Under- and
Overdispersion

Very often, in connection with applications, one is
faced with data that exhibit a variability, which differs
from that anticipated under the hypothesized model.
This phenomenon is termed over dispersion if the
observed variability exceeds the expected variability
or under dispersion if it is lower than expected.
Such discrepancies between the empirical variance
and the nominal variance can be interpreted to be
induced by a failure of some of the basic assump-
tions of the model. These failures can be classified
by how they arise, that is, by the mechanism lead-
ing to them. In traditional experimental contexts, for
example, they are caused by deviations from the
hypothesized structure of the population, such as lack
of independence between individual item responses,
contagion, clustering, and heterogeneity. In observa-
tional study contexts, they are the result of the method
of ascertainment, which can lead to partial distortion

of the observations. In both cases, the observed value
x does not represent an observation on the random
variable X, but an observation on a random vari-
able Y whose probability distribution (the observed
probability distribution) is a distorted version of the
probability distribution of X (original distribution).
This can have a variance greater than that anticipated
under the original distribution (over dispersion) or,
much less frequently in practice, lower than expected
(under dispersion).

Such practical complications have been noticed
for over a century (see, e.g. [25, 35]). The Lexis
ratio [25] appears to be the first statistic for testing
for the presence of over or under dispersion relative
to a binomial hypothesized model when, in fact, the
population is structured in clusters. In such a setup,
Y, the number of successes, can be represented as the
series of the numbers ¥; of successes in all clusters.
Then, assuming N clusters of size n, the Lexis ratio,
defined as the ratio of the between-clusters variance
to the total variance Q =n Y\, (pi — p)*/(p(l -
p)) with p; = Y;/n and p = Y/(Nn), indicates over
or under dispersion if its value exceeds or is exceeded
by unity. Also, for count data, Fisher [15] consid-
ered using the sample index of dispersion ) ;_, (¥; -
Y)/Y,where Y = Y i_, ¥;/n for testing the appropri-
ateness of a Poisson distribution for Y, on the basis
of a sample Y;, Y5, ..., ¥, of observations on Y.

Modeling Over or Under dispersion

Analyzing data using single-parameter distributions
implies that the variance can be determined by the
mean. Over or under dispersion leads to failure of this
relation with an effect that practice has shown not to
be ignorable, since using statistics appropriate for the
single-parameter family may induce low efficiency,
although, for modest amounts of over dispersion, this
may not be the case [7]. So, detailed representation
of the over or under dispersion is required. There
are many ways in which these two concepts can
be represented. The most important are described in
the sequel.

Lack of Independence Between Individual
Responses

In accident study-related contexts, the mean and
variance of Y=Y, , Y, the total number of

i=1
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reported accidents in a total of x accidents
that actually occurred, if individual accidents
are reported with probability p = P(Y; =1)=1-—
P(Y; =0), but not independently (Cor(Y;, Y;) =
p #0), will have mean E(Y) =np and variance

VN = V(L ) =xp(-p)+ 2(’5) pp(1 —

p)=xp(1 —p) (14 p(x —1)). The variance of
Y exceeds that anticipated under a hypothesized
independent trial binomial model if p >0 (over
dispersion) and is exceeded by it if p <0 (under
dispersion).

Contagion

Another way in which variance inflation may result
is through a failure of the assumption that the prob-
ability of the occurrence of an event in a very short
interval is constant, that is, not affected by the number
of its previous occurrences. This leads to the classical
contagion model [17, 41}, which in the framework
of data-modeling problems faced by actuaries, for
example, postulates that initially, all individuals have
the same probability of incurring an accident, but
later, this probability changes by each accident sus-
tained. In particular, it assumes that none of the
individuals has had an. accident (e.g. new drivers or
persons who are just beginning a new type of work),
and that the probability with which a person with
Y =y accidents by time ¢ will have another acci-
dent in the time period from ¢ to 7+ dr is of the
form (k + my)dt, thus yielding the negative bino-
mial as the distribution of ¥ with probability function

Pr =y = ("

variance given by pu = E(Y) = k(™ — 1)/m, and
V(Y) = ke™ (™ — 1)/m = pe™, respectively.

e~ % (1 — e™™)¥ and mean and

Clustering

A clustered structure of the population, frequently
overlooked by data analysts, may also induce over
or under dispersion. As an example, in an accident
context again, the number Y of injuries incurred
by persons involved in N accidents can naturally
be thought of, as expressed by the sum ¥ = Y; +
Y> + - - + Yy, of independent random variables rep-
resenting the numbers Y; of injuries resulting from
the ith accident, which are assumed to be identi-
cally distributed independently of the total number

of accidents N. So, an accident is regarded as a
cluster of injuries. In this case, the mean and vari-
ance of ¥ will be E(Y) = E(Y ., ¥;) = uE(N) and
V) = VLY, ¥) = 62EWN) + u’V(N) with g,
o2 denoting the mean and variance of the common
distribution of Y;. So, with N being a Poisson vari-
able with mean E(N) = 6 equal to V(N), the last
relationship leads to over dispersion or under disper-
sion according as % + u? is greater or less than 1.

The first such model was introduced by Cress-
well and Froggatt [8] in a different accident context,
in which they assumed that each person is liable
to spells of weak performance during which all of
the person’s accidents occur. So, if the number N
of spells in a unit time period is a Poisson vari-
ate with parameter 6 and assuming that within a
spell a person can have 0 accidents. with probability
1 —mlog p and n accidents (n > 1) with probabil-
ity m(1 — p)*/n;m,n > 0, one is led to a negative
binomial distribution as the distribution of ¥ with
probability function

P(Y =y)= ("’" +y” N ‘) (- py.

This model, known in the literature as the spells
model, can also lead to other forms of over dispersed
distributions (see, e.g. [4, 41, 42]).

Heterogeneity

Another sort of deviation from the underlying struc-
ture of a population that may give rise to over or
under dispersion is assuming a homogeneous popu-
lation when in fact the population is heterogeneous,
that is, when its individuals have constant but unequal
probabilities of sustaining an event. In this case, each
member of the population has its own value of the
parameter ¢ and probability density function f(-;6),
so that @ can be considered as the inhomogeneity
parameter that varies from individual to individual
according to a probability distribution G(-) of mean
u and variance o2, and the observed distribution of
Y has probability density function given by

fr») =Eg(f(y;0)) = je f(:0)dG@E), D

where © is the parameter space and G(-) can be any
continuous, discrete, or finite-step distribution. Mod-
els of this type are known as mixtures. (For details on
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their application in the statistical literature see [2, 22,
27, 36]). Under such models, V(Y) = V(E(Y|8)) +
E{(V (Y |@)), that is, the variance of Y consists of two
parts, one representing variance due to the variabil-
ity of @ and one reflecting the inherent variability of
Y if 6 did not vary. One can recognize that a sim-
ilar idea is the basis for ANOVA models where the
total variability is split into the ‘berween groups’ and
the ‘within groups’ components. The above variance
relationship offers an explanation as to why mixture
models are often termed as over dispersion models.
In the case of the Poisson (8) distribution, we have
in particular, that V(Y) = E(@) + V (8). More gener-
ally, the factorial moments of Y are the same as the
moments about the origin of #, and Carriere {5] made
use of this fact to construct a test of the hypothesis
that a Poisson mixture fits a data set.

Historically, the derivation of mixed Poisson dis-
tributions was first considered by Greenwood and
Woods [16] in the context of accidents. Assum-
ing that the accident experience X|# of an indi-
vidual is Poisson distributed with parameter 6
varying from individual to individual according
to a gamma distribution with mean p and index
parameter p/y, they obtained a negative binomial
distribution as the distribution of ¥ with probabil-

ity function P(Y =y) = (,u,/y —l;y - 1) {r/Q+

¥)FP (1 + )7, Under such an observed distribu-
tion, the mean and variance of Y are E(Y) = p,
V(Y) = u(l + y), where now y represents the over
dispersion parameter. The mixed Poisson process
has been popularized in the actuarial literature by
Dubourdieu [13] and the gamma mixed case was
treated by Thyrion [37].

A large number of other mixtures have been
developed for various over dispersed data cases,
such as binomial mixtures (e.g. [38]), nega-
tive binomial mixtures (e.g. [19, 40-42]), normal
mixtures (e.g. [1]), and mixtures of exponential
(e.g. [20]). :

Often in practice, a finite-step distribution is
assumed for & in (1), and the interest is on creat-
ing clusters of data by grouping the observations on
Y (cluster analysis). A finite mixture model is applied
and each observation is allocated to a cluster using
the estimated parameters and a decision criterion
(e.g. [27]). The number of clusters can be decided
on the basis of a testing procedure for the number of
components in the finite mixture [21].

Treating Heterogeneity in a More General Way

Extending heterogeneity models for models with
explanatory variables, one may assume that ¥ has a
parameter 8, which varies from individual to individ-
ual according to a regression model 9 = n(x; 8) + ¢,
where x is a vector of explanatory variables, g is a
vector of regression coefficients, # is a function of
a known form and & has some known distribution.
Such models are known as random effect models, and
have been extensively studied for the broad family
of Generalized Linear Models. Consider, for exam-
ple, the Poisson regression case. For simplicity, we
consider only a single covariate, say X. A model
of this type assumes that the data ¥;,i = 1,2,...,n
follow a Poisson distribution with mean @ such that
logd = a + Bx + ¢ for some constants a, § and with
& having a distribution with mean equal to 0 and vari-
ance say ¢. Now the marginal distribution of Y is no
longer the Poisson distribution, but a mixed Poisson
distribution, with mixing distribution clearly depend-
ing on the distribution of £. From the regression
equation, one can obtain that ¥ ~ Poisson(t exp(a +
Bx));g(t), where t = ¢° with a distribution g(-) that
depends on the distribution of £. Negative Binomial
and Poisson Inverse Gaussian regression models have
been proposed as over dispersed alternatives to the
Poisson regression model {10, 24, 45]. If the dis-
tribution of ¢ is a two finite—step distribution, the
finite Poison mixture regression model of Wang et al.
[39] results. The similarity of the mixture repre-
sentation and the random effects one is discussed
in [18].

Estimation and Testing for Over dispersion Under
Mixture Models

Mixture models including those arising through treat-
ing the parameter 6 as the dependent variable in a
regression model allow for different forms of vari-
ance to mean relationships. So, assuming that E(Y) =
w(B), V(¥) = a*(1(B), 1) for some parameters , A,
a number of estimation approaches exist in the litera-
ture based on moment methods (e.g. [3, 24, 28]) and
quasi- or pseudolikelihood methods (e.g. [9, 26, 29]).
The above formulation also allows for multiplicative
over dispersion or more complicated variance param-
cters as in [26].

Testing for the presence of over dispersion or
under dispersion in the case of mixtures can be done
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using asymptotic arguments. Under regularity con-
ditions, the density of Y; in a sample Y, Y2, ..., ¥,
from the distribution of Y is fr(y) = Ee (f(1;6)) =
FOine) + (1/2)0f (B2 f(y: 1e)/3u®) + O(1/n),
where py = E(@), of = E(8), that is, of the form
f(yime) (1+¢eh(y;9)), where h(y;pe) = [8log
F; 116)/ 3 1? + 3% 1og £ (y; mo)/3p>.

This family represents over dispersion if & >
0, under dispersion if £ <0, and none of these
complications if ¢ =0. The above representation
was derived by Cox [7}, who suggested a testing
procedure for the hypothesis £ =0, which can be
regarded as a general version of standard disper-
sion tests.

The Effect of the Method of Ascertainment

In collecting a sample of observations produced by
nature according to some model, the original dis-
tribution may not be reproduced owing to various
reasons. These include partial destruction or enhance-
ment (augmentation) of observations. Situations of
the former type are known in the literature as damage
models while situations of the latter type are known
as generating models. The distortion mechanism is
usually assumed to be manifested through the condi-
tional distribution of the resulting random variable Y
given the value of the original random variable X. As
a result, the observed distribution is a distorted ver-
sion of the original distribution obtained as a mixture
of the distortion mechanism. In particular, in the case
of damage,

P(Y =r)= Z P(Y =r|X =n)P(X =n),

n=r

r=0,1,..., : )

while, in the case of enhancement

P(Y =r)= ZP(Y =r|X =n)P(X =n),

n=1

r=12,... (3)

Various forms of distributions have been con-
sidered for the distortion mechanisms in the above
two cases. In the case of damage, the most popu-
lar forms have been the binomial distribution [33],
mixtures on p of the binomial distribution (e.g., [30,

44]) whenever damage can be regarded as additive
(Y = X — U, U independent of Y), or in terms of
the uniform distribution in (0, x) (e.g. {11, 12, 43])
whenever damage can be regarded as multiplicative
(Y = [RX], R independent of X and uniformly dis-
tributed in (0, 1)). The latter case has also been
considered in the context of continuous distributions
by Krishnaji [23]. The generating model was intro-
duced and studied by Panaretos [31].

In actuarial contexts, where modeling the distri-
butions of the numbers of accidents, of the damage
claims and of the claimed amounts is important,
these models provide a perceptive approach to the
interpretation of such data. This is justified by the
fact that people have a tendency to underreport their
accidents, so that the reported (observed) number ¥
is less than or equal to the actual number X (¥ < X),
but tend to overreport damages incurred by them, so
that the reported damages Y are greater than or equal
to the true damages X (Y > X).

Another type of distortion is induced by the adop-
tion of a sampling procedure that gives to the units
in the original distribution, unequal probabilities of
inclusion in the sample. As a result, the value x
of X is observed with a frequency that noticeably
differs from that anticipated under the original den-
sity function fx(x;@). It represents an observation on
a random variable Y whose probability distribution
results by adjusting the probabilities of the antici-
pated distribution through weighting them with the
probability with which the value x of X is included
in the sample. So, if this probability is proportional
to some function w(x;p), B € R(weight function),
the recorded value x is a value of ¥ having density
function fy(x;6, B) = w(x; B) fr (x; 0)/E(w(X; B)).
Distributions of this type are known as weighted dis-
tributions (see, e.g. [6, 14, 32, 34]). For w(x; 8) = x,
these are known as size-biased distributions.

In modeling data that are of interest to actuar-
ies, the weight function can represent reporting bias
and can help model the over or under dispersion in
the data induced by the reporting bias. In the con-
text of reporting accidents or placing damage claims,
for example, it can have a value that is directly or
inversely analogous to the size x of X, the actual
number of incurred accidents, or the actual size of
the incurred damage. The functions w(x; ) = x and
w(x: B) = B* (B > 1 or B < 1) are plausible choices.
For a Poisson (8) distributed X, these lead to distribu-
tions for ¥ of Poisson type. In particular, w(x; 8) = x



1704

Under- and Overdispersion

Jeads to
e—ﬂe.t—l
P =)= ——— =1,2,...
F=n=0"7 *
(shifted Poisson(8)), “@
while w(x; B) = B~ leads to
—-0p 0B
P¥ =0 =" o1, ..
x!
(Poisson(68)). 35)

The variance of Y under (4) is 1 + & and exceeds
that of X (over: dispersion), while under (5) it is
6B implying over dispersion for 8 > 1 or under
dispersion for 8 < 1.
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