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ABSTRACT 

The generalized Waring distribution is a discrete distribution with a wide 

spectrum of applications in areas such as accident statistics, income analysis, 

environmental statistics, etc.  It has been used as a model that better describes such 

practical situations as opposed to the Poisson distribution or the negative binomial 

distribution. Associated to both the Poisson and the negative binomial distributions 

are the well-known Poisson and Pólya processes. In this paper, the generalized 

Waring process is defined. Two models have been shown to lead to the generalized 

Waring process. One is related to a Cox process, while the other is a compound 

Poisson process. The defined generalized Waring process is shown to be a stationary, 

but non-homogenous Markov process. Several properties are studied and the 

intensity, the individual intensity and the Chapman-Kolmogorov differential 

equations of it are obtained. Moreover, the Poisson and the Pólya processes are shown 

to arise as special cases of the generalized Waring process. Using this fact, some 

known results and some properties of them are obtained. 

 Keywords and phrases:  Pólya process, accident proneness, accident 

liability, Markovian property, stationary increments, Cox process, transition 
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1. Introduction - Basic concepts 

 The Poisson and the Pólya processes have been used in accident theory to 

describe the accident pattern. Under the hypotheses of pure chance, the Poisson 

process with intensity λ  has been proposed as a model that can describe the number 

of accidents sustained by an individual during several years. The Pólya process, 
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which is of negative binomial form, is defined by starting from a Poisson process, 

which then, is mixed with a gamma distribution. It has been obtained as a model, 

which can describe the accident pattern of a population of individuals during several 

years, under the hypotheses of “accident proneness”, i.e. that individuals differ in 

their probabilities of having an accident, which remain constant in time (Newbold, 

1927). Both of these processes satisfy the Markovian property as this is a property of 

the accident pattern, i.e. the number of accidents during the ‘next’ period ( ]t t h, +  

depends only on the number of accidents at the present time t .  

 In this paper, a new process is defined and studied. This process is associated 

with a discrete distribution with a wide spectrum of applications known in the 

literature as the generalized Waring distribution (see, e.g. Irwin, 1975; Xekalaki, 

1983b). Analogously to the case of Poisson and Pólya process, this new process, 

termed in the sequel as the generalized Waring process, is postulated to be a Markov 

process, as shown in section 2. The starting point is a process of negative binomial 

form, but different from a Pólya process. This process is then mixed with a beta 

distribution of the second type (beta II). Further, an alternative genesis scheme 

referring to Cresswell and Froggatt's (1963) spells model is proposed in the 

framework considered by Xekalaki (1983b). Section 3 indicates how the above 

considerations formulate the framework for the definition of the generalized Waring 

process as a stationary, but non-homogenous Markov process. Expressions for the 

first two moments of this process, as well as results on the intensity and the individual 

intensity of it, are also given in section 3 and its transition probabilities and the 

associated forward and backward Chapman-Kolmogorov differential equations are 

derived. In section 4, the Poisson and Pólya  processes are obtained as limiting cases 

of the generalized Waring process. Using this fact, some known theoretical results 

concerning these processes are presented and their transition probabilities and 

associated Chapman-Kolmogorov differential equations are derived in this context. 

Some inferential aspects connected with the mixed negative binomial derivation of 

the generalized Waring process are discussed in section 5. An application in a web 

access modeling context is provided in section 6. Finally, two further genesis schemes 

considered by Zografi and Xekalaki (2001) are presented in section 7.  

The results obtained in the paper are in the context of models that have widely 

been considered for the interpretation of accident data. However, the concepts and 
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terminology used can easily be modified so that the obtained results can be applied in 

several other fields ranging from economics, inventory control and insurance through 

to demometry, biometry, psychometry and web access modeling as the case is with 

the application discussed in section 6. 

2. The basic hypotheses of the generalized Waring process 

2.1 The description of the accident pattern by a Cox process 

In this section, we consider first the assumptions of a Pólya process, developed 

by Newbold (1927). This model considers several individuals exposed to the same 

external risk (e.g. drivers all driving about the same distance within a similar traffic 

environment) and that there are intrinsic differences among different individuals (e.g. 

differences in accident proneness).  Supposing that, the number of accidents up to 

time t , for each individual, conforms with a Poisson process with a “personal rate λ ” 

(λ  stands for the respective accident proneness), and regarding λ  as the outcome of 

a random variable Λ with a gamma distribution with parameters k  and ν , the 

number of accidents ( )N t  at time t , t = 0 1 2, , , ...  defines the Pólya process with 

parameters k and ν  as follows:  

(i)  ( )N 0 0= ,  

(ii) )(tN  is a birth process,  

(iii) ( ) ( )N t h N t+ −  has a distribution defined by the probability function 
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where Λ is a random variable with density u  given by  
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The distribution of the random variable Λ explains here the variation of the 

accident proneness from individual to individual. As noted by Irwin (1968) and 

Xekalaki (1984), the term accident proneness here refers to both, the external and the 

internal risk of accident. It seems more natural to assume that this variation in an 

interval of time ( ]t t h,  + depends on the length h  of the interval, while, in two non-

overlapping time periods, the respective variations are independent. So, now, a 

personal λ , in an interval of time ( ]t t h,  + , is regarded as the outcome of a random 

variable ( )Λ h  with distribution ( )U h , which depends on the interval length h . If 

( )U h  is assumed to be  ( ) ( )( )Γ k h h,1 ν , where ( )k h  and ( )ν h  are  in general some 

functions of h , then, clearly, the number of accidents ( )N t   forms a stochastic 

process of a negative binomial form satisfying the  assumptions   

(i) ( )N 0 0=  

and  

(ii) ( ) ( )N t h N t+ −  has the distribution:  
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It can be shown that  
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Then, using the first assumption, it follows that for any t , ( )N t  has a negative 

binomial distribution with parameters ( )k t  and ( )ttν+1
1 . Hence, one can verify that  
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This tells us precisely that ( )N t  is a Cox Process (see e.g. Grandell, J. 1997, p. 83).  

Assume that the accident proneness varies from individual to individual with a 

mean that does not depend on time. This is equivalent to considering a parameter pair 

( ) ( )( )k h h,  ν  with ( ) ( )k h h⋅ =ν constant . So, letting ( )ν νh h= , and ( )k h kh= , i.e., 
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allowing ( )Λ h  having a gamma distribution that changes with time so that its 

expectation remains constantly equal to νk , we obtain 
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and that ( )N t  is ⎟
⎠
⎞

⎜
⎝
⎛

+ν1
1,ktNB -distributed. 

2.2 An extension of Irwin’s accident model 

This model considers a population which is not homogeneous with respect to 

personal and environmental attributes that affect the occurrence of accidents. In his 

model, Irwin (1968, 1975) used the term “accident proneness” ν  to refer to a person’s 

predisposition to accidents, and the term “accident liability” ( )νλνλ given for    i.e. ,  

to refer to a person’s exposure to external risk of accident. 

The conditional distribution of the random variable Λ  given ν  describes differences 

in external risk factors among individuals. As before, liability fluctuations over a time 

interval ( )t t h, + depend on the length h  of the interval and are described by a 

( )Γ kh h,1 ν  distribution forΛ  ν .  Moreover, assuming independence in two non-

overlapping time periods, the number of accidents ( )N t  given ν  will be a stochastic 

process of a negative binomial form with parameters kt  and
ν+1

1 . This starts at 0 and 

has stationary increments with a distribution given by (2.1.3). Let us further allow the 

parameter ν  of the negative binomial to follow a beta distribution of the second kind 

with parameters a  and ρ ,  i.e. ν  is a random variable with density φ given by  
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obtaining thus for the distribution of the number of accidents ( )N t :   
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In the sequel, we refer to the process defined by ( )N t  as the Generalized 

Waring Process. 

Remark 2.1 

If we consider individuals of proneness ν  and liability λ νi   i = 1 2,  respectively in 

each of two non-overlapping intervals of time, it follows by the model’s assumptions 

that the numbers N N1 ,  2  of accidents incurred by these individuals are jointly 

distributed according to  a double Poisson distribution with parameter ( )λ ν λ ν1 2   , . 

Then, for individuals with the same proneness but varying liabilities, the joint 

distribution of accidents over the two intervals, is the double negative binomial with 

parameters ⎟⎟
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khkh , where h h1 2,   are the respective sizes of these 

intervals. If, further, the proneness parameter ν  is allowed to follow a beta 

distribution of the second kind with parameters a  and ρ , the joint distribution of the 

numbers of accidents over the two intervals is a bivariate generalized Waring 

distribution with parameter ( ) ( )a kh a kh, , ; , ,1 2ρ ρ⎛
⎝⎜

⎞
⎠⎟  (Xekalaki, 1984). Now, it is clear 

that, if a number of non-overlapping intervals greater than two is considered, the joint 

distribution of the numbers of accidents over those intervals, will follow a 

multivariate Generalized Waring distribution (Xekalaki, 1986).  

 

In the sequel, we use the above remark to show that the Generalized Waring process 

resulting from the above generating scheme is a Markov process, i.e. that 

( ) ( ) ( )( )P N t h n N t m N s ns+ = = = ≤     ,  0 s < t,  coincides with ( ) ( )( )P N t h n N t m+ = =   for 

every non-negative integer n m n s ts, ,  0 ≤ < . 

For a proof of this, observe that 

( ) ( ) ( ){ }P N t h n N t m N s ns+ = = = ≤ =  ,  s < t, 0  

( ) ( ) ( ) ( ) ( ) ( ){ }tsnNsNnmsNtNmntNhtNP s <≤=−−=−−=−+ 0,0 ,    

and consider the random vector  
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( ) ( ) ( ) ( ) ( ) ( )( )N t h N t N t N s N s N s t+ − − − ≤ <, , ,0 0 . 

It follows from Remark 2.1 that this vector has a trivariate generalized Waring 

distribution with parameters  , , kα  and ρ , where ( )( )ksstkkhk ,, −= . This is a three 

dimensional special case of Xekalaki’s (1986) multivariate generalized Waring 

distribution whose structural properties imply that the random vector 

( ) ( ) ( ) ( ) ( ) ( )( )0,  NsNsNtNtNhtN −−−+  has a univariate generalized Waring 

distribution with parameters ( ) khtn  ,+α  and kt+ρ , where n(t) is the value of N(t). 

Hence,  
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                              = ( ) ( ) ( ) ( ){ }  0  mNtNmntNhtNP =−−=−+                   

                              = ( ) ( )[ ]     mtNnhtNP ==+ , 

which proves that the generalized Waring process has the Markovian property, i.e. the 

conditional distribution of the future state ( )N t h+  given the present state ( )N t  and 

the past  state ( )N s s t,  0≤ ≤ , depends only on the present state.  

 

2.3 The spells model 

  In the sequel, an alternative scheme generating a process of a generalized 

Waring form is considered. This is a variant of Cresswell and Froggatt’s (1963) spells 

model that has been considered in the paper of Xekalaki (1984). According to this 

model, each person is liable to spells. For each person, no accidents can occur outside 

spells. Let ( )S t denote the number of spells up to a given moment t . It is assumed that 

( )S t t, , , , ...    = 0 1 2  is a homogeneous Poisson process with rate k m , k > 0 , the 

number of accidents within a spell is a random variable with a given distribution F  

and that the number of accidents arising out of different spells are independent and 

also independent of the number of spells. So, the total number of accidents at time t  
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is 
( )

X t X k
k

S t
( ) ,=

=
∑

1
 where ( )S t  is a homogenous Poisson process with rate k m  and 

{ }X k 1
∞ are identically and independently distributed (i.i.d.) random variables from 

the distribution F . 
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∞  is a logarithmic series distribution with parameters ( )m,ν , i.e. 
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random variable ( )X t , is a negative binomial random variable with parameters 
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1,kt  for each t  (Chatfield and Theobald, 1973). Here ν  is regarded as the 

external risk parameter, too. Then, if the differences in the external risk can be 

described by a ( )ρ,abeta distribution of the second kind, the resulting accident 

distribution is of a generalized Waring form with parameters a kt,  , and ρ . 

Let us consider, now, the counting process { }N t t( ), ≥ 0  with ( )N t  

represented, for t ≥ 0 , by 
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X Xk
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0, ,    where ( )S t  is a homogenous 

Poisson process with rate k m , { }X k 1
∞  has a logarithmic series distribution with 

parameters ( )m,ν  and is independent of the process ( )S t , and ν  is a non-negative 

random variable with a ( )ρ,aBeta distribution of the second kind. 

Theorem 2.3.1 

For the process ( ){ }N t t,  ≥ 0 defined as above the following conditions hold:  

(i) ( )N 0 0=   

(ii) ( ){ }N t t,  ≥ 0  possesses stationary increments 

(iii) ( ){ }N t t,  ≥ 0  is a Markov process. 

Proof: The proof of (i) is straightforward. To prove condition (ii), denote by ϕ  the 

probability distribution function (p.d.f.) of the random variable ν . Then, we can write: 
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To prove the Markovian property, let ( )
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N t X k
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1
 for a given ν . The process 

( ){ }N N t tν ν= ≥,  0  is a compound Poisson process. Hence, it is a Markov process.  

We now note that: 
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 where ( )P Aν  stands for the conditional probability of an event A  given the value ν  

of the random variable ν . Then, ( ) ( ) ( ) ( )( )P N t h n N t m N s n s s tν + = = = ≤ ≤, , ,   0 is 
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The last result proves the Markovian property of the process and provides its 

transition probabilities.  

 

3. The generalized Waring process 

The generalized Waring process can, now, be defined in the following way: 

Definition 3.1 The counting process { }N t t( ),  ≥ 0 is said to be a generalized Waring 

process with parameters ( )a k, ,  ρ , a k> > >0 0 0, ,  ρ  if (i) ( )N 0 0= , (ii) ( )N t  is a 
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Markov process, (iii) ( ) ( )N t h N t+ −  is ( )GW a kh, ,  ρ -distributed for each 

h t> ≥0 0,  . 

Conditions (i), (ii) and (iii) tell us that this process starts at 0, it has stationary 

increments and ( )( ) ( )
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Given that the defined generalized Waring process is a Markov process, the 

relations (2.2.2) and (2.3.1) can lead to its transition probabilities. Their explicit form 

is  
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The above probability denoted in the sequel by ( )tssp nm +,, , represents the 

probability that a process presently in state m  will be in state n  a later time t . This 

probability in this case depends on the present time so the defined generalized Waring 

process is a non-homogenous Markov process.  

It is clear that  ( ) ( ) ( )( ) ( )( ) ( )tpntNPNntNPtp nn ====== 00 ,0,0 . 

 In order to show that such a process does exist, it is sufficient to prove that the 

transition probabilities satisfy the Chapman-Kolmogorov equations, i.e. 
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which proves (3.1). 

 

3.1 The moments and some other properties 

Let )(tN  define a generalized Waring process with parameters ( )a k, ,  ρ . Then, for 

any t , ( )[ ]E N t akt
=

−ρ 1
 , ( )[ ] ( )( )

( ) ( )
Var N t

akt kt a
=

+ − + −

− −

ρ ρ

ρ ρ

1 1

1 22 .  

Following Irwin (1975), one may show that the variance can be divided into three 

additive components, thus 

 ( )[ ] ( ) ( )Var N t ktt R= + +σ σ σνΛ
2 2 2 2 , 

 where  

( ) ( )( ) ( )σ ρ ρΛ t akt a2 1 11 1 2= + − −− −  is the component due to liability  

 ( )( ) ( )σ ρ ρ ρν
2 2 11 1 2= + − − −− −a a is the component due to proneness  

and  ( )σ ρR akt2 11= − − is the component due to randomness. 

The generalized Waring process is a stationary process. For a stationary process N , 
( )[ ]E N t t= ⋅η , where η  is termed the intensity of N  (see e.g. Grandell, 1997, p.53). 

It is clear that the intensity of the generalized Waring process isη
ρ

=
−

ak
1

. For this 

process (like for all stationary processes), there always exists, a random variable 

N with ( )E N = η , called the individual intensity, such that ( )
t
tN  

∞→
⎯→⎯t
p N  (see, e.g. 

Grandell, 1997, p.53).  The intensity η  is finite. Hence, it follows that the individual 
intensity N is finite with probability 1. 
 
In what follows, we give an equivalent definition of the Generalized Waring process. 

 

Definition 3.1.1 The counting process { }N t t( ),  ≥ 0 is said to be a negative binomial 

process with parameters ⎟
⎠
⎞

⎜
⎝
⎛

+ν1
1 , k k > >0 0, ν , if (i) ( )N 0 0= , (ii) ( )N t is a Markov 

process,  (iii) ( ) ( )N t h N t+ − is ⎟
⎠
⎞

⎜
⎝
⎛

+ν1
1 , khNB -distributed for each h t> ≥0 0,  . 
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The first condition together with condition (iii) leads to the conclusion that ( )N t  

is ⎟
⎠
⎞

⎜
⎝
⎛

+ν1
1 , ktNB -distributed. 

 

Then, if we use a negative binomial process with parameters k = =1 1 and ν  (a 

standard negative binomial process) as a starting point, we can define the 

Generalized Waring Process in the following way. 

 

Definition 3.1.2 Let ν  be a ( )ρ,abetaII -distributed random variable and consider a 

standard negative binomial process ~N  independent of it. Let k > 0  be a constant. The 

point process ⎟
⎠
⎞

⎜
⎝
⎛

+
=

ν1
1 ,~ kNN o , where ⎟

⎠
⎞

⎜
⎝
⎛

+
=⎟

⎠
⎞

⎜
⎝
⎛

+ νν 1
1 ,~

1
1 ,~ ktNktN

def
o  and, for 

every ⎟
⎠
⎞

⎜
⎝
⎛

+
⎟
⎠
⎞

⎜
⎝
⎛

+ νν 1
1 ,~

1
1 ,~  , ktNBktNt , is called the Generalized Waring Process. 

It is already clear that definition 3.1.2 is equivalent to definition 3.1.  

 

By definition 3.1.2, one can prove the following property. 

 

Theorem 3.1.1 Let N be a generalized Waring process. Then,   

( )  1 kt
ptN

t
ν

∞→
⎯→⎯ . 

Proof 

( )   
kt
1

1,~

limk1lim
ν

νν
⎟
⎠
⎞

⎜
⎝
⎛

+=
∞→∞→

ktN
tN

t tt
.  

Taking into account that 

kt
1

1,~ ν
ν

=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
ktNE  and 011

1,~

var ⎯⎯⎯ →⎯
∞→

+
=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧
⎟
⎠
⎞

⎜
⎝
⎛

+
tktkt

ktN

ν
ν

ν
ν , 

and using Chebyshev’s inequality, we have that   1
1,~

kt

ktN

ν
ν
⎟
⎠
⎞

⎜
⎝
⎛

+  
∞→

⎯→⎯t
p

1,  which 

implies that ( ) 1 tN
t

 
∞→

⎯→⎯t
p vk.  
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Combining this result and the fact that, since ν  is ( )ρ,abetaII -distributed, 

( )E a
ν

ρ
=

− 1
, we obtain ( )E k ak

ν
ρ

=
− 1

. Hence, the random variable N k= ν  is the 

individual intensity of the generalized Waring process. 

3.2 The transition probabilities and the Chapman-Kolmogorov equations of the 

generalized Waring process 

Using (2.2.2) and (2.3.1), we obtain for the transition probabilities of the 

generalized Waring process 

( ) ( ) ( )( )msNntsNPtsp nm ==+=   ,,
( )
( )

( )( )

( )
( )( )

( )( )na

mamn

ktks
ks

mn
kt

ma
na

+

+−

++

+

−+Γ
+Γ

=
ρ
ρ

!
 

The transition probabilities of a Markov process satisfy the Chapman-Kolmogorov 

equations 

 ( ) ( ) ( )p s t p s p t s t m nm n m i
i m

n

i n, ,, , , , . ,       for   = ≤ ≤ ≤
=
∑ τ τ τ   

Then, for the forward Kolmogorov differential equations, starting from 

( ) ( ) ( )p s t h p s p t h s t m n hm n m i
i m

n

i n, ,, , , , , , ,       for    + = + ≤ ≤ ≤ ≥
=
∑ τ τ τ 0  we obtain 

( ) ( ) ( ) ( ) ( )p s t p s t
p t t h

h
p t t h

h
p s tm n m i

h

i n

i m

n

h

nn
m n' , , lim

,
lim

,
, ,, ,

,
,  

 

=
   

  
 =

+
− −

+⎛

⎝
⎜

⎞

⎠
⎟

→ →
∑

0 0
1  

( )
lim

,,

h

i np t t h
h→

+

0

  
( ) ( )

( )

( ) ( )
( ) ( )( )

( )( )

( )( )⎪
⎪
⎩

⎪
⎪
⎨

⎧

+

+

−−−+Γ
+Γ

−+++
−+

=

=

+

+

−

1>-                  ,  
1

1=-                                         ,  
1

1

 ,

 ,1

in
kt
kt

inin
k

ia
natq

in
nkta

naktq

na

ia
ni

nn

ρ
ρ

ρ
 

and  
( ) ( )lim

,,

h

n n
n

p t t h
h

t
→

− +⎛

⎝
⎜

⎞

⎠
⎟ =

0

1  ν = ⋅
+ +=

+ −

∑k
kt ii

a n 1

0

1

ρ
. 

Hence, the forward Chapman-Kolmogorov equations for the generalized Waring 

process are: 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

∂

∂
ν

∂

∂
ν

p s t
t

t p s t

p s t
t

t p s t q t p s t m n

n n
n n n

m n
n m n i n m i

i m

n

,
,

,
, , ,

,
,

,
, , , .

 
 

 
   

 
 

 
     <

= −

= − +
=

−

∑
1  
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The backward equations follow from the Chapman-Kolmogorov equations with 

τ = +s h . Then, the backward equations for the generalized Waring process are: 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

∂

∂
ν

∂

∂
ν

p s t
t

t p s t

p s t
t

t p s t q t p s t m n

m m
m m m

m n
m m n m i i n

i m

n

,
,

,
, , ,

,
,

,
, , , ,

 
 

 
   

 
 

 
     <

=

= − ∑
= +1

 

where  

( ) ( )
( )

q s
k a m

a ks mm m, + =
+

+ + +1 ρ
,      ( ) ( )

( ) ( )( )
( )( )

( )( )
  >     ,

1, mi
ks
ks

mimi
k

ma
iasq

ia

ma
im

+

+

+

+

−−−+Γ
+Γ

=
ρ
ρ

 

and ( )v s k
ks im

i

a m
= ⋅

+ +=

+ −

∑ 1

0

1

ρ
. 

4. The Poisson and the Pólya processes as limiting cases of the 

generalized Waring process 

It can be shown that the Poisson and the Pólya processes are limiting cases of the 

Generalized Waring process (in the sense of weak convergence). 

 
Theorem 4.1 If  ρ = ⋅c k , where c > 0  is a constant, the generalized Waring process 

tends to a Pólya process with parameters a and c/1 , i.e. { })(tNk  
∞→

⎯→⎯
k

d { })(tNc ,  

where { }0 ),( ≥ttNk is the generalized Waring process indexed by the parameter 
0>k and { }0 ),( ≥ttNc  is the Polya process indexed by the parameter 0>c  and with 

{ }ntNP c =)( ,...1,0   ,
      

1
=⎟

⎠
⎞

⎜
⎝
⎛
+

⎟
⎠
⎞

⎜
⎝
⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −+
= n

ct
t

ct
c

n
n nαα

 

 
Theorem 4.2 Consider now the Pólya process { }0 ),( ≥ttNc  defined as in the previous 

theorem. Then, if a c= ⋅λ , where λ > 0 is a constant, { })(tNc  ∞→⎯→⎯c
d { })(tNλ , where 

{ }0 ,)( ≥ttN λλ  is a homogeneous Poisson process indexed by the parameter λ > 0 

and with ( ){ }ntNP =λ =
( ) ( )

!
exp

n
tt n λλ −

, ,...1,0=n  
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The results of these theorems tell us that the  the Pólya and the Poisson processes are 

limiting forms of the generalized Waring process. Thus, utilizing results holding for 

the generalized Waring process, one may obtain the following results for a Pólya 

process { }0 ),( ≥ttX  with parameters ( )a c,1  and for a Poisson process { }0 ),( ≥ttY  

with parameter λ defined as in Theorems 4.1 and 4.2, respectively.: 

• For any t ≥ 0, ( )[ ]E X t a
c

t= , ( )[ ]Var X t a
c

t a
c

t= + 2
2  and ( )[ ] ( )[ ]E Y t Var Y t t= = λ  

• The Pólya and the Poisson processes are both stationary Markov processes. Their 

respective transition probabilities are: 

( ) ( )( )

( )

( ) ( )( )

( )( )

( )
( )( )

( ) ( )( )

( )( )

P X t h X t m

c t
c t h

n m

a m
h c t

c t h
n m

a n
a m n m

h c t

c t h
n m

a n

a m

a n

n m a m

a n

+ = =

+
+ +

⎛
⎝⎜

⎞
⎠⎟

+

+ +

+

+ −

+

+ +

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

+

+

+

− +

+

  

                                =

+                      = +

    > +

1
1

1
Γ

Γ !

 

and 

( ) ( )( )
( )

( )
( )( )

( ) ( )

P Y t h Y t m

h n m

h h n m

h
n m

h n m
n m

+ = =

−

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

−

  

-                                 =

-                            = +

-                 > +

exp

exp

!
exp

λ

λ λ

λ
λ

1

1

 

• The Pólya process is a stationary non-homogenous birth process with transition 

intensities ( )k t a n
c tn =
+
+

 and the Poisson process is a stationary homogenous birth 

process with transition intensities ( )k tn = λ . 

5. Some inferential aspects connected with the mixed negative 
binomial derivation of the generalized Waring process  
 
 
Let ( )tM  be associated with a negative binomial process specified by (2.1.1) and 

( )tN  be associated with a generalized Waring process as defined in section 2.2. The 

derivation of the latter implies that regarding the parameter ν  in  
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( ){ } ,...1.0   ,
11

1
      

1
=⎟

⎠
⎞

⎜
⎝
⎛
+

⎟
⎠
⎞

⎜
⎝
⎛

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
== n

n
nkt

ntMP
nkt

ν
ν

ν
  (5.1) 

as the outcome of a random variable having the ( )ρ,abeta distribution of the second 

kind, we can interpret ( )( ){ },...1,0 ; == nntMP  as the conditional distribution of ( )tN  

given the value ν . Hence, the unconditional distribution of ( )tN  can be represented 

by 

( ) ( ){ }
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
+

⎟
⎠
⎞

⎜
⎝
⎛

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
===

nkt

n n
nkt

EntNPtP
ν

ν
ν 11

1
      

1
      

         ( )
( )( )

( ) ( )( )
( )( )

=
+

         
ρ

ρ ρ
kt

kt

n n

na

a kt

a kt n
n

+ +
=

1 0 1
!

, , ...              (5.2) 

 

Using this interpretation of the generalized Waring distribution we can, for any event 

B,  regard the probability 

 ( ) ( ){ }
( )( ) ( )

( )( ) ( )∫

∫
∞+

∈

∈
=∈≤=

0

0

νν

νν
ν

dUBsNP

dUBsNP
BsNxPxU

x

B , 

with U  denoting the probability function of the random variable  ν , as the posterior 

distribution of ν  given B  or, more precisely, given ( ){ }BsN ∈ , provided that 

( ){ } ( )( ) ( ) 0 
0

>∈=∈ ∫
+∞

ldUlBsNPBsNP . 

Proposition 5.1 Let  ( )sN   be  defined as above. Then 

{ }
( ) ( )

( ) ( )
P x N s n

d

d

n a n a ks
x

n a n a ks
ν

ν ν ν

ν ν ν

ρ

ρ
≤ = =

+

+

+ − − + + +

+ − − + + +
∞

∫

∫
 

 
0

0

+
( )

1

1

1

1

.    

Proof 

Using an argument similar to that used by Xekalaki (1983b) for the case of the 

generalized Waring distribution, we obtain 
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{ } ( ){ }
( ){ }

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

P x N s n
P x N s n

P N s n

a
a d

ls ls
n

s
ks l ls dl

a
a d

ls ls
n

s
ks l ls dl

a a
n ks

ks
xx

a a
n ks

ks

ν
ν

ρ

ρ
ν ν ν

ν

ν

ρ

ρ
ν ν ν

ν

ν

ρ

ρ

≤ = =
≤ =

=

=

+
+

−
−
⎛
⎝⎜

⎞
⎠⎟

+
+

−
−
⎛
⎝⎜

⎞
⎠⎟

− − +
−

−

− − +
−

−
+∞∞

∫∫

∫∫

  
 

 

 
0

0

+

( )
,

exp
! exp .

exp
! exp .

Γ

Γ Γ Γ

Γ

Γ Γ Γ

1 1

0

1 1

0

1

1

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )
=

+ −⎛
⎝
⎜

⎞
⎠
⎟ +

+ −⎛
⎝
⎜

⎞
⎠
⎟ +

=

+

+

+ − − + + +

+ − − + + +
+∞

+ − − + + +

+ − − + + +
+∞

∫

∫

∫

∫

ks n
n

d

ks n
n

d

d

d

n a a n ks
x

n a a n ks

n a a n ks
x

n a a n ks

1
1

1
1

1

1

1

0

1

0

1

1

      
 

      

 
0

0

ν ν ν

ν ν ν

ν ν ν

ν ν ν

ρ

ρ

ρ

ρ

. 

 

 This proposition implies that ( )ρ
ν

+
+

⎛
⎝⎜

⎞
⎠⎟

ks
a n

N s n  ( ) =  has the F  

distribution with ( )2 a n+  and ( )2 ρ + ks degrees of freedom. Following 

Xekalaki (1983b), this result can be used to construct confidence intervals for 

( )ν  ( ) =N s n , ‘estimating’ in this way a person’s proneness on the basis of 

the incurred number of accidents.  

 

 

Corollary 

 If  ( )sN   is defined as above, then 

{ }
( ) ( )

( ) ( )
E N s n

d

d

a n
ks

n a n a ks

n a n a ks
ν

ν ν ν

ν ν ν
ρ

ρ

ρ

  

 
0

0

( ) .= =

+

+

=
+
+

+ − + + +
+∞

+ − − + + +
+∞

∫

∫

1

11

  (5.3) 

Proof 

Using the result of the proposition and the relation 

 { } { }E N s n xdP x N s nν ν    ( ) ( ) ,= = ≤ =
+∞

∫
0

  

we obtain  
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 { }
( ) ( )

( ) ( )
E N s n

d

d

n a n a ks

n a n a ks
ν

ν ν ν

ν ν ν

ρ

ρ

 

 
0

0

( ) = =

+

+

+ − + + +
+∞

+ − − + + +
+∞

∫

∫

1

11

  

( ) ( )
( )

( )
( ) ( )ksan

ksna
ksna
ksan

+Γ+Γ
+++Γ

+++Γ
−+Γ++Γ

=
ρ
ρ

ρ
ρ 11 , 

which leads to the result. 

 

Remark 5.1: From (5.3), it would seem natural to interpret  { })( * sNE
ks
na

B ν
ρ

ν =
+
+

=  

as a Bayes estimate of ν . 
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6. An Application  
 
As mentioned in the introduction, the concepts and terminology used in this paper can 

easily be modified so that the obtained results can be implemented in several other 

fields. As an example, we present here an application of the generalized Waring 

process in the context of modeling web access patterns. 
 
Consider in particular, modeling the whole counting process {N(s), s>0} associated 

with the access pattern of a web site, where, for any t>0, the variable ( )tN  denotes 

the number of visits that the web pages on this particular site get within the interval 

(0, t ). (Note that the generalized Waring distribution has been cited in Ajiferuke et 

al.(2004)  as used by them to fit an observed website visitation frequency distribution 

for a given period, i.e, to model counts N(t0) of web visits on a given fixed time 

interval (0,t0)) 

 

Except for chance, visits to a web site can be regarded as affected by the intrinsic 

appeal of the particular site to web users (corresponding to proneness) as well as by 

exogenous factors (corresponding to external factors) such as, links provided by other 

sites to the particular site, how well the site is advertised etc. 

 

Let us denote by ν  the intrinsic factors and by νλ   the exogenous factors. Assume 

that ( )λtN  follows a ( )( )tPoisson Λ  distribution, where ( ) tt λ=Λ  with νλ  following 

a ⎟
⎠
⎞

⎜
⎝
⎛

t
ktGamma
ν
1, distribution. Then, the conditional distribution of ( )νtN  is a 

⎟
⎠
⎞

⎜
⎝
⎛

+ν
ν

1
,ktNB  distribution with ν  following a ( )ρα ,Beta  distribution of the second 

kind, while the unconditional distribution of ( )tN  is the ( )ρ;, ktaGWD  distribution, 

i.e. ( ){ }N t t,  ≥ 0  is a generalized Waring process. 

 

The log files representing the hits on an e-shop site for the period 31/03/2006-

30/04/2006, have been used to fit this model. A log file typically contains information 

on the times of visits per IP address per day. On the basis of such log files, the visits 
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per day made by each of 468 IP addresses to the particular site have been enumerated 

for the above-mentioned one-month period yielding the corresponding observed paths 

( ){ }31,...,2,1,468,...,2,1, == jitN ji  of the numbers of visits ( )ji tN  made by IP 

address i  up to and including time jt . A sample of one thus obtained path 

corresponding to one of the IP addresses considered is presented in Table 6.1. 

 

Table 6.1 

Visits made by a given IP address to an e-shop site per date and time 

Date Day Hours Minutes 
Second
s Times of visits in days 

12/04/2006:16:15:27 12 16 15 27 0 
13/04/2006:01:30:57 13  1 30 57 0.385763889 
13/04/2006:09:38:4 13  9 38  4 0.724039352 
13/04/2006:14:44:41 13 14 44 41 0.936967593 
13/04/2006:20:39:53 13 20 39 53 1.183634259 
15/04/2006:21:28:53 15 21 28 53 3.217662037 
16/04/2006:11:59:50 16 11 59 50 3.822488426 
16/04/2006:19:27:24 16 19 27 24 4.133298611 
17/04/2006:02:13:47 17  2 13 47 4.415509259 
18/04/2006:17:41:12 18 17 41 12 6.059548611 
24/04/2006:06:00:26 24  6  0 26 11.57290509 
24/04/2006:12:38:52 24 12 38 52 11.84959491 
24/04/2006:18:27:59 24 18 27 59 12.09203704 
25/04/2006:00:17:51 25  0 17 51 12.335 
25/04/2006:06:35:20 25  6 35 20 12.5971412 
26/04/2006:21:05:30 26 21  5 30 14.20142361 
29/04/2006:09:09:02 29  9  9  2 16.70387731 
29/04/2006:09:17:15 29  9 17 15 16.70958333 
29/04/2006:10:33:00 29 10 33  0 16.7621875 
29/04/2006:15:06:17 29 15  6 17 16.95196759 

   

 

The observed paths were compared to the corresponding time series of simulated 

realizations of the generalized Waring process over the same time segment.                    

 

Estimates of the parameters of the generalized Waring process have been obtained 

employing the centered reduced moment estimation procedure for spatial point 

process data (see, e.g., Ripley (1988), Daley and Vere-Jones(1988), Diggle and 

Chetwynd (1991), and  Chetwynd and P.J. Diggle (1998) among others). This 

procedure utilizes the moment estimators 
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,, φφ ,  where the 

quantities involved in the above equations represent weights defined, for each value 
ix  in the collection of points { }nixi ,...,2,1: = of the process within a time interval of 

length h, defined as follows: For each ix  in { }nixi ,...,2,1: =  and a given 0>s , 
consider the interval of center ix  and length s and assign to every point ijx j ≠,  in 

this interval the weight ( ) ( ) 1,, −= jijis xxxx ωφ , where ( )ji xx ,ω  is the number of other 
points { }jkikxk ≠≠ ,,  of the process that are included in the interval of length 

ji xx −  and center ix . Within the setting of our example, the set 

{ }nixi ,...,2,1: = represents, for each IP address, the visits made by the particular IP 
address for the entire duration of the period of time 1xxh n −=  considered, n = 31, η̂  

denotes an estimator of the process intensity η , i.e. of the expected number of visits 
in an interval of unit length, while the value set for the constants s  was 5.0=s   
For each of the IP addresses, one hundred simulated realizations of the generalized 

Waring process with the above estimated parameter values were obtained and each of 

the observed time series paths was compared to the corresponding simulated ones. 

The comparison showed that, on average, the realizations of a generalized Waring 

process with the obtained parameter values notably ‘resembled’ the observed paths of 

the observed time series, in the sense that they had recognizable similar structural 

characteristics.  

 

For illustration purposes, the paths of the observed time series associated with a 

sample of three of the IP addresses are presented (Figures 1-3). Each of these paths is 

superimposed by a sample of three of the 100 corresponding simulated realizations of 

the generalized Waring process with parameter estimates obtained as above and given 

in Table 2. 
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Table 6.2 

Centered reduced moment estimates for the parameters of the ( )ρ;, ktaGWD  

IP address α̂  k̂  ρ̂  
1 5,6888256 0,594154 3.86463 
2 4,139105 0,929841 3,521098 
3 3.8695139 0.8293397 4.2061137 

 

Inspection of the graphs depicted by Figures 6.1-6.3 provides a visual appreciation of 

the degree of similarity in the structural characteristics of the paths of the observed 

and the realized time series. 
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Figure 6.1. Observed and simulated paths corresponding to IP address 1 
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 Figure 6.2. Observed and simulated paths corresponding to IP address 2  
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Figure 6.3. Observed and simulated paths corresponding to IP address 3 
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The closeness of the observed and realized time series was also checked using 

diagnostic plots based on the inverse-intensity residuals (used for point processes in 

time, e.g. Lewis (1972), Brillinger (1978, 1994) and Andersen et al.(1993)) These  

have been computed for each value jx  in the collection of points { }njx j ,...,2,1: = of 

the process by: 

 ( ) ( ) ( ){ }∫∑ >−=
∈

−
j

jji BBx
ij dxxIxBR 0ˆˆ, 1

ˆ ηηη
θ

, 

where ( )jj xB ,0=  , ( ) 1
ˆ,ˆ,ˆˆ −

= ρθ ka  and ( ) ( )θηη ˆ,ˆ xx =  is the fitted intensity.  Figures 
6.4-6.6 exhibit similar results.   
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Figure 6. 4. Plot of inverse-intensity residuals corresponding to IP address 1 

 

Figure 6.5. Plot of inverse-intensity residuals corresponding to IP address 2 
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IP address 3
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Figure 6.6. Plot of inverse-intensity residuals corresponding to IP address 3 

 

7. Some alternative genesis schemes 

The generalized Waring process has been defined as a non-homogenous stationary 

Markov Process arising as a beta mixture of the negative binomial process in a 

“proneness” context. In this section, we present two further genesis schemes as put 

forward by Zografi and Xekalaki (2001), where the underlying mechanism is 

indicative of contagion rather than proneness in the sense of Irwin (1941) and 

Xekalaki (1983b).  

 

The “contagion” model assumes that, at time t = 0 , the individuals  have had  no 

accidents and that, during a time period ( ]t t dt, + , the probability of a person having 

another accident depends on time t  and  on the number of  accidents x  sustained by 

the person by time t . So this probability is a function ( )txf ,λ , with λ  referring to the 

individual’s risk exposure. 

 A mixed Pólya process 

 

Assuming that ( ) ( ) t
xk

t
xktxf

λ
λ

λλ +
+

⋅=
+

+
=

11
 , , the distribution of accidents for each t  

(λ  fixed) is negative binomial with parameters ( )tk λ1 , (the accident pattern is 
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described in this case by a Pólya process). When λ  varies from individual to 

individual, according to an exponential distribution, i.e., λ λ~ ,ae aa− >   0 , the 

overall distribution of )(tN , for t = 1, is (following Xekalaki, 1983b) the generalized 

Waring with parameters ( )a k, ,ρ . In the general case, however, its distribution is of a 

more general form. In particular, we have  

( ) ( )tPnNP n==  

   ( )

( )( )

( ) ( )

( )( )

( ) ( ),)/11;,,
!

1 tnkanaaF
n
t

ka
ka

a

a

n

nn

k

k −+++++
+++

= ρρ
ρρ

ρ
 

(6.1.1) 

where  

( ) ( )

( )
∑
∞

=

=
0 !

);,,(
m

m

m

mm

m
z

c
ba

zcbaF  . 

The above distribution is not of a generalized Waring form, but reduces to it for t = 1.  

It can be shown that there exists a birth process ( ) ( ){ }Y Y t t Y= > =; ; ,  0 0 0  such that 

( )Y t ,  for each t , has the distribution given by (6.1.1).  

A non-Markovian stochastic process of a generalized Waring form 

 
Assuming that ( ) ( )f x t k mxλ λ, = + , the distribution of accidents for each t  is 

negative binomial with parameters −
−

⎛
⎝⎜

⎞
⎠⎟−

k
m e mt,  1

1 λ
, when λ  is fixed (Irwin, 1941) 

and generalized Waring with parameters k
m

a
mt

, ,  1⎛
⎝⎜

⎞
⎠⎟

, when λ λ~ ,ae aa− >   0  

(Xekalaki, 1981).   

Further, following Irwin (1941), one may be verify in this case that the distribution of 

the increment ( ) ( )Y h N t h N tt ( ) = + −  at time t , given that ( )N t x= , has a negative 

binomial distribution with parameters − +
−

⎛
⎝⎜

⎞
⎠⎟−

k
m

x
e mt,  1

1 λ
when λ  is fixed, and a 

generalized Waring distribution with parameters k
m

x a
mt

+⎛
⎝⎜

⎞
⎠⎟

, ,  1 , when 

λ λ~ ,ae aa− >   0 . Hence, in this case,  
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From the last relationship, one may easily verify that 

 ( ) ( ) ( ) ( ) ( )p s p t p s p t p s ti j i j j i2 2 3 3, , , , ,, , , , ,τ τ τ τ⋅ + ⋅ ≠  

for some values of a m s t i j, , , , , ,τ . This implies that this process does not satisfy the 

Chapman-Kolmogorov equations and thus is not a Markov process. 
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