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A number of single ARCH model-based methods of predicting volatility

are compared to Degiannakis and Xekalaki’s (2005) poly-model

standardized prediction error criterion (SPEC) algorithm method in

terms of profits from trading actual options of the S&P500 index

returns. The results show that traders using the SPEC for deciding

which model’s forecasts to use at any given point in time achieve the

highest profits.

I. Introduction

Degiannakis and Xekalaki (2007) examined the

ability of the standardized prediction error criterion

(SPEC) model selection algorithm to indicate the

ARCH model that generates ‘better’ volatility

predictions with a number of statistical evaluation

criteria. In the context of a simulated options

market, Xekalaki and Degiannakis (2005) have

found that the SPEC algorithm performs ‘better’

than any other comparative method of model

selection in pricing straddles with 1 day to

maturity. The present manuscript evaluates the

ability of the SPEC algorithm in selecting at each

point in time an accurate volatility forecast for the

remaining life of a straddle1 option. The forecasts

of option prices are calculated by feeding the

volatility estimated by the ARCH models into the

Black and Scholes (BS) option pricing model.

The obtained results indicate that SPEC has a

satisfactory performance in selecting the ARCH

models that yield ‘better’ volatility predictions for

option pricing.

II. ARCH Models

For yt¼ ln(St/St�1) denoting the continuously

compound rate of return from time t� 1 to t,

where St is the asset price at time t, a set of ARCH

models are estimated. The conditional

mean is considered as a �th order autoregressive

process:

yt ¼ c0 þ
X�
i¼1

ciyt�ið Þ þ zt�t ð1Þ

for zt �i:i:d:Nð0, 1Þ, and the conditional variance is

commonly regarded as one of Assumption (i) a

GARCH(p, q) function:

�2t ¼ u0t, �
0
t,w
0
t

� �
v, �,!ð Þ0, ð2Þ

with u0t ¼ ð1, "2t�1, . . . , "2t�qÞ, �0t ¼ 0,w0t ¼
ð�2t�1, . . . ,�2t�pÞ, v0 ¼ (a0, a1, . . . , aq), � 0 ¼ 0, !0 ¼
(b1, . . . , bp),

Assumption (ii) an EGARCH(p, q) function:

ln �2t
� �

¼ u0t, �
0
t,w
0
t

� �
v, �,!ð Þ0, ð3Þ

*Corresponding author. E-mail: sdegia@aueb.gr
1A straddle option is the purchase of both a call and a put option with the same expiration date and exercise price.
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with u0t ¼ ð1, "t�1=�t�1j j, . . . , "t�q=�t�q
�� ��Þ, �0t ¼ ð"t�1=

�t�1, . . . , "t�q=�t�qÞ, w0t ¼ ðlnð�2t�1Þ, . . . , lnð�2t�pÞÞ,
v0 ¼ (a0,a1, . . ., aq), �

0 ¼ (g1, . . ., gq), !0 ¼ (b1, . . ., bp),
Assumption (iii) or as a TARCH(p, q) function:

�2t ¼ u0t, �
0
t,w
0
t

� �
v, �,!ð Þ0, ð4Þ

with u0t ¼ ð1, "2t�1 , . . . , "2
t�q
Þ, �0t ¼ ðdt�1"2t�1Þ, w0t ¼

ð�2
t�1
, . . . ,�2

t�p
Þ, v0 ¼ (a0, a1, . . . , aq), �0 ¼ (g),

!0 ¼ (b1, . . . , bp), dt¼ 1 if "t<0 and dt¼ 0 otherwise.
The prediction of the conditional variance at day

tþ i given the information set available at day t can
be computed as:
�̂2tþi tj � Eð�2tþi Itj Þ ¼ E u0tþi

�
, �0tþi,w

0
tþi Itj ÞðvðtÞ, �ðtÞ,

!ðtÞÞ ¼ ðu0tþi tj , �0tþi tj ,w0tþi tj ÞðvðtÞ, �ðtÞ,!ðtÞÞ. Thus, the
AR(�)GARCH(p, q), AR(�)EGARCH(p, q) and
AR(�)TARCH(p, q) models are applied, for
�¼ 0, . . . , 4, p¼ 0, 1, 2 and q¼ 1, 2.

III. The SPEC Model Selection Algorithm

Assume that a set of M candidate ARCH models is
available and that the ‘most suitable’ model is sought
for predicting conditional volatility. The ARCH
model, with the lowest value of the sum of the T
most recent estimated squared standardized one-step-
ahead prediction errors,

PT
t�1 "̂

2
tþ1 tj =�̂

2
tþ1 tj , can be

considered for obtaining one-step-ahead forecasts
of the conditional volatility. Assume further that
the M competing ARCH processes have
been estimated using a rolling sample of n observa-
tions. The SPEC algorithm for selecting the
‘most suitable’ of the M candidate models at each
of a series of points in time is comprised of the
following steps.

For model m, (m¼ 1, 2, . . . ,M) and for each point
in time t, (t¼ n, nþ 1, . . .), the vector of coefficients
�̂ðmÞðtÞ � ð�̂ðmÞðtÞ, v̂ðmÞðtÞ, �̂ðmÞðtÞ, !̂ðmÞðtÞÞ is estimated
using a rolling sample of n observations. Using the

vector of coefficients �̂ðmÞðtÞ, compute R
ðmÞ
Tþn �PTþnþ1

t¼n "̂
2ðmÞ
tþ1 tj =�̂

2ðmÞ
tþ1 tj

The ‘most suitable’ model to forecast volatility at

time Tþ n is the model m with the minimum value of

R
ðmÞ
Tþn. The algorithm is repeated for each of a

sequence of points in time for the selection of the

‘most appropriate’ model to be used for obtaining a
volatility forecast for the next point in time.

IV. Measuring the Forecasting
Performance

The BS formula to price call and put options
at day tþ 1 given the information available at
day t, with � days to maturity, denoted, respectively,
by C

ð�Þ
tþ1 tj and P

ð�Þ
tþ1 tj , can be presented in the

following form:

C
ð�Þ
tþ1 tj ¼ Ste

�	t�Nðd1Þ � Ke�rft�Nðd2Þ ð5Þ
P
ð�Þ
tþ1 tj ¼ �Ste

�	t�Nð�d1Þ þ Ke�rft�Nð�d2Þ

d1 ¼
lnðSt=KÞ þ rft � 	t þ 1=2 �

ð�Þ
tþ1 tj

� �2� �
�

�
ð�Þ
tþ1 tj

ffiffiffi
�
p

d2 ¼ d1 � �ð�Þtþ1 tj
ffiffiffi
�
p

, ð6Þ

where, St is the daily closing stock price as a forecast
of Stþ 1, rft is the daily risk free interest rate, gt is the
daily dividend yield, K is the exercise price, N(.) is the
cumulative normal distribution function and
�
ð�Þ
tþi tj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��1

P�þ1
i¼2 �̂

2
tþ1 tj

q
is the volatility during the life

of the option.
If the straddle price forecast is greater than

the market straddle price, the straddle is bought.
If the straddle price forecast is less than the market
straddle price, the straddle is sold:

If C
ð�Þ
tþ1 tj þ P

ð�Þ
tþ1 tj4P

ð�Þ
t þ C

ð�Þ
t

) The straddle is bought at time t ð7Þ

If C
ð�Þ
tþ1 tj þ P

ð�Þ
tþ1 tj5P

ð�Þ
t þ C

ð�Þ
t

) The straddle is sold at time t ð8Þ

The rate of return from straddle trading is:

where X denotes the transaction cost. We assume

that the straddles are traded only when the

absolute difference between the forecast and the

actual straddle price exceeds the amount of

the filter, F. Otherwise, agents are assumed to invest

at the risk free rate.

NRTt ¼

Ct þ Pt � Ct�1 � Pt�1 � X

Ct�1 þ Pt�1
, if C

ð�Þ
t t�1j þ P

ð�Þ
t t�1j � Ct�1 � Pt�14F

Ct�1 þ Pt�1 � Ct � Pt � X

Ct�1 þ Pt�1
þ rft , if Ct�1 þ Pt�1 � C

ð�Þ
t t�1j � P

ð�Þ
t t�1j 4F

rft, otherwise,

8>>>><
>>>>:

ð9Þ
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V. Datasets

The data set consists of 1064 S&P500 stock index
daily returns in the period from 14 March 1996 to
2 June 2000. A rolling sample of constant size equal
to n¼ 500 is considered. Hence, the first one-step-
ahead volatility prediction, �̂2tþ1 tj , is available at time
t¼ 500, or on 11 March 1998. The use of a restricted
sample size incorporates changes in the trading
behaviour more efficiently.2

The S&P500 index options data were obtained
from the Datastream for the period from 11
March 1998 through 2 June 2000, totally 564
trading days. Proper data are available for 456
trading days. In order to minimize the biasedness
of the BS formula, only the straddle options with
exercise prices closest to the index level, maturity
longer than 10 trading days and trading volume
4100 were considered. Practice has shown that the
BS pricing model tends to misprice deep-out-of-
the-money and deep-in-the-money options, while it
works better for near-the-money options (see, e.g.
Daigler, 1994, p. 153). Also, a maturity period of
length no shorter than 10 trading days is
considered to avoid mispricings attributable to
causes of practical as well as of theoretical nature.

VI. Results

The day-by-day rates of return are reflective of the
corresponding predictive performances of the
models. We have on the one hand traders who
always choose to use one and the same ARCH model
for their forecasts and traders who at each point
in time choose to use the ARCH model suggested by
the SPEC algorithm on the other.

There are 85 traders and each trader employs an
ARCH model to forecast future volatility and
straddle prices. For each trader, the daily rate of
return from trading straddles for 456 days is
computed according to Equation 9.3 A transaction
cost of $2 that reflects the bid – ask spread is
considered. Various values for the filter F are
applied, i.e. $0, $1.25, $1.75, $2.00, $2.25, $2.75,
$3.50. For F¼ $3.50, the trader using the
AR(3)GARCH(0,2) forecasts makes the highest

daily profit of 1.35% with a corresponding SD of

15.24% and a t-ratio of 1.89 (or p-value 0.06).
Applying the SPEC model selection algorithm,

the sum of squared standardized one-step-ahead

prediction errors,
PT

t¼1 ẑ
2
t t�1j , was estimated con-

sidering various values for T, and, in particular,

T¼ 5(5)80.4 Thus, it is assumed that there are 16

traders each of which uses on each trading day, the

ARCH model picked by the SPEC algorithm to

forecast volatility and straddle prices for the next

trading day. With a filter of $3.5, the trader

utilizing the SPEC algorithm with T¼ 5 achieves

the highest profit of 1.46% per day with a

corresponding SD of 15.85% and a t-ratio of 1.97

(or p-value 0.05). Even marginally, the SPEC(5)

model selection algorithm generates higher returns

than those achieved by any other trader using only

a single ARCH model.5 Thus, the SPEC model

selection algorithm appears to have a satisfactory

performance in selecting those models that generate

‘better’ volatility predictions.
One might take the view that the SPEC algorithm

would favour the model that produces higher

volatility forecasts. However, comparing the SPEC

algorithm with a model selection algorithm that was

constructed so as to select the model with the

maximum sum of the T most recent estimated one-

step-ahead volatility forecasts (denoted by

MAXVAR) for various values of T revealed that

this is not the case. In none of the cases did the daily

profits achieved by traders using MAXVAR(T)

exceed the profits made by traders using SPEC(T)

for T¼ 5(5)80. Only in an average of 5% of the

trading days did the MAXVAR(T) algorithm pick

the same models as those picked by the SPEC(T)

algorithm.
Considering the squared daily returns as a proxy

for the unobserved actual variance, a set of statistical

criteria to measure the closeness of the forecasts

to the realizations are also estimated:
Squared Error of Conditional Variance (SEVar):

XT
t¼1

�̂2tþ1 tj � y2tþ1

� �2� �
ð10Þ

Absolute Error of Conditional Variance (AEVar):

XT
t¼1

�̂2tþ1 tj � y2tþ1

��� ���� �
ð11Þ

2 See for example Xekalaki and Degiannakis (2005).
3 Because of the large amount of data, tables with all the ARCH models are available upon request.
4 T¼ a(b)c denotes T¼ a, aþ b, aþ 2b, . . . , c� b, c.
5 For any value for the filter, the SPEC algorithm generates the highest returns, but the p-value is the lowest for F¼ $3.5. The
Sharpe ratios, which are available upon request, were also calculated giving similar results.
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Squared Error of Conditional SD (SE Dev):

XT
t¼1

�̂tþ1 tj � ytþ1j j
� �2� �

ð12Þ

Absolute Error of Conditional SD (AEDev):

XT
t¼1

�����̂tþ1 tj � ytþ1j j
����

� �
ð13Þ

Heteroscedasticity Adjusted Squared Error of

Cond. Variance (HASEVar):

XT
t¼1

1�
y2tþ1
�̂2tþ1 tj

 ! !2

ð14Þ

Heteroscedasticity Adjusted Absolute Error of Cond.

Variance (HAAEVar):

XT
t¼1

1�
y2tþ1
�̂2tþ1 tj

�����
�����

 !
ð15Þ

Heteroscedasticity Adjusted Squared Error of Cond.

St. Deviation (HASEDev):

XT
t¼1

1� ytþ1j j
�̂tþ1 tj

� �� �2

ð16Þ

Heteroscedasticity Adjusted Absolute Error of Cond.

St. Deviation (HAAEDev):

XT
t¼1

1� jytþ1j
�̂tþ1 tj

� �����
���� ð17Þ

Logarithmic Error of Conditional Variance (LEVar):

XT
t¼1

ln
y2tþ1
�̂2tþ1 tj

 !2
0
@

1
A ð18Þ

Applying the SPEC model selection algorithm,
the sum of squared standardized one-step-ahead
prediction errors,

PT
t¼1 "̂

2
tþ1 tj =�̂

2
tþ1 tj , was estimated

considering various values for T. Therefore, each of
the model selection criteria is computed considering
various values for T, and, in particular,
T¼ 10(10)80. Selecting a strategy based on any of
several competing methods of model selection
naturally amounts to selecting the ARCH model
that, at each of a sequence of points in time, has
the lowest value of the evaluation function.

In none of the cases, did the daily returns come out
to be higher than the returns achieved by the SPEC
algorithm. Table 1 presents the daily rate of returns
based on the ARCH models selected by the 10-model
selection methods.6 The HAAEVar selection algo-
rithm, for T¼ 40, yielded the highest daily profit
(1.24%) with a t-ratio of 1.65.

VII. Conclusion and Suggestions for
Further Research

The results of our study showed that the SPEC
algorithm outperformed all of the single ARCH
model-based methods as well as a set of other
methods of model selection. This is in agreement
with Xekalaki and Degiannakis’s (2005) findings

Table 1. The net rate of return, computed as in Equation 9, from trading straddles on the S&P500 index based on the SPEC

algorithm and the model selection algorithms presented in Equations 10–18, with $2.00 transaction costs and a $3.5 filter

Model selection method Sample size Mean t-ratio

SPEC T¼ 5 1.46% 1.97
SEVar T¼ 40 0.61% 0.80
AEVar T¼ 60 0.76% 1.03
SEDev T¼ 60 0.74% 0.97
AEDev T¼ 60 0.81% 1.08
HASEVar T¼ 10 1.10% 1.47
HAAEVar T¼ 40 1.24% 1.65
HASEDev T¼ 20 0.90% 1.18
HAAEDev T¼ 30 1.12% 1.45
LEVar T¼ 80 0.75% 1.00

Notes: The column titled sample size refers to the sample size, T, for which the corresponding model selection algorithm leads
to the highest rate of return.

6Detailed tables for the daily rate of return from trading straddles based on the ARCH models selected by the 10-model
selection methods are available upon request.
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from a comparative study of ARCH model selection
algorithms performed on the basis of simulated
options data, who also showed that the SPEC
algorithm for T¼ 5 achieved the highest rate of
return.

The validity of the variance forecasts depends on
which option pricing formula is used. Even if one
could find the model, which predicts the volatility
precisely, it is well known that the BS formula does
not describe the dynamics of pricing the options
perfectly. In future research, the estimation of
ARCH-based option pricing models such that of
Duan (1995) and Heston and Nandi (2000) is
suggested.

The SPEC algorithm does increase the volatility
prediction accuracy and can be considered as a tool
in picking the model that would yield the best
volatility prediction. However, the SPEC algorithm
provides profits significantly greater than 0 under a
perfect framework of no commissions. Only the
bid-ask spread was taken into account.7 Under
realistic transaction charges for a trader and market
impact costs, the daily profits are wiped out. If
someone could really gain 1.46% per trading day

after commissions, the presented results would
make a good case for market inefficiency or at
least for a huge temporary inefficiency.
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