwood and Yule (1920) by considering a population of individuals exposed to

varying accident risk.

In particular, assume that at time t = 0 none of the individuals has had an accident. This

would be true if, for example, with a population of new drivers or of individuals just begin-

ning a new type of work. Suppose that during the time period from t to t + dt a person with

x accidents by time t can incur another accident with a probability of {(k + x)/(1 + λt)}λdt

(independent of the times of the previous accidents), where k is a positive constant and λ

refers to the individual? s risk exposure. At t = 0, since x = 0, the probability of an accident is

kλdt. Hence, what the model basically assumes is that, initially, the probability of having an

accident is not the same for each individual, but depends on the external conditions; later,

the probability is also affected by the number of preceding accidents. Under these assump-

tions and if differences in the exposure to accident risk can be thought of as governed by a

distribution with probability density function given by {Γ(a + ρ)va − 1(1 + ν)− (a + ρ)}/

{Γ(ρ)Γ(a)}, the final distribution of accidents over a unit period of time turns out to be

UGWD(a, k; ρ).

The above derivation of the generalized Waring distribution closely relates to a model-

ing approach whereby the distribution of accident occurrences in a time internal (0, t) is

regarded as underpinned by a stochastic process and, in particular, by a pure birth process

{Xt, t = 0, 1, 2, …} where the probability of a person to incur an accident in (t, t + dt),

having had x accidents by time t is P(Xt + δt = x + 1|Xt = x) = fλ(n, t)δt + o(δt).

Irwin (1941), followed later by Arbous and Kerrich (1951), derived the negative bino-

mial distribution on the hypothesis solving the associated Kolmogorov forward differ-

ential equations by a method due to McKendrick (1925). Specifically, assuming that

individuals can have during the time period from t to dt, individuals can have 0 acci-

dents with probability 1 − fλ(x, t)dt, 1 accident with probability fλ(x, t)dt and > 1 acci-

dents with probability 0, he solved the resulting system of Kolmogorov forward

difference-differential equations

∂
∂t

Pλ 0; tð Þ ¼ −f λ 0; tð ÞPλ 0; tð Þ
∂
∂t

Pλ x; tð Þ ¼ −f λ x; tð ÞPλ x; tð Þ þ f λ x−1; tð ÞPλ x−1; tð Þ; x≥1
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in terms of a single difference-differential equation involving the probability generating

function Gλ(s; t) of Xt given by

∂
∂t

Gλ s; tð Þ ¼ s−1ð Þ
X∞
x¼0

sxf λ x; tð ÞPλ x; tð Þ

X∞

where Gλ s; tð Þ ¼

x¼0

Pλ x; tð Þsx. (He obtained this equation by multiplying the i-th equation

of the system by si− 1, i = 1, 2, … and summing the resulting equations).

Assuming further that fλ(x, t) = λ(k +mx), k,m > 0 and subject to the initial condi-

tions Gλ(1; t) =Gλ(s; 0) = 1, he obtained for the distribution of accidents

Gλ s; tð Þ ¼ eλmt−s eλmt−1
� �� 
−k=m

;

i.e. the probability generating function of the negative binomial distribution with pa-

rameters k/m and (1 − e− λmt)− 1.

Relaxing Irwin ? s implicit assumption that all individuals were exposed to the

same accident risk, Xekalaki (1981) treated the parameter λ as referring to a vari-

able risk exposure according to an exponential distribution with density ae− aλ, a > 0

and obtained the generalized Waring distribution as the accident distribution. In

particular,

GXt sð Þ ¼ a∫
∞

0

e−aλ eλmt−s eλmt−1
� �� 
−k=m

dλ

¼ a 1−sð Þ−k=m
mt ∫

∞

0

e
−λ
aþ kt
mt 1−

s
s−1

e−λ
� �−k=m

dλ

¼ a 1−sð Þ−k=m
mt

Γ aþ ktð Þ= mtð Þð Þ
Γ 1þ aþ ktð Þ= mtð Þð Þ 2F1

k
m
;
aþ kt
mt

;
aþ kt
mt

þ 1;
s

s−1

� �
¼ a

aþmt 2F1
k
m
; 1;

a
mt

þ k
m

þ 1; s

� �

which is the probability generating function of the UGWD k ; 1; a
� �

.
m mt

This model was considered by Panaretos (1989) for the description of the evolution

of surnames. Faddy (1997) provided a unifying approach to under- and over-dispersion

relative to the Poisson distribution within a scheme of a similar nature, which general-

izes the simple Poisson process that underpins the Poisson distribution. He demon-

strated that any count distribution can be obtained by a suitable choice of fλ(x, t) and

provided an expression for the system of Kolmogorov forward differential equations in

terms of a matrix-exponential function.

Finally, Winkelmann (1995) looked at under- and over-dispersion using renewal the-

ory by exploring the link between duration dependence and dispersion. He demon-

strated that discrepancies between observed and nominal variances are conveyed by a

hazard function of the waiting times that is not constant, but instead is a decreasing
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function of time inducing over-dispersion or an increasing function of time inducing

under-dispersion.
6.3 The “Spells” model

Further, Xekalaki (1983a) considered a variant of the ? spells” model due to Cresswell

and Froggatt (1963) that rejects the presence of proneness and contagion.

Assume that every individual is liable to spells and that the number of spells in a

given time period (0, t) is a Poisson variable with parameter θt, θ > 0. Suppose that no

accidents occur outside spells and that the probability of an accident within a spell de-

pends on the risk exposure of the particular individual. In particular, suppose that

within a spell a person can have

or
0 accidents with probability 1−m log 1þ λð Þ
n accidents n≥1ð Þ with probability m λ= 1þ λð Þf gn=n g;

0 <m < 1/log(1 + λ), λ > 0, where λ is the external risk parameter for the given
individual. Assume further that the numbers of accidents arising out of different

spells are independent and independent of the number of spells. Then, if differ-

ences in the risk exposure can be described by a beta distribution of the second

kind with probability density function, {Γ(a + ρ)va − 1(1 + ν)− (a + ρ)}/{Γ(ρ)Γ(a)}, a, ρ > 0,

the resulting accident distribution will have probability generating function given

by

ρ að Þ2F1 a; θmt; aþ θmt þ ρ; sð Þg= ρþ θmtð Þ að Þ:
n

Hence, in a unit time period, the number of accidents follows the UGWD(a, θm; ρ).
It is worth noticing that the form of the distribution of λ in the last two

models is more general than that considered by the proneness model. It is

however, a reasonable choice as it implies a beta distribution of the first kind

(Pearson Type I) for the parameter q = λ/(1 + λ) of the negative binomial distri-

bution of X|λ.
6.4 Deciding about the underlying model

It is evident from the above, that three completely different sets of hypotheses give rise

to exactly the same form of distribution and that while the UGWD may be a plausible

model if accident proneness is a accepted as an established fact, a satisfactory fit of it is

not to be taken as evidence for the validity of the proneness hypothesis. How can we

then discriminate?

Statisticians have always been excited to look for ways of discriminating among

different models that give rise to the same distribution. Most attempts seem to

have been concentrated on distinguishing between the proneness and contagion

models generating the negative binomial distribution. The papers by Bates and

Neyman (1952) and Bates (1955) cover part of the work that has been done on

the subject, though they primarily focus on distinguishing between different forms
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of contagion. Shaw and Sichel ? s (1971) attempt was on proving or disproving

proneness by ranking individual accident performance on a scale based on their

average interval between successive accidents. However, the first systematic study

on how one can discriminate between the proneness and contagion models of the

negative binomial distribution appears to be that by Cane (1974).

She demonstrated, however, that one cannot distinguish between the two models, even

with knowledge of the time sequence of accidents. She demonstrated, in particular, that

the conditional distribution of the times, ti, i = 1, 2, …, n at which accidents oc-

curred in a time period (0,T) is the same in both cases, namely that of an ordered

sample from a uniform distribution over (0,T) with probability density function n !

T− n. In fact, this is the case for any compound Poisson accident distribution whose

compounding distribution has finite moments (Cane 1977), hence also for the

UGWD(a, k; ρ).

This implies that the availability of information on the times of the occurrence of ac-

cidents is not sufficient to guide one ? s choice between the proneness and contagion

models.

However, as demonstrated by Xekalaki (1983a), there appears to exist a possibility in

the framework of the Spells model. Consider, in particular, the problem of finding the

joint distribution of times ti, i = 1, 2, …, n of accidents by individuals with n accidents

in a unit period of time under the spells model. For fixed λ, accidents occur as events in a

generalized Poisson process: X tð Þ ¼
XN tð Þ

i¼1

Y i; N tð Þ∼Poisson θtð Þ, where θ > 0, t ≥ 0 and Yi

are identically and independently distributed with probability density function given by

{Γ(a + ρ)va − 1(1 + ν)− (a + ρ)}/{Γ(ρ)Γ(a)}, a, ρ > 0. Consequently, the required probability

function can be written as ∫
∞

0
1þ λð Þ−θm 1−tnð Þ Yn

i¼1

λmθ 1þ λð Þ−θm ti−ti−1ð Þ−1dti
n o" #

dH λð Þ ,

with H(⋅) denoting the distribution function of the beta distribution of the second kind de-

fined as above. Hence, the required probability is
θmð Þnρ að Þa nð Þ
θmþρð Þ aþnð Þ

n o
dt1… dtn. Therefore, condi-

tional on n accidents during a time period from 0 to 1, the joint pdf of ti, i = 1, 2, …, n,

is n ! (θm)n/(θm)(n).

The obtained form differs from that arising under the proneness and contagion

models. This fact is itself is very interesting as far as establishing the presence of

spells is concerned, as it implies the following: if an observed accident distribution

of the UGWD type has arisen from the spells model, the time intervals (0, ti), i = 1,

2, …, n, given a total of n accidents, will be jointly distributed with the above

density function. Any departure from this distribution is, then, evidence against

the spells model. Of course, if on the available evidence one has to reject this

form in favor of that obtained by Cane, then one is faced again with the question:

? proneness or contagion?” This cannot be answered by studying the distribution

of ti.
6.5 What does Irwin’s accident model offer beyond a good fit to the data?

The innovation brought by Irwin? s accident proneness model does not merely lie in the bet-

ter fit it provides to accident data, but in the possibility of partitioning the total variance
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(σ2) into three additive components due to proneness σ2ν
� �

, liability σ2λ
� �

and randomness

σ2R
� �

thus,

σ2 ¼ σ2λ þ k2σ2ν þ σ2R;

Where

σ2
λ ¼ ak aþ 1ð Þ ρ−1ð Þ−1 ρ−2ð Þ−1

σ2
ν ¼ a aþ ρ−1ð Þ−1 ρ−1ð Þ−2 ρ−2ð Þ−1

σ2
R ¼ ak ρ−1ð Þ−1

σ2 ¼ ak aþ ρ−1ð Þ k þ ρ−1ð Þ ρ−1ð Þ−2 ρ−2ð Þ−1:

There is still, however, a problem due to the fact that the UGWD(a, k; ρ) is sym-
metrical in a and k (UGWD(a, k; ρ) ∼UGWD(k, a; ρ)). Hence, although one may

consider that σ2λ þ k2σ2
ν represents the variance component due to all non-random

factors, the mathematics alone cannot determine whether σ2λ represents the liabil-

ity component and k2σ2ν the proneness component or vice versa. As a conse-

quence, distinguishable estimates for the non-random variance components σ2λ
and σ2ν cannot be obtained unless subjective judgement is made. This problem was

addressed by Xekalaki (1984a) with the introduction of her bivariate form of the

generalized Waring distribution.

7. The bivariate generalized Waring distribution
Generalizing further Irwin ? s (1963) generalization of Waring ? s expansion, we have for

k,m, a > 0,

1
x−að Þ kþmð Þ

¼
X∞
ℓ¼0

Xℓ
r¼0

a ℓð Þ −1ð Þℓ
ℓ!

ℓ
r

� �
Δr 1

x kð Þ
Δℓ−r 1

xþ k þ rð Þ mð Þ

¼
X∞
r¼0

X∞
ℓ¼0

a rþℓð Þ −1ð Þrþℓ

r!ℓ!
Δr 1

x kð Þ
Δℓ 1

xþ k þ rð Þ mð Þ

¼
X∞
r¼0

X∞
ℓ¼0

a rþℓð Þk rð Þm ℓð Þ
x kþmþrþℓð Þ

1
r!
1
ℓ!

If x > a, the above series is convergent. Then, by letting ρ = x − a > 0 and multiplying

both sides by ρ(k +m), leads to a double series of positive terms converging to unity. The

general term of the series therefore can be regarded as defining a bivariate discrete

probability distribution with probability function

pr;ℓ ¼
ρ kþmð Þ

aþ ρð Þ kþmð Þ

a rþℓð Þk rð Þm ℓð Þ
aþ k þmþ ρð Þ rþℓð Þ

1
r!
1
ℓ!
; a; k;m; ρ > 0; r; ℓ ¼ 0; 1; 2; …

In the remainder of the paper, we refer to this distribution as the bivariate
generalized Waring distribution with parameters a, k,m and ρ and we denote it by

BGWD(a; k,m; ρ).
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7.1 The BGWD in relation to accident theory

Assume that individuals of proneness ν and liability λi|ν for a period i of observation

incur, over two non-overlapping time periods, accidents X,Y according to a double

Poisson distribution G X;Yð Þ λ1;λ2;νj s; tð Þ ¼ exp λ1 νÞ s−1ð Þ þ λ2 νÞ t−1ð Þg; λ1; λ2 > 0jðjðf . As-

sume further that the liability parameters λ1|ν, λ2|ν are independently gamma distrib-

uted with densities Γ θið Þνθi� �−1
e�λijv λθi−1i ; θ1≡k; θ2≡m; ν > 0, whence for individuals

with the same proneness ν, but varying liabilities, the numbers of occurring accidents

over the two periods are jointly distributed as the double negative binomial with prob-

ability generating function

GðX;Y Þjv s; tð Þ ¼ 1þ ν 1−sð Þf g−k 1þ ν 1−tð Þf g−m:

Letting now the proneness parameter ν be beta distributed with density func-
tion {Γ(a + ρ)va − 1(1 + ν)− (a + ρ)}/{Γ(ρ)Γ(a)}, a, ρ > 0, the probability generating

function of the joint distribution of accidents over the two periods takes the

form

G X;Yð Þ s; tð Þ ¼ Γ ρþ að Þ
Γ ρð ÞΓ að Þ ∫

þ∞

0
νa−1 1þ νð Þ− aþρð Þ 1þ ν 1−sð Þf g−k 1þ ν 1−tð Þf g−mdν

¼ ρ kþmð Þ
aþ ρð Þ kþmð Þ

F1 a; k;m; aþ k þmþ ρ; s; tð ÞeBGWD a; k;m; ρð Þ;

where F1 a; b; c; d; u; vð Þ ¼
X∞

r;s¼0
a rþsð Þb rð Þc sð Þurvs
� �

= d rþsð Þr!s!
� �

is Appell ? s hypergeo-
metric series and h(l) = Γ(h + l)/Γ(h), h > 0, l ∈ R.
Regarding separate estimation of the contribution of proneness, liability and ran-

domness in a given accident situation over a period of observation whenever

proneness is accepted as an established fact, Xekalaki (1984a) showed that re-

arranging the observed distribution in two non-overlapping sub-intervals and fit-

ting the BGWD(a; k,m; ρ) to the resulting bivariate accident distribution does

enable separate estimation of the variance components. This is demonstrated in

Table 1.

Further models leading to the BGWD provided by Xekalaki (1984c), provide the

framework within which one can also obtain the BGWD as an accident distribution

under the contagion and the spells accident theories.
Table 1 Estimators of the components of the variance of the generalized waring
distribution

Component due to Marginal variance of X Marginal variance of Y Variance of X + Y entire period

Random factors â k̂
ρ̂−1

âm̂
ρ̂−1

â k̂þm̂ð Þ
ρ̂−1

Proneness k̂ 2 â âþρ̂−1ð Þ
ρ̂−1ð Þ2 ρ̂−2ð Þ

m̂2 â âþρ̂−1ð Þ
ρ̂−1ð Þ2 ρ̂−2ð Þ

k̂þm̂ð Þ2 â âþρ̂−1ð Þ
ρ̂−1ð Þ2 ρ̂−2ð Þ

Liability â k̂ âþ1ð Þ
ρ̂−1ð Þ ρ̂−2ð Þ

âm̂ âþ1ð Þ
ρ̂−1ð Þ ρ̂−2ð Þ

â k̂þm̂ð Þ âþ1ð Þ
ρ̂−1ð Þ ρ̂−2ð Þ

Total
â k̂ ρ̂þk̂−1ð Þ ρ̂þâ−1ð Þ

ρ̂−1ð Þ2 ρ̂−2ð Þ
âm̂ ρ̂þm̂−1ð Þ ρ̂þâ−1ð Þ

ρ̂−1ð Þ2 ρ̂−2ð Þ
â k̂þm̂ð Þ ρ̂þk̂þm̂−1ð Þ ρ̂þâ−1ð Þ

ρ̂−1ð Þ2 ρ̂−2ð Þ
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8. The multivariate generalized Waring distribution
The n-variate version of the genaralized Waring distribution introduced and studied by

Xekalaki (1986) is also obtained as an inverse factorial distribution. Its probability generating

function is given by

G tð Þ ¼
ρ X

ki
� �

aþ ρð Þ X
ki

� � FD a; k1;…; kn; aþ
Xn
i¼1

ki þ ρ; t

 !

with FD a; β1;…; βn; γ; t
� �

denoting Lauricella? s hypergeometric function given by

FD a; β1;…; βn; γ; t
� � ¼ X

r1;…;rn

a X
ri

� �
γ X

ri
� �Yn

i¼1

βi
� �

rið Þt
ri
i

rið Þ!

The probability function of it is given by
Pr ≡P X ¼ rð Þ ¼
ρ X

ki
� �

aþ ρð Þ X
ki

� �
a X

ri
� � k1ð Þ rið Þ… knð Þ rnð Þ

aþ ρþ
X

ki
� � X

ri
� � r1ð Þ!… rnð Þ!

;

ri ¼ 0; 1; 2;…; i ¼ 1;…; n

and its probabilities are related by the following first order recurrences, which facilitate
their computation

Pl1;l2;…;lh−1;lhþ1;lhþ1;…;ln

Pl1;l2;…;ln
¼

aþ
Xn
i¼1

li

" #
kn þ lnð Þ

aþ
Xn
i¼1

ki þ
Xn
i¼1

li

" #
ln þ 1ð Þ

; l ¼ 0; 1; 2; …;

i ¼ 1; 2; …; n

An interesting aspect of the bivariate and multivariate versions of the generalized
Waring distribution is that their marginal distributions (conditional and unconditional)

as well as their convolution are of the same form (UGWD’s), properties that exhibit a

symmetry analogous to that existing in the case of the multivariate normal distribution.

Further, the generalized Waring distribution is self-decomposable (Xekalaki 1983b).

9. The Generalized Waring Process (gWp)
Looking into how temporally evolving data from the wide spectrum of application con-

texts that can reasonably be viewed from the perspective of the frameworks discussed

in Sections 6, 7 and 8 can be treated, Xekalaki and Zografi (2008) defined and studied

the generalized Waring process. In establishing its definition, the structural properties

of both the bivariate and the multivariate versions of the generalized Waring distribu-

tion played a significant role. This process, analogously to the case of Poisson and Pólya

processes, which can be obtained as limiting cases of it, was shown to be a Markov

process.

Let {N(t), t ≥ 0} be a counting process. This is said to be a generalized Waring process

with parameters a, k, ρ > 0, denoted by gWp(a, k; ρ), if (i) N(0) = 0, (ii) N(t) is a Markov
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process, and (iii) N(t + h) −N(t) has the generalized Waring distribution with parame-

ters a, k; ρ for h > 0, t ≥ 0. The process starts at 0, it has stationary increments and

P N tð Þ ¼ nð Þ ¼ ρ ktð Þ
ρþ að Þ ktð Þ

a nð Þ ktð Þ nð Þ
aþ ρþ ktð Þ nð Þ

1
n!

i.e., N(t) has a generalized Waring distribution with parameters a, kt; ρ.

The transition probabilities of the generalized Waring process are given by

pm;n s; sþ tð Þ ¼ P N sþ tð Þ ¼ njN sð Þ ¼ mf g ¼ Γ aþ nð Þ
Γ aþmð Þ

ktð Þ n−mð Þ
n−mð Þ!

ρþ ksð Þ aþmð Þ
ρþ ksþ ktð Þ aþnð Þ

p0;n 0; tð Þ ¼ P N tð Þ ¼ njN 0ð Þ ¼ 0f g ¼ ρ ktð Þ
ρþ að Þ ktð Þ

a nð Þ ktð Þ nð Þ
aþ ρþ ktð Þ nð Þ

1
n!

¼ P N tð Þ ¼ nð Þ

with the last equality indicating that the generalized Waring process is a non-
homogenous Markov process. Its mean and variance are respectively

E N tð Þ½ � ¼ akt
ρ−1

andVar N tð Þ½ � ¼ akt ρþ kt−1ð Þ ρþ α−1ð Þ
ρ−1ð Þ2 ρ−2ð Þ

Note that since the generalized Waring process is a stationary process and its mean
is of the form E[N(t)] = ηt, the above formula implies that its intensity is η = ak/(ρ − 1).

Its variance can be split into three additive components, thus

Var N tð Þ½ � ¼ σ2Λ tð Þ þ ktð Þ2σ2ν þ σ2R

with the liability and random components dependent on time. In particular,
σ2Λ tð Þ ¼ akt aþ 1ð Þ ρ−1ð Þ−1 ρ−2ð Þ−1; σ2ν ¼ a aþ ρ−1ð Þ ρ−1ð Þ−2 ρ−2ð Þ−1;
σ2R ¼ akt ρ−1ð Þ−1:

9.1 The generalized Waring process in an accident proneness context

We consider a population which is inhomogeneous with respect to personal and environ-

mental attributes affecting the occurrence of accidents. The terms ? accident proneness”

and ? accident liability” are again used to refer respectively to a person? s predisposition to

accidents, and to a person? s exposure to external risk of accident with the conditional dis-

tribution of the random variable λ given ν describing differences in external risk factors

among individuals. Liability fluctuations over a time interval (t, t + h) depend on the

length h of the interval and are described by a distribution for λ|ν with probability density

function λkh − 1e− λ/(νh)(νh)− kh/Γ(kh). Allowing further the parameter ν have a beta distribu-

tion of the second kind with parameters a and ρ and density function ϕ given by

ϕ(ν) = Γ(a + ρ)νa − 1(1 + ν)− (a + ρ)/[Γ(a)Γ(ρ)], a, ρ ≥ 0, we obtain for the distribution of

the number of accidents N(t):

P N t þ hð Þ−N tð Þ ¼ nð Þ ¼ ρ khð Þ
aþ ρð Þ khð Þ

a nð Þ khð Þ nð Þ
aþ ρþ khð Þ nð Þ

1
n!

and

P N tð Þ ¼ nð Þ ¼ Pn tð Þ ¼ ρ ktð Þ
aþ ρð Þ ktð Þ

a nð Þ ktð Þ nð Þ
aþ ρþ ktð Þ nð Þ

1
n!
; n ¼ 0; 1; …
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So, the process arising in the context of this model, satisfies the defining conditions

of the generalized Waring process.

9.2 The generalized Waring process in the context of a spells model

Xekalaki and Zografi (2008) showed that the generalized Waring process could also be

used in modeling temporally evolving data in the context of a spells model. Assume

again that each person is liable to spells and that no accidents can occur outside spells.

Let S(t), t = 0, 1, 2, …, the number of spells up to a given moment t, be a homoge-

neous Poisson process with rate k/m, k > 0, the number Xi of accidents within a spell i

be a random variable with a logarithmic series distribution with parameters m and ν

and probability function given by P Xi ¼ nð Þ ¼ m
n

ν
1þν

� �n
; n≥1 with P(Xi = 0) = 1 −m log

(1 + ν), ν > 0, 0 <m < 1/log(1 + ν), and the numbers of accidents arising out of different

spells be independent and independent of the number S(t) of spells. Here ν is regarded

as the external risk parameter, too, which they assumed varying according to a beta dis-

tribution of the second kind with parameters a and ρ and probability density function

given by Γ(a + ρ)νa − 1(1 + ν)− (a + ρ)/[Γ(a)Γ(ρ)], a, ρ ≥ 0. They then showed that the above

framework leads to a process conforming with the postulates of the generalized Waring

process, thus demonstrating its potential application in the context of the Spells model.

10. An application: modeling the counting process {N(s), s > 0} associated with
the access pattern of a web site
As an illustration of the application potential of the generalized Waring process in

other fields by appropriately adjusting the concepts and terminology used in this paper

so as to have natural interpretations, we outline an example of a model for temporally

evolving data on web access patterns provided by Xekalaki and Zografi (2008).

In this context, {N(s), s > 0} is the counting process associated with the access pattern

of a web site, where, for any t > 0, N(t) represents the number of visits that the web

pages on this particular site get within the interval (0, t). Note that the generalized

Waring distribution was cited in Ajiferuke et al. (2004) as used by them to fit observed

website visitation data for a given period, i.e, to model counts N(t0) of web visits on a

given fixed time interval (0, t0).

Except for chance, visits to a web site can be regarded as affected by the intrinsic ap-

peal of the particular site to web users (corresponding to proneness) as well as by ex-

ogenous factors (corresponding to external factors) such as, links provided by other

sites to the particular site, how well the site is advertised etc.

Letting ν denote the intrinsic factors and λ|ν the exogenous factors. Then assuming

that N(t)|λ follows a Poisson(λ(t)) distribution, where λ(t) = λt with λ|ν following a

gamma distribution with density λkt − 1e− λ/(νt)(νt)− kt/Γ(kt), and with ν following a beta

distribution of the second kind with density Γ(a + ρ)νa − 1(1 + ν)− (a + ρ)/[Γ(a)Γ(ρ)], a, ρ ≥
0, then the unconditional distribution of N(t) is the GWD(a, kt; ρ), i.e. the process

{N(t), t ≥ 0} is a generalized Waring process.

10.1 The data

The log files representing the hits on an e-shop site for the period from March 31, 2006 to

April 30, 2006 have been used to fit this model. (A log file typically contains information
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Figure 1 Observed and simulated paths of the gWp(3.87, 0.83; 4.21) corresponding to the selected
IP address (Xekalaki and Zografi 2008).
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on the times of visits per IP address per day). On the basis of such log files, the visits per

day made by each of 468 IP addresses to a web site during the above period were enumer-

ated yielding 468 paths of visits Ni(tj) made by IP address i up to and including time tj de-

noted by {Ni(tj), i = 1, 2,…, 468; j = 1, 2,…, 31}.

Moment estimates of the parameters of the generalized Waring process were ob-

tained employing an estimation procedure for spatial point process data termed in

the literature as the centered reduced moment method. The method introduced and
R
es

id
ua

ls

time

IP address 3

Figure 2 Plot of inverse-intensity residuals corresponding to the selected IP address (Xekalaki and
Zografi 2008).
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studied by Ripley (1976, 1977) utilizes the intensity of the process and the mean

number of further points within distance s of an arbitrary point of the process.

In particular, the method utilizes the moment estimators E N̂ sð Þ� � ¼ μ̂1 ¼ η̂s ¼ ns=h;

E N̂ 2 sð Þ� � ¼ μ̂2 ¼ X=n 2ð Þ; E N̂ 3 sð Þ� � ¼ μ̂3 ¼ Z−Xð Þ=n 3ð Þ with X ¼
Xn
i¼1

X
i≠j

ϕ2
s xi; xj
� �

;

Z ¼
Xn
i¼1

X
j≠i

ϕs xi; xj
� � ! X

k≠i

ϕs xi; xkð Þ
 !

, where the quantities involved in the above

equations represent weights defined, for each value xi in the collection of points {xi : i = 1,

2,…, n} of the process within a time interval of length h, as follows: For each xi in {xi : i =

1, 2,…, n} and a given s > 0, consider the interval of center xi and length s and assign to

every point xj, j ≠ i in this interval the weight ϕs(xi, xj) =ω(xi, xj)
− 1, where ω(xi, xj) is the

number of other points {xk, k ≠ i, k ≠ j} of the process that are included in the interval of

length |xi − xj| and center xi (see also Diggle and Chetwynd 1991; Chetwynd and Diggle

1998, among others). The standard errors of the thus obtained parameter estimators can

in principle be determined by simulation, but the associated computations are formidable.

Approximation formulas exist only for the case of homogeneous planar Poisson process,

while, for the class of stationary Cox process, there is no obvious way to obtain estimable

expressions as noted by Chetwynd and Diggle (1998).

The observed paths were compared to the corresponding time series of simulated re-

alizations of the generalized Waring process over the same time segment. For each IP

address, 100 simulated realizations of the gWp(a, k; ρ), were obtained and each of the

observed time series paths was compared to the corresponding simulated ones. On

average, the realizations of the generalized Waring process exhibited similar structural

characteristics, notably recognizable, to those of the paths of the observed time series.

For illustration purposes, the path of the observed time series associated with one of

the IP addresses considered is presented in Figure 1. In the graph, the path is superim-

posed by a sample of three of the 100 corresponding simulated realizations of the gWp

(a, k; ρ). Inspection of the graph provides a visual appreciation of the degree of similar-

ity in the structural characteristics of the path of the observed and the realized time

series.

Following Lewis (1972), Brillinger (1978) and Andersen et al. (1993), the closeness of

the observed and realized time series was also checked using diagnostic plots based on

the inverse-intensity residuals computed for each value xj in the collection of points

{xj : j = 1, 2,…, n} of the process given by Rθ̂ Bj; η−1
� � ¼X

xi∈Bj

η̂ xið Þ−∫
j

Bj

IRþ η̂ xð Þð Þdx where

Bj ¼ 0; xj
� �

; θ̂ ¼ â; k̂ ; ρ̂
� �−1

; η̂ xð Þ ¼ η x; θ̂
� �

is the fitted intensity and IRþ ⋅ð Þ is the

indicator function. These plots exhibit similar results. The plot corresponding to the

data associated to the IP address considered is shown in Figure 2.
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