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Abstract 

 
 
An overview of the evolution of probability models for over-dispersion is given looking at 

their origins, motivation, first main contributions, important milestones and applications. A 

specific class of models called the Waring and generalized Waring models will be a focal 

point. Their advantages relative to other classes of models and how they can be adapted to 

handle multivariate data and temporally evolving data will be highlighted.  
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1. Introduction  

Data analysts have often to deal with data that exhibit a variability that differs from what they 

expect on the basis of the hypothesized model. The phenomenon is known as overdispersion 

if the observed variability exceeds the expected variability or underdispersion if it is lower 

than expected.   

 

Such differences between observed and nominal variances can be interpreted as brought about 

by failures of some of the basic assumptions of the model. These can be classified by the 

mechanism leading to them. As summarized by Xekalaki (2006), in traditional experimental 
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contexts, they may be caused by deviations from the hypothesized structure of the population, 

due to lack of independence between individual item responses, contagion, clustering, and 

heterogeneity. In observational study contexts, on the other hand, they are the result of the 

method of ascertainment, which can lead to partial distortion of the observations. In both 

contexts, the observed value x  no longer represents an observation on the original variable 

X , but constitutes an observation on a random variable Y  whose distribution (the observed 

distribution) is a distorted version of the distribution of X  (original distribution). 

 

Such practical situations have been noticed since over a century ago (e.g. Lexis 1879; Student 

1919).  The Lexis ratio appears to be the first statistic suggested for testing for the presence of 

over- or under-dispersion relative to a binomial hypothesized model in populations structured 

in clusters. Also, for count data, Fisher (1950) considered using the sample index of 

dispersion for testing the appropriateness of a Poisson distribution for an observed variableY . 

 

The paper is structured as follows. Section 2 introduces the reader to the various approaches 

to modelling overdispersion in the case of traditional experimental contexts. Section 3 

highlights approaches in the case of observational study contexts. Section 4 focuses on the 

case of heterogeneous populations followed by sections 5 and 6, which look into a particular 

type of distribution, the generalized Waring distribution, and its relevance in the context of 

applications under the various scenaria leading to over-dispersion mentioned above.  Through 

the prism of these scenaria, a bivariate version of it is also presented, and its use in applied 

contexts is discussed in section 7. A multivariate version of it is also given, and its application 

potential is outlined in section 8. Finally, sections 9 and 10 present a model for temporally 

evolving data, the multivariate generalized Waring process, and an application illustrating its 

practical potential. 

 

As the field of accident studies has received much attention, and various theories have been 

developed for the interpretation of factors underlying an accident situation, most of the 

models will be presented in accident or actuarial data analysis contexts. Of course the results 

can be adapted in a great variety of situations with appropriate parameter interpretations so 

that they can be applied in several other fields ranging from economics, inventory control and 
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insurance through to demometry, biometry, psychometry and web access modeling, as the 

case is with the application discussed in section 10.  

 

2. Modelling Over - or Under - Dispersion in Traditional Experimental Contexts 

One important, but often ignored by data analysts, implication of using single parameter 

distributions such as the Poisson distribution to analyse data is that the variance can be 

determined by the mean, a relation that collapses by the presence of overdispersion.  If this is 

ignored in practice, any form of statistical inference may induce low efficiency, although, for 

modest amounts of overdispersion this may not be the case (Cox 1983). So, insight into the 

mechanisms that induce over (or under) dispersion is required when dealing with such data.  

Such insight can be gained by looking at the above-mentioned potential triggering sources as 

classified by Xekalaki (2006).  

 

2.1 Lack of Independence Between Individual Responses  

In accident study related contexts, where one is interested in the total number of reported 

accidents 
1

n

i
i

Y Y


  in a total number of accidents, n , that actually occurred, when accidents 

are reported with equal probabilities    1 1 0i ip P Y P Y     , but not independently 

( ( , ) 0)i jCor Y Y   , the mean of Y  will still be ( )E Y np , but its variance will be 

1

( ) (1 ) 2 (1 ) (1 )(1 ( 1))
2

n

i
i

n
V Y V Y np p p p np p n 



  
          

   
 , which exceeds that 

anticipated under a hypothesized independent trial binomial model if 0   (over-dispersion) 

and is exceeded by it if 0   (under-dispersion). 

 

2.2 Contagion 

Another common reason for a variance differing from what is anticipated, is that when the 

assumption that the probability of the occurrence of an event in a very short interval is 

constant fails. This framework is the classical contagion model (Greenwood and Yule 1920; 

Xekalaki 1983a). 
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In data modelling problems faced by actuaries, for example, this model postulates that 

initially all individuals have the same probability of incurring an accident, but later this 

probability changes by each accident sustained.  It is assumed, specifically, that none of the 

individuals has had an accident (e.g. new drivers or persons who are just beginning a new 

type of work), but later the probability with which a person with Y y  accidents by time t  

will have another accident in the time period from t  to t dt  is of the form ( )k my dt . This 

leads to the negative binomial as the distribution of Y  with p.f. 

( ) (1 )kt mt yk m
P Y y e e

y
  

   
 

 with ( ) ( 1)mtE Y k e m    , and 

( ) ( 1)mt mt mtV Y ke e m e   . 

 

2.3 Clustering 

A frequently overlooked clustered structure of the population may also induce over - or under 

- dispersion.   

 

In an accident context again, an accident is regarded as a cluster of injuries: 

 

The number Y  of injuries incurred by persons involved in N  accidents can naturally be 

thought of as expressed by the sum 1 2 NY Y Y Y   
 

of the numbers iY  of injuries 

resulting from the -i th
 
accident, assumed to be i.i.d. independently of the total number of 

accidents N , with mean 
 
and variance 2 . In this case, 

1

( ) ( )
N

i
i

E Y E Y E N


 
  

 
  and 

2 2

1

( ) ( ) ( )
N

i
i

V Y V Y E N V N 


 
   

 
 . 

So, when N  is a Poisson variable with mean ( ) ( )E N V N  , the last relationship leads to 

overdispersion or underdispersion according as 2 2   is greater or less than 1. 

The first such model was introduced by Cresswell and Froggatt (1963) in a different accident 

context whereby each person is liable to spells of weak performance during which all of the 

person’s accidents occur. So, if the number N  of spells in a unit time period is Poisson 

distributed with mean  , and within spells a person can have 0 accidents with probability 
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1 logm p , 1 logm p , 0 1p 
 
and n  accidents ( 1)n   with probability (1 )nm p n , 

, 0m n   the observed distribution of accidents is the negative binomial distribution with 

probability function 
1

( ) (1 )m ym y
P Y y p p

y
   

   
 

. This model, known in the literature 

as the spells model, can also lead to other forms of overdispersed distributions (e.g. Xekalaki 

1983a, 1984a). 

 

2.4 Heterogeneity 

Assuming a homogeneous population when in fact the population is heterogeneous, i.e., when 

its individuals have constant, but unequal probabilities of sustaining an event can also lead to 

overdispersion. In this case, each member of the population has its own value of the parameter 

  and probability density function ( ; )f  .  

So, with   regarded as the inhomogeneity parameter and varying from individual to 

individual according to any continuous, discrete, or finite step distribution ( )G   of mean   

and variance 2 , one is led to an observed distribution for Y  with probability density 

function ( ) ( ( ; )) ( ; ) ( )Y Gf y E f y f y dG  


   , where    is the parameter space. Models of 

this type are known as mixtures. (For details on their application in the statistical literature see 

e.g. Karlis & Xekalaki 2003; McLachlan and Peel 2001; Titterington 1990). Under such 

models, the variance of Y  consists of two additive components, one representing the variance 

part due to the variability of   and one due to the inherent variability of Y  if   did not vary, 

i.e., ( ) ( ( | )) ( ( | ))V Y V E Y E V Y   . This offers an explanation as to why mixture models 

are often referred to as overdispersion models. 

 

It should be noted that a similar idea forms the basis for analysis-of-variance (ANOVA) 

models, where the total variability can be split into additive components, the ‘between groups’ 

and the ‘within groups’ components. In the case of the Poisson ( ) distribution, we have in 

particular that ( ) ( ) ( )V Y E V   .  Based on the fact that in this case, the factorial moments 

of Y  coincide with the moments of   about the origin, Carriere (1993) proposed a test of the 

hypothesis that a Poisson mixture fits a data set.  
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Mixed Poisson distributions were first introduced by Greenwood and Woods (1919) in the 

context of accident studies.  Assuming that an individual’s accident experience |Y   is 

Poisson distributed with parameter   that was varying from individual to individual 

according to a gamma distribution with mean   and index parameter   , they obtained a 

negative binomial distribution for Y  with probability function 

 
1

( ) (1 ) (1 )
yy

P Y y
y

  
     

    
 

 and with mean and variance given 

respectively by ( )E Y   and ( ) (1 )V Y    , where   represents the over-dispersion 

parameter.  

The mixed Poisson process has been popularised in the actuarial literature by Dubourdieu 

(1938) gamma mixed case was treated by Thyrion (1969).  

 

Numerous other mixtures have since then been proposed in the literature for interpreting 

overdispersion in data, such as binomial mixtures (e.g. Tripathi et al. 1994), negative binomial 

mixtures (e.g., Xekalaki 1983a, c, 1984a; Irwin 1975), normal mixtures (e.g. Andrews and 

Mallows 1974) and exponential mixtures (e.g. Jewell 1982). Discrete Poisson mixtures with 

finite step distributions for the Poisson parameter θ have also been proposed, the interest 

being on creating clusters of data by grouping the observations on Y according to some 

criterion (cluster analysis). The number of clusters can be decided on the basis of a testing 

procedure for the number of components in the finite mixture (Karlis and Xekalaki 1999). 

 

2.4.1 Heterogeneity in Mixture Models Treating the Parameter θ as the Dependent 

Variable in a Regression Model 

Heterogeneity in models with explanatory variables can be modelled, by assuming that Y  has 

a parameter   varying from individual to individual according to some regression model 

( ; )x     , where x  is a vector of explanatory variables,   is a vector of regression 

coefficients,   is a function of a known form and   has some known distribution.  Such 

models are known in the literature as random effect models and have been extensively studied 

within the broad family of Generalized Linear Models. As a simple example in the case of a 

single covariate, say X , consider data iY , 1, 2, ... ,i n  coming from a Poisson population 

with mean   determined by log x       for some constants ,   and with   having a 
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distribution with mean 0 and variance say  . In this case, the marginal distribution of Y  is no 

longer the Poisson distribution. It is a mixed Poisson distribution, with some mixing 

distribution ( )g   clearly depending on the distribution of  . In particular, 

( )( ) ( )x

t
Y Poisson te g t    where t e .  

 

Negative Binomial and Poisson Inverse Gaussian regression models have also been proposed 

as overdispersed alternatives to the Poisson regression model (e.g. Lawless 1987; Dean et al. 

1989; Xue and Deddens 1992). The case of a two finite step distribution, the finite Poison 

mixture regression model of Wang et al.’s (1996) results. The similarity of the mixture 

representation and the random effects one is discussed in Hinde and Demetrio (1998). 

 

In meta-analysis contexts, overdispersion (or underdispersion) refers to variance inflation (or 

deflation) relative to that anticipated by the fixed effects model. Two possible causes of such 

phenomena are a population structure in clusters or mixing resulting in a compound 

distribution. Kulinskaya and Olkin (2014) proposed approaching the problem of specification 

of a random effects model in meta-analysis in terms of a multiplicative model for the 

distribution of the effect size parameters that allows inflation or deflation. The model 

considered was motivated by overdispersion induced by intra-class correlation in the model 

assumed for the distribution of the i-th effect size estimate. In particular, the variance of the 

estimator î  of the effect size parameter i  in the i-th study is assumed to be of the form 

 2 2
ˆ 1 ( )
i

i in


     , where ( )in  are some known functions of the sample sizes in , 2
i  is 

the within the i-th study variance, 1, 2, ...,  i k  and   is interpreted as an intra class 

correlation parameter. 

 

2.4.2 Estimation and Testing for Overdispersion under Mixture Models 

The structure of mixture models, including random effect models, entails different forms of 

variance-to-mean relationships. So, viewing the mean and variance of Y  as represented by 

( ) ( )E Y   , and 2( ) ( ( ), )V Y      respectively for some parameters ,   a number of 

estimation approaches have been proposed in the literature based on moment methods (e.g. 

Breslow 1990; Lawless 1987; Moore 1986) and quasi or pseudo likelihood methods (e.g. 
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Davidian and Carroll 1988; McCullagh and Nelder 1989; Nelder and Pregibon 1987). The 

above representation for the mean and variance of Y  allows also estimation in the case of 

multiplicative overdispersion as in McCullagh and Nelder (1989).  

 

Testing for the presence of overdispersion or underdispersion, on the other hand, can be done 

by means of asymptotic arguments. Let ( ; )f y   denote the density function of a random 

variable Y  in the initial model. Cox (1983) showed that, under regularity conditions, the 

density of y  in the overdispersed model, ( )Yf y , admits a representation of the form 

2
2

2

( ; )1
( ) ( ( ; )) ( ; ) (1 )

2Y

f y
f y E f y f y n

 


  



   


, with ( )   , 2 ( )V   and 

  is the parameter space. This in turn implies that ( )Yf y  can be put in the form 

( ; )(1 ( , ))f y h y    , where 
2 2

2

log ( ; ) log ( ; )
( , )

f y f y
h y  


 

 
 

  
    

. 

This representation entails overdispersion if 0  , underdispersion if 0   and, of course, 

none of these complications if 0  . Cox (1983) suggested a testing procedure for the 

hypothesis 0  , which can be regarded as a general version of standard dispersion tests. 

 

2.5 Zero Adjusted Models 

It would be interesting to note that another aspect of the population structure that is often 

responsible for the phenomenon of over-dispersion or under-dispersion is the presence of an 

excess or a scant number of zeros. Though the models discussed in sections 2.3 and 2.4 may 

capture over-dispersion or under-dispersion rather well, they cannot capture excess or scarcity 

of zeros. In the literature, this question has been addressed by two types of models known as 

zero-inflated (or zero-deflated) models, and hurdle models. A unified representation of the 

models is provided by {0}( ; ) ( ) (1 ) ( )Yf y I y f y     , where Y  is the count variable, 

{0}( )I   is the indicator function and   is a constant, whose values, if in (0,1) render a hurdle 

model for  (0) 0Yf  , a zero-inflated model for (0) 0Yf  , while negative values of it render a 

zero-deflated model. 
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Obviously,   can be interpreted as the proportion of excess zeros in the case of the first two 

models and the above representation explains why there can be regarded as having a dual 

nature. They are (finite) mixtures, which account for heterogeneity, while at the same time, 

they are capturing a population structure in two clusters.  However, in the case 0   (zero-

deflation), the model ceases to admit a mixture interpretation.  

 

Zero-inflated and hurdle models have mostly been used for Poisson, generalized Poisson or 

negative binomial count distributions in various contexts (e.g. Ridout et al. 2001; Gupta et al. 

2004; Famoye and Singh 2006). Gupta et al. (1996) proposed a zero-adjusted generalized 

Poisson distribution and studied the effect of not using an adjusted model for zero-inflation or 

-deflation when the occurrence of zeroes differs from the anticipated one. Reviews of such 

models can be found in Ridout et al. (1998), Gschlößl and Czado (2008) and Ngatchou-

Wandji and Paris (2011). 

 

3. Over– or Under–Dispersion in Observational Study Contexts - The Effect of      

the Method of Ascertainment 

Often, in connection with data collection based on observation or on recording values as 

produced by nature, the original distribution may not be reproduced due to various reasons.  

These may lead to partial destruction or partial enhancement (augmentation) of observations.  

The models that have been introduced to deal with such situations are respectively known as 

damage models introduced by Rao (1963) and generating models introduced by Panaretos 

(1983). The distortion mechanism is usually assumed to be manifested through the conditional 

distribution of the resulting random variable Y  given the value of the original random 

variable X . Hence, the resulting (observed) distribution is a distorted version of the original 

distribution that can be represented as a mixture of the distortion mechanism. In particular, in 

the case of damage, ( ) ( | ) ( )
n r

P Y r P Y r X n P X n




     , 0,1, 2, ...r  , while, in the case 

of enhancement, 
1

( ) ( | ) ( )
r

n

P Y r P Y r X n P X n


     , 1, 2, ...r   . 

  

Various forms of distributions have been considered for the distortion mechanism in the 

above two cases. In the case of damage, the most popular forms have been the binomial 
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distribution Rao (1963), mixtures on p  of the binomial distribution (e.g. Panaretos 1982; 

Xekalaki and Panaretos 1983) whenever damage can be regarded as additive (Y X U  , U  

independent of Y ) or in terms of the uniform distribution in (0, )x  (e.g. Dimaki and Xekalaki 

1990, 1996; Xekalaki 1984b) whenever damage can be regarded as multiplicative 

(  Y RX , R  independent of X  and uniformly distributed in (0,1) ). The latter case has also 

been considered in the context of continuous distributions by Krishnaji (1970). The generating 

model was introduced and studied by Panaretos (1983).  

 

Both, the generating model and the damage model offer a perceptive approach in actuarial 

contexts where one is interested in modelling the distributions of the numbers of accidents, of 

the damage claims, and of the claimed amounts. These models become relevant due to the fact 

that people have in general a tendency to under report their accidents, so that the reported 

(observed) number Y  is less than or equal to the actual number X   ( )Y X , but tend to over 

report damages incurred by them, so that the reported damage Y  is greater than or equal to 

the true damage X   ( )Y X . 

 

Another type of distortion is induced by the adoption of a sampling scheme that assigns to the 

units in the original distribution unequal probabilities of inclusion in the sample. As a result, 

the value x  of X  is observed with a frequency that noticeably differs from that anticipated 

under the original density function ( ; )Xf x  . It represents an observation on a random variable 

Y  whose probability distribution is the results of adjusting the probabilities of the anticipated 

distribution through weighting them with the probability with which the value x  of X  is 

included in the sample. So, if this probability is proportional to some weight function, 

( , )w x  , R  , the recorded value x  is a value of Y  having density function 

( ; , ) ( ; ) ( ; ) ( ( ; ))Y xf x w x f x E w X     .  

 

Distributions of this type are known as weighted distributions (see, e.g. Cox 1962; Fisher 

1934; Patil and Ord 1976; Rao 1985). For ( ; )w x x  , these are known as size biased 

distributions. In actuarial data modelling contexts again, the weight function can represent 

reporting bias.  In the context of reporting accidents or placing damage claims, for example, it 
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can have a value that is directly or inversely analogous to the size x  of X , the actual number 

of incurred accidents or the actual size of the incurred damage.  The functions ( ; )w x x    

and ( ; ) xw x    ( 1   or 1  ) are plausible choices.  So, for example, in the case of a 

Poisson ( )  distributed X , these lead to distributions forY that are of Poisson type. In 

particular, the weight function ( ; )w x x   leads to a shifted Poisson distribution with 

probability function 1( ) ( 1)!xP Y x e x    , 1, 2, ...x  , while  the choice ( ; ) xw x    

leads to a Poisson distribution ( ) ( ) !xP Y x e x   ,  0,1, ...x  . The value of the variance 

of the observed variable Y  under the first assumption for ( ; )w x   is 1   and exceeds that of 

X  (overdispersion), while under the second assumption it is   implying overdispersion for 

1   or underdispersion for 1  . 

 

4. Looking Closer into the Case of Heterogeneity 

Assuming a specific form for the distribution of the population that generated a data set 

implies that the mean to variance relation is given for this distribution, e.g. the Poisson 

distribution with a mean to variance ratio equal to unity. As has become obvious from the 

above, this relationship ceases to hold in real data sets however. This being rarely the case, 

flexible families have been sought in the literature by allowing the parameter   of the original 

distribution to vary according to a distribution with probability density function, say ( )g  .  

 

As mentioned before, a density function ( )Xf   is a mixture on the parameter   of the 

distribution function ( ; )f   with some mixing distribution ( )G  , which can be continuous, 

discrete or a finite step distribution, if it can be written in the form 

( ) ( ( ; )) ( ; ) ( )X Gf x E f x f x dG  


   , where   is the parameter space. An appropriate 

choice of a mixing distribution allows its parameter to vary and acts as a means of 

“loosening” the structure of the initial model, thus offering more realistic interpretations of 

the mechanisms that generated the data.  

 

A large number of Poisson mixtures have been developed. (For an extensive review, see 

Karlis & Xekalaki 2003, 2005). The derivation of the negative binomial distribution, as a 

mixture of the Poisson distribution with a gamma distribution as the mixing distribution, 
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originally obtained by Greenwood and Yule (1920) constitutes a typical example. Mixtures of 

the negative binomial distribution have also been widely used in connection with applications 

in a plethora of fields. These include the Yule distribution (1924; Irwin 1941; Xekalaki 1983c, 

1984b) the Waring distribution (Irwin 1963) and the generalized Waring distribution (Irwin 

1968, 1975; Xekalaki 1981, 1983a, 1984a), which contains the Yule distribution and the 

Waring distribution as a special cases. 

 

In what follows, we focus on the generalized Waring distribution and its relevance in accident 

data modeling contexts. 

 

5. The Generalized Waring Distribution 

This was introduced by Irwin (1968) in connection to biological data and later was shown by 

him to arise as an accident distribution (Irwin 1975). It is the distribution with probability 

generating function given by 

 

( )
2 1

( )

( ) ( , ; ; )
( )

k

k

G s F a k a k s
a





  


, , , 0k    

 

with 2 1( , ; ; )F a b c z  denoting the Gauss hypergeometric function    ( ) ( ) ( ) !
x r

r r rr a
a b z c r

 , 

where ( ) ( ) ( )lh h l h    , 0h  , l R .  

 

Irwin’s  starting point was Waring’s expansion (hence the distribution’s name) given by 

( )

0 ( 1)

1 r

r r

a

x a x



 


  , which he then generalized to ( ) ( )

0( ) ( )

1 1

( ) !
r r

rk k r

a k

x a x r



 


  , , 0k  .   

Hence, by multiplying both sides by ( )k , where 0x a    , the successive terms of the 

resulting series could he regarded as defining a probability function, which he termed the 

generalized Waring distribution with parameters , ,k  . In particular, the probability 

function of the generalized Waring distribution with parameters , ,k   is given by 
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( ) ( ) ( )

( ) ( )

1

( ) ( ) !
k r r

r
k r

a k
p

a a k r


 


  

, , , 0k   , 0,1, 2, ...r  , 

where ( ) ( ) ( )lh h l h    .  

 

Notwithstanding the complexity of its structure, this distribution was shown to offer an 

insightful tool in the interpretation of accident data as will be seen below. Among its aspects 

that can be of practical value, is that, as shown by Xekalaki (1983b), it is a discrete self-

decomposable distribution in Steutel and van Harn’s (1979) sense, hence infinitely divisible, 

implying that its probability generating function can be put in the form 

11 ( )
( ) exp

1s

g u
G s du

u
      , where 1 0p p   and ( )g   denotes the probability generating 

function of the distribution with probability function satisfying the recurrence relation  

1

0

1 1 1( )

( )

n

n j
j

n a k n a n k nak a k
q n q

j j j jak a k n

 






                                    
  

 

6. The Generalized Waring Distribution in Relation to Accident Theory 

The hypotheses that have formed the basis of investigations into the occurrence of accidents 

since almost a century ago are  

 

(i) Pure chance, giving rise to the Poisson distribution 

 

(ii) True contagion, i.e. the hypothesis that initially all individuals have the same 

probability of incurring an accident but that this probability is modified by each accident 

sustained.  

 

(iii) Apparent contagion (heterogeneity), i.e. the hypothesis that individuals have constant 

but unequal   probabilities of having an accident - the resultant distribution being a 

compound Poisson distribution (“accident proneness” model). 

 

(iv) The “Spells” Model, i.e each person is liable to periods of time during which the 

person’s performance is weak (spells). All of the person’s accidents occur within those spells. 
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The  numbers of accidents within different spells are independent and independent of the 

number of spells. 

 

As already seen, the negative binomial distribution can be given a an accident proneness and a 

“spells” interpretation in the context of accident theory in terms of a gamma mixed Poisson 

distribution and a Poisson distribution generalized by a logarithmic distribution (Kemp 1967).  

 

Therefore, a good fit of the negative binomial is no help at all in distinguishing among the 

“proneness”, “contagion” and “spells” hypotheses. This is known as the discrimination 

problem between the compounded, contagion and generalized models for the negative 

binomial distribution and has been discussed by Arbous and Kerrich (1951); Bates and 

Neyman (1952); Gurland (1959) and Cane (1974, 1977). For an extensive bibliography on the 

accident hypotheses mentioned, see Kemp (1970). 

 

6.1 Irwin’s “Proneness” Model 

As evident, in all three of the above models, the data are treated as if the individuals under 

observation were exposed to equal environmental risk, a fact criticized by Irwin (1968), who 

suggested a three-parameter distribution, which he called the “univariate generalized Waring 

distribution” (UGWD). He derived this distribution in a framework that allows separately for 

random factors, differences in the exposure of individuals to external risk of accident, and 

differences in proneness. 

 

In particular, his model assumes a non homogeneous population with respect to personal and 

environmental attributes affecting the occurrence of accidents. 

 

Let the distribution of the number, X , of accidents for individuals of equal proneness  , and 

of equal exposure to external risk of accident |  ,  i.e.   for given  ), have probability 

generating function  

 | ( ) exp ( | )( 1)XG s s     

in a unit time interval (0,1) . If the distributions of |   and   in the population at risk can be 

described by the probability density functions (pdf)  
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 1exp( ) ( )k k k      , , 0k   

and  

   1 ( )( ) (1 ) ( ) ( )a aa a          , , 0a    

 

respectively, the pgf of the resulting distribution of accidents will be 

 ( ) 2 1 ( )( , ; ; ( )k kF a k a k s a     , i.e. the univariate generalized Waring distribution with 

parameters a , k  and  , which will be denoted by ( , ; )UGWD a k  . Here, 2 1( , ; ; )F a b c z  

denotes the Gauss hypergeometric function    ( ) ( ) ( ) !
x r

r r rr a
a b z c r

 , where 

( ) ( ) ( )lh h l h    , 0h  , l R . For more information about the UGWD the reader is 

referred to the work of Irwin (1963, 1968, 1975); Xekalaki (1981) and the references therein 

and Xekalaki (1983a). 

 

6.2 The “Contagion” Model 

Xekalaki (1983a), extended the assumptions of the classical contagion model developed by 

Greenwood and Yule (1920) by considering a population of individuals exposed to varying 

accident risk. 

 

In particular, assume that at time 0t   none of the individuals has had an accident. This 

would be true if, for example, with a population of new drivers or of individuals just 

beginning a new type of work. Suppose that during the time period from t  to t dt  a person 

with x  accidents by time t  can incur another accident with a probability of  

 ( ) (1 )k x t dt    (independent of the times of the previous accidents), where k  is a 

positive constant and   refers to the individual’s risk exposure. At 0t  , since 0x  ,  the 

probability of an accident is k dt . Hence, what the model basically assumes is that, initially, 

the probability of having an accident is not the same for each individual, but depends on the 

external conditions; later, the probability is also affected by the number of preceding 

accidents. Under these assumptions and if differences in the exposure to accident risk can be 

thought of as governed by a distribution with probability density function given by 
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   1 ( )( ) (1 ) ( ) ( )a aa v a         , the final distribution of accidents over a unit period of 

time turns out to be ( , ; )UGWD a k  .  

 

The above derivation of the generalized Waring distribution closely relates to a modeling 

approach whereby the distribution of accident occurrences in a time internal (0, )t  is regarded 

as underpinned by a stochastic process and, in particular, by a pure birth process 

 ,  0,1, 2, ...tX t   where the probability of a person to incur an accident in ( , )t t dt , having 

had x  accidents by time t  is  1| ( , ) ( )t t tP X x X x f n t t o t         . 

 

Irwin (1941), followed later by Arbouss and Kerrich (1951), derived the negative binomial 

distribution on the hypothesis solving the associated Kolmogorov forward differential 

equations by a method due to McKendrick (1925). Specifically, assuming that individuals can 

have during the time period from t  to dt , individuals can have 0  accidents with probability 

1 ( , )f x t dt , 1 accident with probability ( , )f x t dt  and  1 accidents with probability 0 , he 

solved the resulting system of Kolmogorov forward difference-differential equations 

 (0, ) (0, ) (0, )P t f t P t
t   


 


 

 ( , ) ( , ) ( , ) ( 1, ) ( 1, )P x t f x t P x t f x t P x t
t     


    


, 1x   

in terms of a single difference-differential equation involving the probability generating 

function ( ; )G s t  of tX  given by  

0

( ; ) ( 1) ( , ) ( , )x

x

G s t s s f x t P x t
t   






 

  ,  

where 
0

( ; ) ( , ) x

x

G s t P x t s 





 . (He obtained this equation by multiplying the i-th equation of 

the system by 1is  , 1, 2, ...i   and summing the resulting equations). 

 

Assuming further that ( , ) ( )f x t k mx   , , 0k m   and subject to the initial conditions 

(1; ) ( ;0) 1G t G s   , he obtained for the distribution of accidents 
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 ( ; ) 1
k m

mt mtG s t e s e 



     , 

i.e. the probability generating function of the negative binomial distribution with parameters 

k m  and   1
1 mte   . 

 

Relaxing Irwin’s implicit assumption that all individuals were exposed to the same accident 

risk, Xekalaki (1981) treated the parameter   as referring to a variable risk exposure 

according to an exponential distribution with density aae  , 0a   and obtained the 

generalized Waring distribution as the accident distribution. In particular,  

 ( )
tXG s   

0

1
k m

a mt mta e e s e d   
 

       

 
 

0

1
1

1

k m k ma kt

mt
a s s

e e d
mt s

  
  

        

 
    

   2 1

( )1
, ; 1;

11 ( )

k m a kt mta s k a kt a kt s
F

mt m mt mt sa kt mt

           
 

 2 1 ,1; 1;
a k a k

F s
a mt m mt m

      
,  

which is the probability generating function of the ( ,1; )
k a

UGWD
m mt

. 

 

This model was considered by Panaretos (1989) for the description of the evolution of 

surnames. Faddy (1997) provided a unifying approach to under- and over-dispersion relative 

to the Poisson distribution within a scheme of a similar nature, which generalizes the simple 

Poisson process that underpins the Poisson distribution. He demonstrated that any count 

distribution can be obtained by a suitable choice of ( , )f x t  and provided an expression for 

the system of Kolmogorov forward differential equations in terms of a matrix-exponential 

function. 

 

Finally, Winkelmann (1995) looked at under- and over-dispersion using renewal theory by 

exploring the link between duration dependence and dispersion. He demonstrated that 

discrepancies between observed and nominal variances are conveyed by a hazard function of 
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the waiting times that is not constant, but instead is a decreasing function of time inducing 

over-dispersion or an increasing function of time inducing under-dispersion. 

 

6.3 The “Spells” Model 

Further, Xekalaki (1983a) considered a variant of the “spells” model due to Cresswell and 

Froggatt (1963) that rejects the presence of proneness and contagion. 

Assume that every individual is liable to spells and that the number of spells in a given time 

period (0, )t  is a Poisson variable with parameter , 0t   . Suppose that no accidents occur 

outside spells and that the probability of an accident within a spell depends on the risk 

exposure of the particular individual. In particular, suppose that within a spell a person can 

have 

or 
 

0 accidents with probability 1 log(1 )

 accidents ( 1) with probability (1 )
n

m

n n m n



 

  


  
, 0 1 log(1 ) , 0m      ,  

where   is the external risk parameter for the given individual. Assume further that the 

numbers of accidents arising out of different spells are independent and independent of the 

number of spells. Then, if differences in the risk exposure can be described by a beta 

distribution of the second kind with probability density function, 

   1 ( )( ) (1 ) ( ) ( )a aa v a         , , 0a   , the resulting accident distribution will have 

probability generating function given by  

 ( ) 2 1 ( )( , ; ; ) ( )a aF a mt a mt s mt        . 

Hence, in a unit time period, the number of accidents follows the ( , ; )UGWD a m  .  

  

It is worth noticing that the form of the distribution of   in the last two models is more 

general than that considered by the proneness model. It is however, a reasonable choice as it 

implies a beta distribution of the first kind (Pearson Type I) for the parameter (1 )q     of 

the negative binomial distribution of  |X  .  

 

6.4 Deciding about the Underlying Model 

It is evident from the above, that three completely different sets of hypotheses give rise to 

exactly the same form of distribution and that while the UGWD may be a plausible model if 
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accident proneness is a accepted as an established fact, a satisfactory fit of it is not to be taken 

as evidence for the validity of the proneness hypothesis. How can we then discriminate?  

 

Statisticians have always been excited to look for ways of discriminating among different 

models that give rise to the same distribution. Most attempts seem to have been concentrated 

on distinguishing between the proneness and contagion models generating the negative 

binomial distribution. The papers by Bates and Neyman (1952) and Bates (1955) cover part of 

the work that has been done on the subject, though they primarily focus on distinguishing 

between different forms of contagion. Shaw and Sichel’s (1971) attempt was on proving or 

disproving proneness by ranking individual accident performance on a scale based on their 

average interval between successive accidents. However, the first systematic study on how 

one can discriminate between the proneness and contagion models of the negative binomial 

distribution appears to be that by Cane (1974).  

 

She demonstrated, however, that one cannot distinguish between the two models, even with 

knowledge of the time sequence of accidents. She demonstrated, in particular, that the 

conditional distribution of the times, it , 1, 2, ...,i n  at which accidents occurred in a time 

period (0, )T  is the same in both cases, namely that of an ordered sample from a uniform 

distribution over (0, )T  with probability density function  ! nn T  . In fact, this is the case for 

any compound Poisson accident distribution whose compounding distribution has finite 

moments (Cane 1977), hence also for the ( , ; )UGWD a k  .  

 

This implies that the availability of information on the times of the occurrence of accidents is 

not sufficient to guide one’s choice between the proneness and contagion models. 

However, as demonstrated by Xekalaki (1983a), there appears to exist a possibility in the 

framework of the Spells model. Consider, in particular, the problem of finding the joint 

distribution of times it , 1, 2, ...,i n  of accidents by individuals with n  accidents in a unit 

period of time under the spells model. For fixed  , accidents occur as events in a generalized 

Poisson process: 
( )

1

( )
N t

i
i

X t Y


  ,   ( ) ( )N t Poisson t , where 0  , 0t   and  iY  are 

identically and independently distributed with probability density function given by 
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   1 ( )( ) (1 ) ( ) ( )a aa v a         , , 0a   . Consequently, the required probability 

function can be written as  1(1 ) ( ) 1

0
1

(1 ) (1 ) ( )n i i

n
m t m t t

i
i

m dt dH     
     



 
  

 
 , with ( )H   

denoting the distribution function of the beta distribution of the second kind defined as above. 

Hence, the required probability is ( ) ( )
1

( )

( )
...

( )

n
a n

n
a n

m a
dt dt

m

 
  

  
   

. Therefore, conditional on n  

accidents during a time period from 0 to 1, the joint pdf of it , 1, 2, ...,i n , is 

( )!( ) ( )n
nn m m  . 

The obtained form differs from that arising under the proneness and contagion models. This 

fact is itself is very interesting as far as establishing the presence of spells is concerned, as it 

implies the following: if an observed accident distribution of the UGWD type has arisen from 

the spells model, the time intervals (0, )it , 1, 2, ...,i n , given a total of n  accidents, will be 

jointly distributed with the above density function. Any departure from this distribution is, 

then, evidence against the spells model. Of course, if on the available evidence one has to 

reject this form in favor of that obtained by Cane, then one is faced again with the question: 

“proneness or contagion?” This cannot be answered by studying the distribution of it . 

 

6.5 What Does Irwin’s accident Model Offer Beyond a Good Fit to the Data?  

The innovation brought by Irwin’s accident proneness model does not merely lie in the better 

fit it provides to accident data, but in the possibility of partitioning the total variance 2( )  

into three additive components due to proneness 2( ) , liability 2( )  and randomness 2( )R  

thus,  

2 2 2 2 2
Rk       , 

where 

2 1 1( 1)( 1) ( 2)ak a        2 1 2 1( 1) ( 1) ( 2)a a           

2 1( 1)R ak     2 2 1( 1)( 1)( 1) ( 2)ak a k            . 

 

There is still, however, a problem due to the fact that the ( , ; )UGWD a k   is symmetrical in a  

and k  ( ( , ; ) ( , ; ))UGWD a k UGWD k a  . Hence, although one may consider that 2 2 2k    
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represents the variance component due to all non-random factors, the mathematics alone 

cannot determine whether 2
  represents the liability component and 2 2k   the proneness 

component or vice versa. As a consequence, distinguishable estimates for the non-random 

variance components 2
  and 2

  cannot be obtained unless subjective judgement is made. 

This problem was addressed by Xekalaki (1984a) with the introduction of her bivariate form 

of the generalized Waring distribution. 

 

7. The Bivariate Generalized Waring Distribution 

Generalizing further Irwin’s (1963) generalization of Waring’s expansion, we have for 

, , 0k m a  , 

( )

1

( ) k mx a 
 ( )

0 0 ( ) ( )

( 1) 1 1

! ( )
r r

r k m

a

r x x k r




 

  
      



 






 

 ( )

0 0 ( ) ( )

( 1) 1 1

! ! ( )

r
r r

r k m

a

r x x k r

 


 


  

 


 

 
 

 ( ) ( ) ( )

0 0 ( )

1 1

! !
r r

r k m r

a k m

x r

 


    

   

  
 

 

If x a , the above series is convergent. Then, by letting 0x a     and multiplying both 

sides by ( )k m  , leads to a double series of positive terms converging to unity.  The general 

term of the series therefore can be regarded as defining a bivariate discrete probability 

distribution with probability function 

( ) ( ) ( ) ( )
,

( ) ( )

1 1

( ) ( ) ! !
k m r r

r
k m r

a k m
p

a a k m r


 
 

 


   

 


 
, , , , 0a k m   ; , 0,1, 2, ...r   . 

In the remainder of the paper, we refer to this distribution as the bivariate generalized Waring 

distribution with parameters , ,a k m  and   and we denote it by ( ; , ; )BGWD a k m  . 

 

7.1 The BGWD in Relation to Accident Theory 

Assume that individuals of proneness   and liability |i   for a period i  of observation 

incur, over two non-overlapping time periods, accidents ,X Y  according to a double Poisson 

distribution  
1 2( , )| , , 1 2( , ) exp ( | )( 1) ( | )( 1)X YG s t s t          , 1 2, 0   . Assume further 
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that the liability parameters 1 |  , 2 |   are independently gamma distributed  with densities 

((i )i )1ei |i

i 1, 1 k  , 2 m  , 0  , whence for individuals with the same proneness 

ν, but varying liabilities, the numbers of occurring accidents over the two periods are jointly 

distributed as the double negative binomial with probability generating function 

   ( , )| ( , ) 1 (1 ) 1 (1 )
k m

X YG s t s t        . 

Letting now the proneness parameter   be beta distributed with density function 

   1 ( )( ) (1 ) ( ) ( )a aa v a         , , 0a   , the probability generating function of the 

joint distribution of accidents over the two periods takes the form 

 

( , ) ( , )X YG s t    1 ( )

0

( )
(1 ) 1 (1 ) 1 (1 )

( ) ( )

k ma aa
s t d

a
     


     

     
    

 ( )
1

( )

( ; , ; ; , ) ~ ( ; , ; )
( )

k m

k m

F a k m a k m s t BGWD a k m
a


 






   


, 

  

where    1 ( ) ( ) ( ) ( ), 0
( ; , ; ; , ) ! !r s

r s r s r sr s
F a b c d u v a b c u v d r s


 

   is Appell’s hypergeometric 

series and ( ) ( ) ( )h l h l h    , 0h  , l R . 

Regarding  separate estimation of the contribution of proneness, liability and randomness in a 

given accident situation over a period of observation whenever proneness is accepted as an 

established fact, Xekalaki (1984a) showed  that rearranging the observed distribution in two 

non-overlapping sub-intervals and fitting the ( ; , ; )BGWD a k m   to the resulting bivariate 

accident distribution does enable separate estimation of the variance components. This is 

demonstrated in Table 1.  

 

Further models leading to the BGWD provided by Xekalaki (1984c), provide the framework 

within which one can also obtain the BGWD as an accident distribution under the contagion 

and the spells accident theories. 

 

Table 1. Estimators of the components of the variance of the generalized Waring 

distribution 
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8. The Multivariate Generalized Waring Distribution 

The n-variate version of the genaralized Waring distribution introduced and studied by 

Xekalaki (1986) is also obtained as an inverse factorial distribution. Its probability generating 

function is given by  
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with  1; ,..., ; ;D nF a t    denoting Lauricella’s hypergeometric function given by 
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The probability function of it is given by   
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and its probabilities are related by the following first order recurrences, which facilitate  their 

computation  
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,   0,1, 2, ...l  ;   1, 2, ...,i n . 

 

An interesting aspect of the bivariate and multivariate versions of the generalized Waring 

distribution is that their marginal distributions (conditional and unconditional) as well as 

their convolution are of the same form (UGWD’s), properties that exhibit a symmetry 

analogous to that existing in the case of the multivariate normal distribution. Further, the 

generalized Waring distribution is self-decomposable (Xekalaki 1983b) 
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9. The Generalized Waring Process (gWp) 

Looking into how temporally evolving data from the wide spectrum of application contexts 

that can reasonably be viewed from the perspective of the frameworks discussed in sections 6, 

7 and 8 can be treated, Xekalaki and Zografi (2008) defined and studied the generalized 

Waring process. In establishing its definition, the structural properties of both the bivariate 

and the multivariate versions of the generalized Waring distribution played a significant role. 

This process, analogously to the case of Poisson and Pólya processes, which can be obtained 

as limiting cases of it, was shown to be a Markov process.  

 

Let  ( ), 0N t t   be a counting process. This is said to be a generalized Waring process with 

parameters , , 0a k   , denoted by ( , ; )gWp a k  , if (i) (0) 0N  , (ii) ( )N t  is a Markov 
process, and (iii) ( ) ( )N t h N t   has the generalized Waring distribution with parameters 

, ;a k   for 0h  , 0t  . The process starts at 0, it has stationary increments and  
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i.e., ( )N t  has a generalized Waring distribution with parameters , ;a kt  . 

 

The transition probabilities of the generalized Waring process are given by  
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with the last equality  indicating that the generalized Waring process is a non-homogenous 

Markov process. Its mean and variance are respectively 
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Note that since the generalized Waring process is a stationary process and its mean is of the 

form  ( )E N t t , the above formula implies that its  intensity is ( 1)ak   . Its variance 

can be split into three additive components, thus 

  2 2 2 2
( )( ) ( )t RVar N t kt        

with the liability and random components dependent on time. In particular, 

2 1 1
( ) ( 1)( 1) ( 2)t akt a       ; 2 2 1( 1)( 1) ( 2)a a         ; 2 1( 1)R akt    .  

 

9.1 The Generalized Waring Process in an Accident Proneness Context  

We consider a population which is inhomogeneous with respect to personal and 

environmental attributes affecting the occurrence of accidents. The terms “accident 

proneness” and “accident liability” are again used to refer respectively to a person’s 

predisposition to accidents, and to a person’s exposure to external risk of accident with the 

conditional distribution of the random variable   given   describing differences in external 

risk factors among individuals. Liability fluctuations over a time interval ( , )t t h  depend on 

the length h  of the interval and are described by a distribution for |   with probability 

density function 1 ( ) ( ) ( )kh h khe h kh      . Allowing further the parameter   have a beta 

distribution of the second kind with parameters a  and   and density function   given by  

 1 ( )( ) ( ) (1 ) ( ) ( )a aa a             , , 0a   , we obtain for the distribution of the 

number of accidents ( )N t :   
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and  
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So, the process arising in the context of this model, satisfies the defining conditions of the 

generalized Waring process. 
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9.2 The Generalized Waring Process in the Context of a Spells Model 

Xekalaki and Zografi (2008) showed that the generalized Waring process could also be used 

in modeling temporally evolving data in the context of a spells model. Assume again that each 

person is liable to spells and that no accidents can occur outside spells. Let ( )S t , 0,1, 2, ...t  , 

the number of spells up to a given moment t , be a homogeneous Poisson process with rate 

k m , 0k  , the number iX  of accidents within a spell i  be a random variable with a 

logarithmic series distribution with parameters m  and   and probability function given by 

( )
1

n

i

m
P X n

n




     
, 1n   with ( 0) 1 log(1 )iP X m     , 0  , 0 1 log(1 )m    ,  

and the numbers of accidents arising out of different spells be independent and independent of 

the number ( )S t  of spells. Here   is regarded as the external risk parameter, too, which they 

assumed varying according to a beta distribution of the second kind with parameters a  and   

and probability density function given by  1 ( )( ) (1 ) ( ) ( )a aa a          , , 0a   . 

They then showed that the above framework leads to a process conforming with the postulates 

of the generalized Waring process, thus demonstrating its potential application in the context 

of the Spells model.  

 

10. An Application: Modeling the Counting Process  ( ), 0N s s   Associated with the  

 Access Pattern of a Web Site 

As an illustration of the application potential of the generalized Waring process in other fields 

by appropriately adjusting the concepts and terminology used in this paper so as to have 

natural interpretations, we outline an example of a model for temporally evolving data on web 

access patterns provided by Xekalaki and Zografi (2008).  

 

In this context,  ( ), 0N s s   is the counting process associated with the access pattern of a 

web site, where, for any 0t  , ( )N t  represents the number of visits that the web pages on this 

particular site get within the interval (0, )t . Note that the generalized Waring distribution was 

cited in Ajiferuke et al. (2004) as used by them to fit observed website visitation data for a 

given period, i.e, to model counts 0( )N t  of web visits on a given fixed time interval 0(0, )t . 
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Except for chance, visits to a web site can be regarded as affected by the intrinsic appeal of 

the particular site to web users (corresponding to proneness) as well as by exogenous factors 

(corresponding to external factors) such as, links provided by other sites to the particular site, 

how well the site is advertised etc. 

 

Letting   denote the intrinsic factors and |   the exogenous factors. Then assuming that 

( ) |N t   follows a  ( )Poisson t  distribution, where ( )t t   with |   following a gamma 

distribution with density 1 ( ) ( ) ( )kt t kte t kt      , and with   following a beta  distribution of 

the second kind with density  1 ( )( ) (1 ) ( ) ( )a aa a          , , 0a   , then the 

unconditional distribution of ( )N t  is the ( , ; )GWD a kt  , i.e. the process  ( ), 0N t t   is a 

generalized Waring process. 

 

10.1 The Data 

The log files representing the hits on an e-shop site for the period from March 31, 2006 to 

April 30, 2006 have been used to fit this model. (A log file typically contains information on 

the times of visits per IP address per day). On the basis of such log files, the visits per day 

made by each of 468 IP addresses to a web site during the above period were enumerated 

yielding 468 paths of visits ( )i jN t  made by IP address i  up to and including time jt  denoted 

by  ( ), 1, 2,..., 468; 1,2,...,31i jN t i j  .  

 

Moment estimates of the parameters of the generalized Waring process were obtained 

employing an estimation procedure for spatial point process data termed in the literature as 

the centered reduced moment method. The method introduced and studied by Ripley (1976, 

1977) utilizes the intensity of the process and the mean number of further points within 

distance s  of an arbitrary point of the process. In particular, the method utilizes the moment 

estimators   1
ˆ ˆˆ( )E N s s ns h    ,  2
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   , where the quantities 

involved in the above equations represent weights defined, for each value ix  in the collection 
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of points  : 1, 2,...,ix i n  of the process within a time interval of length h , as follows: For 

each ix  in  : 1, 2,...,ix i n  and a given 0s  , consider the interval of center ix  and length s  

and assign to every point jx , j i  in this interval the weight     1
, ,s i j i jx x x x 


 , where 

 ,i jx x  is the number of other points  , ,kx k i k j   of the process that are included in the 

interval of length | |i jx x  and center ix  (see also Diggle and Chetwynd 1991; Chetwynd and 

Diggle 1998, among others). The standard errors of the thus obtained parameter estimators 

can in principle be determined by simulation, but the associated computations are formidable. 

Approximation formulas exist only for the case of homogeneous planar Poisson process, 

while, for the class of stationary Cox process, there is no obvious way to obtain estimable 

expressions as noted by Chetwynd and Diggle (1998). 

 

The observed paths were compared to the corresponding time series of simulated realizations 

of the generalized Waring process over the same time segment. For each IP address, 100 

simulated realizations of the ( , ; )gWp a k  , were obtained and each of the observed time series 

paths was compared to the corresponding simulated ones. On average, the realizations of the 

generalized Waring process exhibited similar structural characteristics, notably recognizable, 

to those of the paths of the observed time series. For illustration purposes, the path of the 

observed time series associated with one of the IP addresses considered is presented in figure 

1. In the graph, the path is superimposed by a sample of three of the 100 corresponding 

simulated realizations of the ( , ; )gWp a k  . Inspection of the graph provides a visual 

appreciation of the degree of similarity in the structural characteristics of the path of the 

observed and the realized time series. 

 

Figure 1. Observed and simulated paths of the gWp(3.87, 0.83; 4.21) corresponding to the 

selected IP address (Xekalaki and Zografi’s (2008) figure 6.3). 

 

Following Lewis (1972), Brillinger (1978) and Andersen et al. (1993), the closeness of the 

observed and realized time series was also checked using diagnostic plots based on the 

inverse-intensity residuals computed for each value jx  in the collection of points 



 29 

 : 1, 2,...,jx j n  of the process given by    1
ˆ ˆ ˆ, ( ) ( )

j
i j

j

j i RB
x B

R B x I x dx


  




    where 

(0, )j jB x ,   1ˆˆ ˆˆ, ,a k 


 ,  ˆˆ( ) ,x x    is the fitted intensity and ( )
R

I    is the indicator 

function. These plots exhibit similar results. The plot corresponding to the data associated to 

the IP address considered is shown in Figure 2. 

  

Figure 2. Plot of inverse-intensity residuals corresponding to the selected IP address 

(Xekalaki and Zografi’s (2008) figure 6.6). 
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Table 1 

Estimators of the components of the variance of the generalized Waring distribution 
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