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Populations in a variety of fields of statistical applications as diverse as ‘biological and
actuarial applications. Since inhomogeneity is a rather common situation in biological
populations, mixture models are useful devices for its description. A well known
example in actuarial research concerns the modeling of the number of accidents of an

insured driver. Since the driving ability and the exposure of a driver to external risk

FINITE POISSON MIXTURES

Dimitris Karlis and Evdokia Xekalaki
Department of Statistics
Athens University of Economics and Business
76 Patision st, 10434, Athens, GREECE
email: karlis@stat—athens.aueb.gr, exek@aueb.gr

Abstracr
Finite Poisson mixtures can be used in a variety of real applications to

describe count data as they can describe situations where overdispersion
relative to the simple Poisson model is present. They also admit a natural
interpretation: the entire population is a mixture of k subpopulations each
having a Poisson distribution giving rise to the k-finite Poisson distribution,
Estimating the parameters of a k-finite Poisson mi)gture is not easy.
However, the development of the EM algorithm for finite mixtures
simplified the derivation of the maximum likelihood estimates. In this paper
an improvement of the standard EM algorithm for finite Poisson mixtures is
introduced. It is based on the result that one from the estimating equations
for the Maximum Likelihood Estimates in the case of finite Poisson
mixtures is the first moment equation. Hence, replacmg one of the
estimating equations by this simpler form can help us considerably in -
reducing the labour and the cost of calculating the MLE. Tables verifying

the results are also given.

likelihood estimation,
1. Introduction

Mixture models, finite or not, are widely used to describe inhomogeneous
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differs among the drivers, it seems reasonable to assume that the population is not
homogeneous and thus the inhomogeneity can be represented by a mixture. Several
other practical situations involving non-homogeneous populations can be modeled by
mixtures upon similar assumptions that admit a physical interpretation in the context of
the particular case. During the last few years computers made possible the development
of efficient algorithms that made the estimation of such models a simple task.

The Poisson distribution plays a prominent role in describing count data that
occur randomly. A basic assumption for the Poisson distribution is that the population is
homogeneous. As already mentioned, inhomogeneity can be represented via mixtures of
the Poisson distribution. These can be finite or not.

Finite Poisson mixtures are widely used in practice as, often, estimating the
mixing distribution numerically one is restricted to estimating a finite number of mixing
proportions. A k-finite mixture of Poisson distributions is defined as the distribution
having probability function of the form

g(x) =jf_l,p,.f<x|e,.) , o

where‘ f (x|0) =exp(-0) & /x! , for x=0,1...., 6>0, ie. the probability function of a

Poisson distribution with parameter 6, and p; >0 for i=1,..k with Ek; p; =1, are the
=

mixing proportions. The' latter can also be considered as the probabilities that an

observation belongs to subpopulations 1,2,....k respectively.

Given a random sample X; Xz ,....Xn , the loglikelihood is given by

n k
1= log(Y, 7, (x)0,)) @)
i=] J=1
Denoting by d(x) the frequency of the value x the loglikelihood in (2) can be
rewritten as '
.m k X
I=logL=Y dx)logY.p,f (40, ©)
x=0 j=1

where m is the largest value of the sample.
In the next section it is shown that the ML estimators satisfy the first moment

equation.
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2. The main result.
As usual, in order to find the MLE we need to equate all the partial derivatives of the
loglikelihood with 0. Observing that, for the Poisson distribution, it holds that

‘)f("' L) _ ¢ (x—18)- fxif) .

the estimating equations are

n 119 16))
S BLEZBITEOD o
x=0
I =S a8 f 16, o, j=1,.. k! ©)

ap J x=0 g (x)
The system of equations (4) and (5) must be solved to obtain the MLEs.

From equations (4) we obtain

Zd(x)f( 19,)= Z@f(x—ue ), J=1..k (6)
x—O x-O

Also, multiplying the i-th equation in (5) by p;, j=1I,..,k and adding the resulting

equations we obtain

2 [g(x) F0i8,)1=0, or, equivalently, Z ((x)) f(x16,)=n .
x=0 & x=0 §
(M
'On the other hand it follows from (4) that
3 4@ (("))f( x16,) = Z@f(xlo ), =1,k @®
x—O
From (7) and (8) it may be concluded that the maximum hkehhood estimates satisfy
the equation
3 4@ d((")) f(d8,)=n . )
x—O

Many authors (see, for example, Bohning, 1995) refer to the function in the right
hand side of (9) as the gradient function, and they use it to check if the maximum is
obtained. Bohmng(l995) shows that the above conditions are necessary and sufficient
for the 6, 's to be MLE. Combining (6) and (9) it can be easily verified that

d(x)

Z—(—)f(x—uo) n,  j=l2..k . (10)
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Adding equations (4) over j we obtain that

Zd(x)[g(x D-gx)1=0, or, equivalently , i Ex; x-D=n
x=0 g x—O

(an
i.¢., the probability function of a k-finite mixture of Poisson distributions satisfies the
same recurrence relationship as the probability functions of the Poisson components.

As is well known, f(x-1|6 )= f(x|6) x/6. Then, (4) can be written as
d
2 (") 289, ) =0,)=0:
x—()

which settingw,; = f (x16;)/ g(x) reduces to

id(x)wxj(x—ej)=0 .

x=0

Solving for the parameters, we obtain that

Zd(x)wxjx
g =2, j=1...k (12a)

J m
2 dx)wy

x=0

Since from (9) the denominator is equal to n, (12a) becomes

Zd(x)wxix
g, ==2 , =laak . (12b)

J n

The above relationship implies that the ML estimators of the mean value
parameters can be written as weighted sample means.
Suppose now that we have the MLE's for the parameters 6’, ,j=1,2,..k. Then,

from (l) it follows that the ML estimate of the mean of the finite Poisson mixture is

k m m

) Zd(x)wxjx ZZd(x)wx]xp, ZAfi—(x—)prjf(xlej) Zd(x)x

z =0 p, = j=1 x=0 _ x=0 g(x) = _ =0 ~3
n i~ - - —Ay

= n n n
i.e.. the sample mean.
Hence, the estimating equation leading to the ML estimate of the mean of a k-
finite mixture of Poisson distributions coincides with the first moment equation. This is
rue also for members of the power series distribution (see, for example, Johnson et al.,

1992). Sprott (1983) showed that this is true for the convolutlon of two power series
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distributions as well as for compound (or generalized) distributions of members of the
power series family. A generalization of the power series family shares the same
property as Kemp (1986) showed. Finite Poisson mixtures belong to this family of

distributions.
It becomes obv1ous therefore, that the estimating procedure can be simplified if

one of the equations in (4) and (5) is replaced by the first moment equation. For
example, the EM algorithm proposed by Hasselblad (1969) to deal with ML estimation
in mixture models, is an iterative algorithm using the above equations. The EM can be
described as follows:

Starting with the current estimates pl'.’""andej"' calculate w,; = f(x16,)/ g(x)and

obtain the new estimates of the parameters using

L} mn
Zd(x)wxjx
0 new _ x=0
n 2
Zd(x)p;’“wxj
P =E— :

Then, go back and obtain the new values for the Wy 's. The iterative scheme terminates
when some condition is satisfied. We can verify easily that the above scheme always
satisfies the requirement for the first moment.

Note that the representation of the weights w,, is slightly different from that in
the formal description of the EM algorithm where Wy 1is defined as the posterior
probability that, given the parameters, the observation with value x belongs to the j-th
subpopulation G=1.....k) . We adapt this representation since it enables the derivation
of similar algorithms for other methods of estimation, as it has already been done by
Karlis and Xekalaki ( 1998).

The EM algorithm for finite mixtures is widely applicable because of its simple
and easily programmable form. However, it has the disadvantage of slow convergence
and high dependence on the initial values, Thus, since the EM algorithm may stop at a
local maximum which is not global, several initial values must be used. This makes the
algorithm very time demanding. Improvements have been proposed in three different
directions. Bohning et al, (1994) propose a method for easier detecting - the

convergence of the algorithm saving thus iterations. Fruman and Lindsay (1994)
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recommended the use of efficient initial values, namely the use of the moment estimates

as initial values for the EM algorithm. Aitkin and Aitkin (1996) and Lange 199
' proposed alternating EM iterations and Gauss-Newton iterations. |

So, at each iteration the number of estimated parameters is reduced by one as-
parameter can be estimated by the first moment equation. The gain in computing tikie it
high for small values of k. Looking at the iterative scheme described above, it canbe
seen that calculating 6 can be avoided thus reducing the number of calculationsi
involved for obtaining the new parameters by / 00/(2k-1) %. In fact, the gain is less
because in each iteration the cost for producing the weights wy dominates. However, it
is expected that the gain depends on the maximum observed value since this value
determines the number of summands in the calculation of the new estimates. The larger
the value of 6 's the larger the gain and the larger the sample size the larger the gain.

In order to examine the gain, a small simulation comparison was carried out. For
k=2, 100 samples of given a size were simulated for each distribution with parameter

vectors (p 1, 62 ). The time required for ML estimation was calculated for both the
general EM algorithm given in Hasselblad (1969) and the improved EM algorithm
discussed above. The entries of Table 1, are the relative times namely the ratios of
times required by the improved EM algorithm divided by the corresponding times
required by the standard EM algorithm. Clearly, almost 20% of the computing time can
be saved for k=2.

Table 1
Times for the improved EM algorithm relative to the standard EM algorithm for
k=2
D1 0.25 0.5 i 0.75
0 2 5 10 2 5 - 10 2 5 10

n
50 82.2 803 79.7| 821 800 799 | 83.1 815 806
100 823 800 7921812 799 797 789 80.8 800
250 80.9 795 792|813 796 795 819 803 794
500 81.3 793 79.1 812 752 794 | 809 820 793

Table 2 contains the results for k=3. The vectors of parameters were (p1,0.3,1,2,
63 ). For each distribution 100 samples of given sample size 0 (n=50,100,250,500) were
simulated and the times required for both methods were recorded. The entries are again
the tirhes of the improved EM algorithm, divided by the corresponding times of the
standard EM algorithm. Clearly the gain is near 15%.
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Table 2
Times for the improved EM algorithm relative to the standard EM algorithm for
k=3
p1 0.25 l 0.5 0.75
8] 3 5 10 | 3 5 10 3 5 10

n
50 86.9 859 853 86.8 863 857 | 875 87.0 - 86.6

" 100 86.6 '86.0 853 ( 866 86.1 854 | 87.1 862 858
250 863 857 85.1 86.2 857 85.1 86.3 859 854
500 862 856 850 | 859 855  85.0 86.3 85.8  85.1

The above findings can be useful for ML estimation when the number of support
points is not known a priori, see Bohning (1995). Such algorithms usually add one new
support point at each step, and try to determine the probability to assign to this point.
This procedure usually requires specific numerical methods. However, using the above
findings this probability can be determined by simply solving a simple linear equation
given by the first moment equation. Further, since a solution with k supports points
ought to satisfy the first moment equation, and this is true for the solution with k+1
support points, it is not possible to proceed by simply finding one new support point and
assigning to this point some probability. The reason is that since the first moment
equation must hold, the algorithm will reject the new point. A combined algorithm
which adds a new point followed by some EM iterations for recalculating the
probabilities is a preferable procedure.

Behboodian (1969) derived the above scheme independently of Haselblad

(1969), for normal mixtures. He also showed that the ML estimates of finite normal

mixtures behave in a similar mannetr.

3. Conclusions

It has been noted that in finite Poisson mixtures one of the ML equations can be
replaced by the first moment equation. This simplifies the procedure for ML estimation
and can save a lot of computational time. The above results can be generalized for other
distributions in the one parameter exponential family, like the exponential distribution.
Another very useful result is that the above scheme can be generalized for minimum

distance estimation in finite mixtures.
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