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MODELS LEADING TO THE
BIVARIATE GENERALIZED WARING DISTRIBUTION

Evdokia Xekalaki

ABSTRACT. This paper is concerned with the study
of models that generate the bivariate generalized
Waring distribution. Urn, mixing, conditionality,
STER and exceedance models are considered as well
as models based on the structural properties of

the distribution. The bivariate generalized Waring
distribution is shown to belong to the Pearson's
system of bivariate discrete distributions and

its relationship with bivariate continuous Pearson
distributions is examined. Limiting forms of both

discrete and continuous type are derived.

Introduction.

The bivariate generalized Waring distribution with parameters
a>0, k>0, m>0 and p > 0 (BGWD{aj;k,m;p)) has been studied by
Xekalaki (1977,1984). It is the probability distribution of a
random vector (X,Y) of nonnegative, integer-valued components with
probability function (p.f.) given by
Pl e o™y 11

(L.1)  p, , = PX=x,¥=y) = (at0) ((ypy  (atkimbo) oy x1y!

-

where G(B) = T(a+R)/T(x), o >0 B € R. The p.f. in (1.1) was obtained
as the general term of a bivariate series of ascending factorials
defining a two-dimensional extension of Waring's series expansion of a
function of the form (x—a)zi+m), x>a>0; kym > 0. The probability

generating function (p.g.f.) is

© (ktm)

(1.2) G(s,t) = 7733
(k+m)

Ei(a;k,m;a+k+m+p;s,t% (s,t)el=-1,11x[-1,1]
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where Fl is the Appell hypergeometric function of the first type
defined by

PP Wt
= € raf) r! 2!

Fl(a;b,b';c;z,w) = 2:
r=0

for a,b,b',c-a-b-b' > 0 and (z,w) ¢ [-1,1] x [-1,1]. The random
variables (r.v.'s) X, Y, X | (¥=y), Y {(X=x), X+Y follow univariate
generalized Waring distributions (UGWD) with appropriate parameters.
(The UGWD has been defined by Irwin (1963,1968,1975) and studied by
Xekalaki (1981, 1983a,b).)

The derivation of the BGWD was motivated by a problem in
accident theory to which the univariate version did not provide an
entirely satisfactory solution. This problem was concerned with
providing separate estimates for the variance components corresponding
to random, psychological and external factors that may have contributed
to a given accident situation. The effects of the last two kinds of
factors as measured by the variance components due to them were confound-
ed. Indeed, as it was shown by Xekalaki (1984), presenting the data in
a bivariate form with reference to two consecutive and nonoverlapping
time periods and fitting the BGWD enables one to "measure" these effects
in terms of separate estimates of the corresponding variance components.
Beyond this result and its important implications, the fact that the
marginal and conditional distributions as well as the convolution are
of the UGWD type suggests that the BCWD has potential applications in as
large a number of fields as the UGWD has. (For a detailed account of the
applications of the UGWD, see Xekalaki (1981) and the references therein.)
Naturally then, studying possible models that give rise to the BGWD may
be of interest. The following sections of this paper deal with such
models. 1In particular, urn models, mixing and conditionality models are
considered. Also some derivations of the BGWD are given in terms of STER
and exceedance models as well as a genesis scheme based on a property of
the tail probabilities of this distribution. Further, the BGWD is
demonstrated to be a member of the Pearson system of discrete distribu-
tions and its relationship to the Pearson system of continuous distribu-~

tions is studied. Finally, it is shown that the BGWD tends to the double
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negative binomial distribution and the double Poisson distribution. It
is also shown that by appropriately choosing the scale, it can have
a bivariate beta II distribution (Dirichlet type II or Pearson type
II08) or a bivariate gamma distribution with independent components as

limiting cases.
1. Urn Models.

1.1. Sampling from an urn with three types of balls.

vt

Consider an urn containing 'a' red, 'b' black and 'c'
white balls. One ball is drawn at random and replaced together with
one additional ball of the same colour before the next ball is drawn.
The numbers X of red balls and Y of black balls drawn before the

£th  yhite have the BGWD (£;a,b;c) as their joint distributiomn, i.e.,

Sbta) L) 20 @) 11
(c+£)(b+a) (a+b+£+c)(x+y) x! y!

P[X=x,Y=y] =

Polya's bivariate inverse urn scheme where each sampled ball
is replaced by h+l ©balls of the same colour before the next ball is

drawn, is a more general case, and the bivariate inverse Polya with
b1 by a)

parameters a,b.,b,,h and £ is the same as the BGWD (K;TTETT;E

1’72
1.2 Sampling from an urn with two types of balls.

The urn contains 'a' white and 'b' black balls. One ball

is drawn at random and replaced along with 1 additional ball of the same
colour before the next ball is drawn. The numbers X of black balls
drawn before the first k white balls and Y of black balls drawn
before the next m white balls (and after the first k) have a joint

probability distribution defined by the p.f.

e Do) 11
(a%h) (4 (a+b+k+‘m)(x+y) Xy

PLX=x,Y=y] =

»

To show this let Bi and Wi denote the events {black ball in
the ith drawing} and {white ball in the jth drawing} respectively.
Then,
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P(X=x,Y=y) = P(Bl,B ,B B

22 x’wx+l’wx+2"'"wx+k’Bx+k+1’ x+k+2°

B ity Wty + 1 Vbt y 42 Pietyam

F (BB By B W W W

Bttt Bt 3 Byt Pty

Wotkty+3® * Vahyticam? T 00
. b b+1 b+x-1 a a+l at+k-1 .
ath atb+l """ atb+x~1 atb+x a+b+x+l 7 atb+x+k-1
b+x b+x+1 bt+x+y-1
atbtx+k atb+xtk+l "7 atbixty+k-1
atk a+tk+1 a+k+m-1
atb+xtytk atbtxt+y+k+l 77 atbtxty+kim-1
b a b+1 b+2 b+x-1 . atl at+2 <
atb atb+l a+b+2 at+b+3 *°° atb+x atb+x+l atb+xt2
at+k-1 b+x b+x+1

' atbtxt+k-1 atb+x+k atb4x+k+1

btxty-1 a+k atk+l
T atbtxtkty-1 atb+xt+k+y atb+xtyrk+l
a+k+m-1
*T atbixtytktm-1 T
b a b a
= _(xty)” (kim} (xby) " (ktm)
(a+b)(x+y+k+m) (a+b)(x+y+k+m)

xtk-1\ /y+m-1 b(x+y)a(k+m)
X y (@) ry i)

BGWD (b;k,m3a).

2

8. Mixing Models.

1.2. Beta II mixztures of bivariate negative binomial distributions,

Consider two r.v.'s X and Y whose joint distribution is the

bivariate negative binomial with p.g.f.

g(s,t) = (1+Q (1-)+Q, (1-£))"?, 2,Q.,Q, > 0.
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Let (Ql’Qz) be a Beta II vector with probability density function
(p.d.f.)

T (k+m+p) k-1 m-1 - (k+mtp)

f(Ql;QZ) = m Ql Qz (1+Q1+Q2) s Q15Q2’k9m;p > 0.

Then the distribution of (X,Y) has p.g.f.

G(s,t) = —me) [ [ gkl i 7d(1eq 4o,

)—(k+m+p)
TR T@Tk) 0 *o

x (14Q, (1-8)+0, (1-t))74Q;dq, ,

T (ktmtp) T (atxty) ka+x—l Q1;+y—1
1

pX,Y ST TmMI(o)I(a)x!y! 'I(; j(;

+Q2)—(a+k+m+p+x+y)

x (14Q, do, da,

_ T(ktmtp) T (a+x+y) T (k+x) I (my) T (at+p)
T T mT ()T (a)T (atk+mrp+xty)xty!

?

BGWD (aj;k,m;p).

2.2. Beta I mixtures of bivariate negative binomial distributions.
By applying the simple transformation

Yy

qQ, = s———— , 1 =1,2
i 1+Q1+Q2

to the above-mentioned mixing process we obtain the BGWD as a mixture

on (ql,qz) of the bivariate negative binomial distribution with p.g.f.
e e e VBT o -a
g(s,t) = (1-q,-q,)"(1-q;s-q,t) 7, 3,93,4, > 0, q;+q, < 1,

if 429, have a bivariate beta I (a Dirichlet type I) as joint distri-

bution with p.d.f.

T (kimtp) k-1 m-1

- L{kbmbp) —q.-q P71
£a1:9) = Fiormrey 9 %2 Tyt

where k >0, m >0, p >0, 0 < q; < 1, 1 =1,2, 1i.e.,
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_ F(p+k+m) k-1 m~1 o p+a-1 _ -a
G(s:t) = vy T T (mY d[yr 9 9, (l-q;-q,) (1-q;s-q,t) “dq,dq,
q1+q2<l
9,950

~ BGWD (a;k,m;p).

2.3. Beta II miztures of double negative binomial distributions.

Consider (X,Y) to be a random vector whose distribution is the

double negative binomial with p.g.f.

g(s,t) (1+Q(l_s))_k(]-+Q(l_t))-ma Q > O, k’m > 0'

Assume that Q wvaries and that its distribution is the Beta of

Type II (Pearson Type VI) with p.d.f.

I'(a+p)

——ar) —-(a+p)
r(a)r(p) Q (1+Q) » Q>0, a>0, p>0.

Q) =
Then the distribution of the random vector (X,Y) has p.-g.f. given by

6,6 = Frayars f 0*H(140) ™) (1q(a-6)) F(14a(1-6)) aa,

. D@t T (k) T(mby)  f  atxty-1 - (atp+ictmtxty)
Py = T TR T ) @ (1+Q) 9@

F(a+p)F(k+x)F(m+y)F(a+x+y)F(p+k+m)
F(a)T (p)T (k)T (m) T (atktptmtxty) x!y"

2

BGWD (aj;k,m;p).

This model formed the theoretical basis for the derivation of the

BGWD as an accident distribution by Xekalaki (1984).

2.4. Beta I mixtures of double negative binomial distributions.

The transformation
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applied to the above described mixing process implies the derivation of
the BGWD (aj;k,m;p) as the mixture on q of the double negative binomial

distribution with p.g.f. given by
g(s,t) = (1-9)™(1-q8) “(1-q0) ™, 0 < q <1, k>0, m > 0,

if q 1is a r.v. having the Beta distribution of the first kind (Pearson's
type I) with p.d.f.

T'(a+p)

a-1.. . p-1
F(a)l'\(p) q (1 q) 3 a > 0’ p > 0, 0< q< l'

h(q) =

Then the p.g.f. of the random vector (X,Y) is

1
G(s,t) = F%é%%%%j’ué qa-l(l—q)k+m+p_l(l—qs)_k(l—qt)—mdq

~ BGWD (a;k,m;p).

2.5. Mixtures of Poisson and generalized Poisson distributions.

Bivariate negative binomial distributions result as gamma
mixtures of the Poisson distribution or as Poissons generalized by
logarithmic series distributions. It follows then that the BGWD can
also arise as a mixture of such distributions as indicated by the models
given below (see also Xekalaki (1977)). Note that mixing is denoted by
A while generalizing is denoted by Vv

double Poisson (Al,kz)A AA double gamma (k,m;b-1

,b-l) A Beta II (ajp)
1,72 b

~ BGWD (aj3;k,m;p)

1

double Poisson (Xbl,xbz) A gamma (a;bI biv. Beta IT (k,m;p)

-1
b,7) A
A 2 7 by,by
~ BGWD (a;k,m;p)

s ha) A,  double gamma (k,m;b_l,b_l)
1°72 RS

double Poisson () Beta I (a;p)

A
b
b+l

~ BGWD (a;k,m;0)
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1,.-1

double Poisson (Abl,kbz) A gamma (a;b1 b2 ) c Ac biv. Beta I (k,m;p)

i>72
~ BGWD (a3;k,m;p)

vhere c, = bi/(l+bl+b2), i=1,2,

double Poisson (—Al log(l—e),—)\2 log(1-6)) v log series (8) A Beta I (a;ip)
) 6

~ BGWD (a;Al,Az;p)

double Poisson (Allog(1+e),Azlog(1+6))vlog series (Igé) g Beta 1T (a;p)

~ BGWD (a;Al,AZ;p)

A, biv. Beta I (k,m;p)

Poisson (Alog(1i-6.-6.)) vV biv.log series (6,,0
1 2 1 1,62

2)6

~ BGWD (Ask,m;p)

Poisson (Alog(l+e +62) v

1

) 8
. . 1 2
biv. log series (1+6 57 15098 ) 61?62 Beta 11 (k,m;p)

172 172
~ BGWD (X;k,m;p).

The logarithmic series distributions considered in the above

models are defined by the following p.g.f.'s

g(s) = log(l-ns)/log(l-n), 0 < n < 1 (univariate case)
and

g(s,t) = log(l-nls-nzt)/10g(l—n1—n2), 0<n; <1,1i=1,2
(bivariate case).

Sibuya (1980) provided an alternative unified version of the
first and third models of this subsection in terms of mixing two
independent Poisson distributions by what he calls a bivartate gamma

product ratio distribution, i.e., he considered the following model:
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Z)X Ay biv. gamma product ratio (k,mja;p)

double Poisson (X ,A
1 1’ 2

~ BGWD (a;k,m3p)
where the p.d.f. of the compounding distribution is

A A _(a+p)dt,

T(k)r(m)r(a)r(p) "1 2 (1+t)

- 00 _(x X )t
- - + k -
f(xl’)‘z) _ T'(atp) k-1 m lj(') e 1772 ¢ +mtp-1

a,k,m,p > 0.

2.6. Mixtures of bivariate confluent hypergecmetric distributions.

Let X,Y be nonnegative integer-valued r.v.'s such that their

joint distribution has p.g.f. of the form

®Z(k,m;d;XS,kt)

8(s,8) =~ mdnn
(2.2) 2
) ®2(k,m;d;xs,kt)
= - . k,m,d,: > 0.
lFl(k+m,d,>\)
Here @2 is defined by
> AP vt

v, (a,bscx,y) = 25

200 Sy

o |

and lFl can be obtained from

o

.,a :b.,b_,...,b ;2) =
p’ 172 q 0 (bl)(r)"'(bq)(r) r

for p=q=1. Assume further that X 1is a r.v. having a distribution

(@) (ry--- @) () 2T

¥

(2.3) qu(al,aZ,..

with p.d.f. given by

c c—le—(a+1)l

(a+1) A | (ktm3d;0)

£(A) = ., \,e>0,az0

r(c) 2Fl(k+m,c;d;(a+l)_l)

with 2F1 obtained from (2.3) for q = p/2 = 1. (This is Kemp and
Kemp's (1971) extension of Bhattacharya's (1966) generalized exponential
distribution.) Then the resulting mixed distribution of (X,Y) has p.g.f.

given by
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(a+1)€ Jg Kc_le—(a+1)A¢2(k,m;d;As;At)dk

G(S’t) = -1
I'(ec) 2Fl(k+m,c;d;(a+l) )

i (a+1)° RORONS

r(e) 2Fl(k+m,c;d;(a+l)_l) r,{ d(r+£) r )

(2.4) x.r e—(a+l)klc+r+£—1dl
0
c k, \m r £
_ 1 (r+l) () (D) [s/(atl)]” [t/(atl)]

2Fl(k+m,c;d;(a+1)_l) r,£ d(r+£) T ¢

Fl(c;k,m;d;s(a+1)"1,t(a+1)_1)

Fl(c;k,m;d;(a+1)—1,(a+l)-1)

The BGWD (c;k,m;d-c-k-m) belongs to the family (2.2) for a =0,
c,k,m,d > 0 provided that d-c-k-m > 0. Hence, the BGWD (c;k,m;d-c-k-m)
can be considered as the mixture on A of a bivariate distribution

belonging to the family (2.2) if A has a distribution with p.d.f.

1Fl(k+m;d;)\)
2Fl(c,k+m;d;l)F(c) ’

A Lc-1

£(A) =e " A x> 0,k,myc,d > 0O

provided that d-c-k-m > 0.

Thus,

oo

-1
j(; d)z(k,m;d;ks,)\t)kc

1

-A
F(c)zFl(c,k+m;d;l) e dx BGWD (c:k,m;d-c-k-m).

Note that models 1.1, 2.2 and 2.4 have also been discussed by Janardan
and Patil (1971), Xekalaki (1977) and Sibuya and Shimizu (1981). 1In

addition, model 2.2 has been examined by Mosimann (1963).

3. Conditionality Models.

These are mixing models with a discrete mixing distribution.

3.1. The bivariate negative hypergeometric conditionality model.

Let X, ,X ‘be r.v.'s such that the conditional distri-

1°%20%5%
bution of (Xl’X2)|(Y1=y1’Y2=y2) is the double negative hypergeometric
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with parameters (m,n,yl), (h,Z,yz) and p.d.f. given by

s () (e G

= P(X1=x X, =x.,1Y

where m,n,h,£ >0;PX i ) 1=Y1’Y2=y2) .

laleylyyZ
Let the distribution of (Yl’YZ) be the BGWD (a;mtn,h+L;p).

Then, the distribution of (Xl’XZ) is the BGWD (aj;m,h;p).
To prove the above statement, substitute for p and

P in the relationship
yl’yz

Prxy T V1Y, Prpemylyyeyy Ppyy

Then

m h
P (mrn+n+L) (%) (x,)
X

1] L
xl’ 2 (a+p)(m+n+h+£) Xl-XZ.

* o n £ a
Y17%) Y%, (p+a+m+n+h+£)(yl+y2)(y1~xl).(y2-x2).

x

p(m+n+-£+h)m(xl)h(xz)a(x1+x2)

xltxzf(a+p)(m+n+£+h)(a+m+n+h+ﬂ+p)(xl+x2)

@)y wtoptey
) 11

1]
Y1299 (a+m+n+h+£+p+x1+x2)(yl+y2) vt Y,

0 m h a
(mn+L+h) (xl) (xz) (xl+x2) (D-h:n+h+a+x1+xz)( o+l)

R S
Xpje Xge (p+m+h)(n+£)

(atp) (mrhntatLx )

P (k) ™ (e )" () 2 x,)

t L]
(atp) (mHhx, +3,) XyXye

P (art) HERTRLCHEICD
(a+p+m+h)(xl

1 1
> T o r
(a+p)(m+h) +x2) X %!
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Hence (xl’x2) ~ BGWD (a;m,h;p).

In the case n =£ =1 the converse of the result just proved

is also true as indicated by the following model.

$.2. An identifiability property of the BGWD,

Let (xl’XZ) and (Yl,YZ) be two random vectors such that the
conditional distribution of (Xl,Xz)I(Yl=yl,Y2=y2) is the double negative
hypergeometric with p.f. given by

(—m‘)( -1 )(—h)( -1 )/(—m—l)(-h-l)
P = .
X, %, ly,y B

VR A/ v/ \ %,/ \y, *2 71 72
Then the distribution of (Xl’XZ) is the BGWD (a;m+l,h+1;p) if and only
if the distribution of (Yl,Yz) is the BGWD (a;m,h;p).

The "if" part can be shown using an argument similar to that

used in section 3.1. To prove the "only if'" part, observe that

AN SV (W WIS

where Pr g = P(Xl=r,X2=2), 4 g = P(Yl=n,Y2=k). This is a functional
equation in U k- Since (Xl’XZ) ~ BGWD (a;mtl,h+l;p), it follows from
model 3.1 that one solution for 9,  1is the p.f. of the BGWD

(a;m,h;p), The uniqueness follows if one notes that

el

pr,ﬂ T

55 55 mn h+k
(aq -q* ) =0; r=0,1,2,...
n=r k=g ok mk n h L=01.2....

where q; K is another solution. If Hr 2 denotes the left hand side
» 3
of this equation it follows that

RN AT W Sy WS P

.y qr’2 = q*r 2° r=20,1,2,..., £ = 0’1,2’.'. .

>

il.e
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3.3. The shifted bivariate generalized Waring conditionality model.

Let Xl’XZ’Yl’YZ be discrete r.v.'s such that the conditional
distribution of (Xl,X2)|(leyl,Y2=y2) is the BGWD (a+y1+y2;n,£;p+m+h)
shifted ¥y units in the direction of X and ¥y units in the

direction of x, where a,n,£,m,h,p >0, i.e., the vector

2
(X}, X)) 1 (¥y=y,¥,=y,) has p.g.f.

p
(s,t) = (n+L)

¢ T @R M) (et

XX y. Ly
(3.1 1°72'71072

x Fl(a+y1+y2;n,ﬂ;a+n+£+p+ﬂﬁh+y1+y2;s,t).

Let the distribution of (Yl,Yz) be the BGWD (a;m,h;p). Then the
distribution of (Xl’XZ) is the BGWD (aimin,h+L;p).

Proof. et G (s,t) be the p.g.f. of (X,,X,). Then using (3.1)
Xl’XZ 1°72
and substituting for p , G (s,t) in the formula
YY)  KpXlyysy,

G (s,t) = G (s,t) p
XX 2 Xs%, 197y

’ ¥4,¥
1'% Y137, Y2
we get
P
Gy X (s,t) = " (mth+nt+l)
1°%
vy Yy
st Fl(a+yi+y2;n,l;a+y1+y2+n+£+m+h+p;s,t)a(yl+y2)m(yl)h(y2)
X ] ]
1Yy (@) (imtirey, +y,) 12"
_ _ P(unntp)
(a%0) (mimthe)
x*y) %51y,
2 (x Ax by by ) P ) ) F e )® Tt
s 1Hoty1y,) (3y) (yg) () (xy
1 ) ] 1
X19Xy V1Y, (a+p+m&n+h+£)(xl+x2+y1+y2)x1.xz.yl.yz.

_ _ P(wtnthrt)
(@%0) (inthete)

FD(a;n,m,K,h;a+p+m+n+h+£;s,s,t,t)
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where FD is obtained for r = 4 from Lauricella's r-variate

generalized hypergeometric series of the fourth type defined by

FD(a;bl,bz,...,br;c;xl,xz,...,xr)

T g ) PP @) 2wy O )

Osmi<m C(m +m,+...+m )
. 172 r
1<iz<r
m m, m
X Xy X

p
(mtn+h+L)
G (s,t) =
X% (2*0) (mrintn+p)

Fl(a;m+n,h+2;a+p+mm+h+1f.;s,t) .
Therefore, (Xl’XZ) ~ BGWD {(a;mn,h+L;p).

3.4. The bivariate inverse hypergeometric conditionality model.

Let (Xl’XZ)’(Yl’YQ) be two random vectors with nonnegative

integer-valued components. Assume that the cenditional distribution

of (Xl,Xz) given (Y1=y1,Y2=y2) is the bivariate inverse hypergeometric

with p.f.
) i Bbxy+xy, ety +yy=x.-x,)  (v,\ [y,
Xl’leyl!yZ B(b’c) *

L)

(3.2)

b,C > 0; Xi = 0’1:---’}71; is= 1)2

where B(a,B) = I'(a)T(B)/T(x+B). Assume further that the distribution

of (Yl,Yz) is the BGWD (aj;k,m;p). Then the distribution of (Xl,Xz) is
the BCWD (b;k,m;p) (Janardan, 1973).

8.5. The BGWD as a posterior distribution.

Consider two random vectors (Xl,Xz), (Yl’YZ) with nonnegative

integer-valued components and let (xl’XZ)l(Yl=y1’Y2=y2) be distributed
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as in (3.2). Suppose further that the distribution of (Yl,Yz) is the
BGWD (aj;k;m;p). Then the distribution of the random vector
(Yl—Xl,Yz—Xz)|(X1=x1,X2=x2) is the BGWD (c;k+x1,m+x2;b+p)

(Janardan, 1973).

4. Miscellaneous Derivations.

4.1. The STER model.

Let (Xl,XZ),(Yl,YZ) be random vectors with nonnegative integer-
valued components. Assume that their p.f.'s PL o = P(X1=r,X2=£) and
L]
4. p = P(Yl=r,Y2=£) satisfy the relationship

o
w
=]
|

(4.1) = c

q
B S i Y T
where ¢ 1is the normalizing constant. (The model (4.1) is a bivariate
version of Bissinger's (1965) STER model.) Then the distribution of
(Yl’YZ) is the BGWD (2;1,1;p) if and only if the distribution of
(Xl’XZ) is the BGWD (1;1,1;p) (Xekalaki, 1983c).

4.2. The BGWD as the only distribution with tail probabilities

satisfying a certain condition.

Assume that (Xl’XZ) is a vector of nonnegative integer-valued
components. Then
P(Xl>r,X2=£) = P(X1=r,X2>£) = (ar+b£+1)P(X1=r,X2=£),

r,£ = 0,1,2,...; 0<a<1,b >0
if and only if the distribution of (Xl’x2) is the BGWD (g—;l,;%—l)
(Xekalaki, 1983c).

4.3, The exceedance model.

Suppose that (Yl’YZ""’Yn) is a random sample from some
opulation with a continuous distributi d let Y LY £...5Y
pop c uou ution an I (2) (n)
be the corresponding order statistics. Let j be a fixed integer

number, 1<j<n. Consider sampling once more from the same population
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till the number of the new observations becomes equal to k. Let
(Zl,Zz,...,Zk) be the new sample (n>k). Let i be another integer
number, 1<i<j<n, Denote by X the number of Z's that are less

than Y and by Y the number of Z's that are between Y(i) and

(1)
Y(j)' Then the distribution function of (X,Y) is the bivariate
negative binomial with p.f.

' (k+x+y)

k
W pqu (l—p-Q) s X,y = 0,1,2,...

where the vector

follows the bivariate beta I distribution with p.d.f.

T(h+1) i-1 j-i-1

h-j .
T(DTG-1)T(h-j+1) P (I-p-q) 7, h-j+1>0.

Then the resulting distribution of (X,Y) is the BGWD (k;i,jsh-j-i+1)
(Sibuya and Shimizu, 1981).

5. The BGWD as a Member of the Bivariate Generalization of the

Pearson System of Discrete Distributions.

Many attempts were made to extend the distributions of the
univariate Pearson system to bivariate distributions. Van Uven

(1947,1948) investigated distributions whose p.d.f.'s satisfied

1 2 (x,y) _ L (x.y)
f(x,y) 3x Q; (x,¥)
(5.1)
1 af(ry) _ L&Y
£(x,y) 3y Q, (x,¥)

where Ll,L2 are linear functions in x,y, Ql’QZ are quadratic

functions in x,y, and of - 37f |
Ix3y dyox

The system (5.1) can be obtained as the limit of the follow-

ing pair of difference equations as the lattice width goes to zero.
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Axf(x—l,y) a0+a1x+a2y

f(x-1,y) b0+blx+b2y+b3x(x—l)+b4y(y—l)+b34xy

(5.2)
_ 1yt '
Ayf(x,y 1) i a0+a1x+azy
f(x,y-1) bé +bix+béy+béx(x—1)+bAy(y—l)+b§4xy

where

Axf(x-]-’)’) = f(xg}') - f(x_IQY)

Ayf(x,y-l) f(x,y) - £(x,y-1).

This system of equations defines what is known in the literature as the
Pearson system of bivariate discrete distributions (see Ord, 1972).

The BGWD can be shown to belong to the family of bivariate discrete
distributions defined by the equations (5.2). Indeed, its probabilities
satisfy the following recurrence relations.

Pi 4 (atit+j-1) (k+i-1)

- e g e s = 1923
pi-l,j (atktptmti+i-1)1 j=0,1,2,
and
Pi,i _ (ati+y-1) (whj-1) {2012
Py P - E] s s g ¢ e
pi,j—l (atk+p+mti+j-1) 3 $=12.00
Therefore
BP1-1,5 _ (@D (e =(ormHit(e=Dj 4 _ 1 5
Y — s 2250
Pio1,3 (atktp+m) i+i(i-1)+ij §=0.1.2,...
(5.3) A
3P1,3-1 _ (a=1) (m-D)-(p+k+D) jH(m-1)1 - 0.1.2
— T Y SR WER: , 3192500
Py 4-1 (atk+p+m) J+3 (3-1)+i] = 1.2..0. .
Hence, the BGWD (aj;k,m;p) is a solution of (5.2) for
a, = (a-1)(k-1), a6 = (a-1) (m-1), a; = -{(ptm+l), ai = ~(p+k+1),
a, k-1, a, m-1, b0 b0 b2 b4 b1 b3 0, bl b2 atk+p+m,
b3 = b4 b34 b34 1.
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6. Relation of the BGWD to the Pearson's System
of Continuous Distributions.

Irwin (1975) determined a frequency curve to approximate the
UGWD by equating its slope-to-mean ordinate ratio to %-g£ , Wwhere
f was the p.d.f. of a distribution belonging to Pearson's system. He
called the curve '"the continuous analogue of the UGWD and pointed out

that in general it is of Type VI (Beta 1I).

We now provide a bivariate extension of the slope-to-mean
ordinate method with the aim of determining the continuous analogue of

the BGWD.

Let the probabilities of a distribution on {0,1,2,...} X
{0,1,2,...} be P g» T = 0,1,2,..., £ =0,1,2,... . Define the ratio
of the slope in the direction of r to the mean ordinate at the point
(£-30) by

Pr g7Pro1,8

1
(6.1) R(I-E,K) = 1 .

7{pr,£+pr—l,£}

Similarly, define the ratio of the slope in the direction of £ to the

mean ordinate at the point (r,Z—%) by

pr,ﬂ—pr,l—l

1
(6.2) L(r,l-—i) =7

i{pr,£+pr,£-l}

Then, the continuous analogue ¢(x,y) of the probability
distribution Py v can be defined to be the distribution satisfying

the equations

1 3 1 _ _1
m g ¢(r-—,£) "R(r 2,()
2’
1 d 1, _ L
m 3y ¢(r,£-3) = L(x,L-3)
? 2

or, equivalently,
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¢(I‘ Z) BX ¢(r;’€) = R(r,*@)
(6.3)
T a YD = L

where X = x + %— and Y=y + % .
For the BGWD (aj;k,m;p), using (6.1), (6.2) and (5.3) we obtain

(a-1)(k-1) - (p+m+Dr + (k-1)£

R(r— L) =
r2rr+latks °+‘2“ ptm-3 4, +k 1 £+(——————a'1)2(k‘1)
(6.4)
];&’2_%) - — (a—l)(m—l);;fp+k+l)£-k(mzlzi)( -
224l + [atmt 2R3y py ol (=) (mol) Jo

Therefore, from (6.3), (6.4) it follows that the continuous

analogue is the distribution satisfying the equations

1 9¢ _ (a-1) (k-1) - (p+mt1) X+ (k-1)Y
S p+m 37 o Kol g, (@D (kT
2 2
(6.5)
199 _ (a=1) (m-1) - (p+k+1)Y+ (m-1)X
© 9 2 yvafatm PR3y 4 2ol gy (a-D (@el)
2 ) 2

Obviously ¢ belongs to the Pearson system of continuous
bivariate distributions defined by (5.1). Its exact form cannot be
determined since the roots of the denominator in equations (6.5) are
not rational functions of X and Y. However, it can be seen that
the conditional distribution of X given Y and that of Y given
X are members of the univariate Pearson system and are of type VI
(beta IT). Specifically,

-4, () =4, ()
Xi(Y=y)~ Cy (X+a, (¥)) (Xta, ()
and

-p; (%) —pz(x)
(6.6) Y(X= x) ~ C2(Y+bl(x)) (Y+b2(x))
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where
qz(y)—ql(y)+1
T(ql(y))[al(y)—az(y)]
S N O L I CH AN OB

PZ(X)'Pl(X)+1
T(pl(X))[bl(X)-bz(X)J

2 I(py (x}+1)T(p; (x)-p, (¥)-1)
(k-l)(a+y-l)+(p+m+l)ai(y)
4300 = 5 2, ’ 300 > 2y
i=1,2
(m—l)(a+x—l)+(p+k+l)bi(x)
p;(x) = GENCY , b, (x) > by (x)

i=1,2

and —ai(y), i =1,2 are the roots of the denominator of the first of
equations (6.5) which has been considered as a polynomial in X. The

coefficients bi(x), i =1,2 are defined accordingly.

It would seem possible to obtain the continuous analogue of
the BGWD explicitly if the slope-to-mean ordinate ratios as given by
(5.3) were used instead of (6.1) and (6.2). In that case we would
have the continuous analogue to be the solution of the following

system of differential equations

1 3 o(x,y) = (a-1) (k-1) - (p+mtl) x+(k-1)y
d(x,y) 9x 24 x(xt+y+atk+po+m-1)
(6.7)
1 3 5 ) = (a-1) (m-1)-(p+k+D) y+(m-1)x
o(x,y) ay o7 y (xtytatirptm-T1) '

But, because p+mtk > 0, it is not possible to integrate equations
(6.7) unless k = m =1 whence the continuous analogue is of the form

$(x,y) = Clxrytatp+1)” (PH2)

T (p+2)
I(p) °
(bivariate Beta II (1,13;p) or Dirichlet type II).

where C = (a+p+1)p This is bivariate Pearson type I1IaRB

In the more general case k,m# 1 we can only make inference
about the form of the conditional distributions of X1(Y=y) and

vV|(X=x). In particular,
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K (Y=y) ~ cxP (hatktmroty-1) ~(PHHmHD)

where

I'(ptp+mtl)

p+m
(atkimioty-1D" 7 T (om)

(@]
1l

= (k=1) (aty-1)
P = aficrmbpry-1 -

A similar expression holds for the p.d.f. of Y|(X=x).

7. Limiting Cases of the BGWD.

The purpose in this section is to provide limiting forms for
the BGWD.

It is well known that

. T(n)nu
lim TTE;ET_

n->+o

=1

where o 1is a positive real number and n a positive integer. This

result can be extended over positive real values of n as follows.

Let B be a positive real number. Then,

O =

8
o () 2.¢%
(7.1) lim<¥%§%§7 = lim gt e = 1.

Here we made use of the known result (e.g., see Erdélyi et al.,

(1953), Vol. 1, p. 47) that for large B ,

1 1

5 B- = -1 -2 -3

2 - 2 -
re = e’ e g (1+B—2—+§_8_8_%g%-ocz ")).

THEOREM 7.1. The BGWD (aj;k,m;p) tends to the double negative binomial
. - . a a . - a
distribution (k,m,;;B»,;Ia) 1f p»+ o, a >+ phile +o <1 and

k,m are positive constants.

Proof. Let H denote the set of conditions a + + =, p > + =,
a

E;E»< 1, k,m positive constants. Then, using (7.1),
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k
Lim o Cktm) ) (0" ()

- (a+0)(k+m) (a+k+m+p)(x+y)x!y!

] 1im(—p—) k+tm Lt (-a_)x+y (1+%)... (1+ ﬁ%_l)k(x)m(y)
4 \ate q \af (1+l;_:%)"'(l+k1:‘}g§ti)>‘!y3

PR )
xI  yl \abp ato

which implies that
" k+m xt+y
o s smior - KB e () (3)

Hence the theorem is established.

THEOREM 7.2. The BGWD (a3k,m;p) tends to the double Poisson distribu-
, . ak am .

tion with parameters 0 * aip if a»+o, ko>rte, m>+oo, prtw
while -2~ -0, 2K o 2n

o

ato > a+tp > atp

< 4 o |

Proof. Let H' denote the set of conditions
a ak am
> 4 o > B ey —_— < W e—— < 4 .
m » P te, atp * atp * atp @ Then

a-r+w,k-++ao,

tin ) PGy @) 1 1

- (a+p)(k+m) (a+k+m+o)(x+y) X y!

(7.2)

P a k, .m
(k+m) , (xty) () (y)
= lim 14 T
B T gmy g (aREO) Ry

From (7.1) we have
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k+m

p
lim (lctm) = 1lim L
0 (a+o)(k+m) q a+p
(k+m) log £
= lim e atp
(7.3) H'
_ (ktm)a atp log atp
= lime 2t° 2 P
Hl
_ (k:z)a a:p iog a+p
= P 1im e,
H'
Note that
1 < a_‘F_p. log i-tp— < ia__'u__ .
a p p a
Taking limits under assumptions H' we get
1< lim 22 10g 2*2 <
' P
which implies that
(7.4) 1im 2P 10g 20 -3,
Hl a p
Using (7.3) and (7.4) we have
e _ {ktm)a
(7.5) lim=2 =e 3
"' atp
Moreover,
(7.6)

him G ) 11

¥
g @) XDy

-1 1 x-1 1 -1
YA+ )ee (L TIA+ D)L (1+¥-;]—-)

= lﬁ? atp %'y
(2T
a+p x! y!

1 x+y
( a )X‘*‘Y kX my (l“—a).. L1+ 2
(1+QL0.”(1+EE%%?:%

atp

Then, from (7.2), (7.5), (7.6) we obtain
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_ (kt+m)a x

a+p ak am y
i . <0) = 2K 2am, 151
(7.7) 1}1{1:1 BGWD (a;k,m;p) = e (a p) (a p) /x.y.

which establishes the result.

With the assumption that the scale is at our choice the

following theorems are proved.

THEOREM 7.3. Letting =x ~+ 2 X, ¥ * —a—y s CqsC, positive comstants
¢y Cy 1°72

the BGWD (ajk,m;p) tends to the bivariate Beta II distribution (k,m;p)

if a->+ = .,

Proof. We have o
(E x+2y) &0 Ey)
Lin a’ ° (k+m) €1 © ! €2 1 1
oC1€, (atp) (a+k+mtp) @ Ny B N
as+o 172 (k+m) (_a_x+iy) (Clx). (czy).

a(k-hrrl-l:b)k ax . O ay
2 0 (_c ) (C )
a (k+m) 1 2

=a]f-:-nmclc2 (a+D)(k+m Cata(X+2 )] | .
) Lata ey (ktmrtp ) (ﬂ) (ﬂ)
€1 ©
(1+2%) (1+23Y)
- lim 2 (ctm) 3 (kchmrbp) ¢y (k-1 ¢y’ (m-1)
ES mc c (a+p) L _L
a+r+e 12 (k+m) [a(l+Cl +c2 )](k‘HIH'p) (k) r'(m)
k-l n-1 — (ko
=(cc)-1M—i v (1+X_+L)( )
1%2 TRIT@ (e e e te,
which implies that
lim BGWD (a;k,m;p)
x*ax/cl
y»ay/e,
arte k-1 -1
= (Clcz)-l T‘(II;)(+-?H+L 1) vy (1+_}(_+L) -—(k+m+p).
m)T(p) ¢y c, ey ¢,
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. ax ay .
THEOREM 7.4. Letting x > —~——c1p, V> e with ¢y

constants, the BGWD (ajk,m;p) tends to the uncorrelated bivariate

as finite positive

Gamma distribution with parameters (k,m;l,1) if we let a +» + « first
and then p + + o .

Proof. Applying theorem 7.3 we have

lim ( 1lim BGWD (a;k,m;3p)
p>+e  xvax/c.p

yray/cgo
a-++ oo
. k-1 m-1 - (k4mrtp)
= lin 1 kF( turtp) (L) (_2_) (1+x_+1_)
o> +o plce, TA)T(mT () \cqp c,yp Cip  €9p
k-1 m-1 (c.e )'1 = (ktmrtp)
- (= _Y) 12 limo oMy, LJ,J_)
(Cl) (c2 T(k)T (m) ot oo (k+m) ( C1P  Cyp
But
- (ktm+p) XL
R -k-m x - X ! - 1 2
lim p p (1+——+—L) = lim (1+—+ ) =e .
bt oo (k+m) cyP  Cyp oo cP Cyp
Therefore, from (7.8) we have that
-1 k-1 m1-X-L
(eyep) x ‘1 @
lim ( 1im BGWD (a;k,m3;p)) = TaOT (@) (—) (—L) e
x—>ax/clp prt+ = ™\G €2
yray/cye
ar+o

Thus the theorem is established.

It may be noticed that results analogous to those obtained in

this section have been noted, for the univariate case, by Irwin (19753).
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