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ABSTRACT

A multivariate extension of the generalized Waring distri-
pution is defined through & multivariate generalization of ‘
Waring's expansion and its properties are studied. It is proved
that the marginal distributions (conditional or unconditional)
end their convolution are generalized Waring distributions. The
multivariate generalized Waring distribution is then shown to
arise in sccident theory as the joint distribution of accidents
incurred by en mccident prone population exposed to variable
external accident risk over a series of non-overlapping time
periods, It is further demonstrated that using this multivariate
distribution one can "measure" the contributions of accident
proneness, accident risk exposure and chance to a given accident

situation.

1. INTRODUCTION

Among the various hypotheses that have been developed in
1047
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interpreting the accidénérexpérienbééof.a population, accident
proneness seems to have,arawn(a lot:of attention. The main reason
is that it provides somé explanation as to why some individuals in
the population tend to have more accidents than others. The origin
of this hypothesis cen be traced,in Greenwood and Wood's (1919)
vork in which they obtained the ﬁegétive binomial distribution as
the distribution of accidents sustained by a group of industrial
workers. :-"'f" R

In the context of égciééﬁf'ﬁr;;ehess accidents are considered
to be the result of two kinds of factors, random and non-rendom.
Till 1968 statistical workers took the implicit view that the
non-random factors referred.to the irdividusl's psycholegy since ‘
in designing their‘investigations:éare’was taken to ensure an
equal-risk env1ronment for all individuals. Irwin (1968),however,
broke new ground by 1ntroduc1ng an unequal—rlsk-env1ronment'
hypothesis i.e. by assuming that non-rendom factors can be further
split into psychological factors’'and environmental factors. On
this assumption, he obtained the'generalized Waring distribution
as a mixture on A of a Poisson (A) @istribution with a gamma (%3k)
distribution for X whose scale parémeter Vv was a beta random .
variable (r.v.). In this?contekt'thé'distribution of \|v described
the fluctuations of the environmental risk (accident liability)
while the distribution bf v described fluctuations in the person's
idiosyncréey predispodition to accidents (accident proneness).

Irwin showed that u51ng this distribution it was possible to
"measure" the effects- of liability ‘and proneness. It was not poss-
ible, however,to obtain dlstlngulshable estimates for these effects
unless éubjective Jjudgement was''used. This difficulty was overcome

with the introduction of a bivariate version of the generalized
Waring distribution by Xekalaki- (198%a). This allowed the study
of the accident qistribution of a population in two consecutive
time periods while it provided distinguishable estimates of the
degree to which 1liability and proneness. influenced the particular

accident situation. ;
. vang b
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Since meccident statistics aims at reducing (if not preven-
ting) the accident causation, the need for a multivariate version
of the generalized Waring distribution becomes obvious. Such an
extension will make possible the year-by-year study of the -
sccident experience of the individuals under observation and will
give an indication as to how the contributions of accident liabil-
ity, accident proneness and chance vary through time,

In this paper a multivariate version of the generalized
Waring distribution is defined and its relation to accident theory
is studied. In particular, in section 2 a multivariate general-
jzation of Waring's expansion is given in terms of a multivariate
generalized hypergeometric series whose successive terms multi-
plied by a suitable constant are regarded as defining the multi-
variate version of the generalized Waring distribution. In section
3 the structure of this multivariate distribution is examined and
it is shown among other results that‘the marginal distributions
and their convolution are univariaste generalized Waring distri-
butions. Finally, section 4 examines how the distribution defined
in section 2 can arise in accident theory as the joint accident
distribution over n time periods of an mccident prone population
subjected to an unequal-risk environment. Further, it shows that
it is possible to assess the effects of proneness and external
risk for each time period. .

Before presenting the main results some notation and termi-
nology will be provided. . .

A non-negative, integer-vaiued’r.v. X is said to have the
univariate generalized Waring distributioq with parameters a,k and .
o (UGWD(a,k3p)) if its probability function (p.f.) is given by

) Mr) M) 1 (1.1
(a+p)(k) mkﬂ))(r) r!

p =P(X=r)=

g,k,p>0; r = 0,1,2,...
where a(8)=r(a+6)/r(a), a>0 BER,
{

The probability generating function (p.g.f.) of X is given by
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‘ i v-th' NI ‘»l sty .
6(s)m S lE) (& ksaticenss) (1.2)

vhere QF‘ is the Gauss hypergeometrlc function defined by
. PR RN I S 7‘
Caivig) o TE(E) B(r)
2F1(u,8;v;s) = Z s Isl<1.
; "O‘qu (r) N

The mean and variance of X are, glven by

ak_ and o°= ek(atp- 1)(k+ﬁ'1)':
(p-1)? (p-2)

and exist only if p>1 and p>2 respectlvely. For a detailed account

of the properties and‘appl1cat10n8'of the UGWD see Irwin {1975)

and Xekalaki ((1981), "(1983a,b)). Some of the more recent appli~ .

cations of certain spécial'cases,of it can be found in Xekalaki A

(1983c,d, 198hc).:3' ;.f¢$uﬂgu ;ah'gu.A.

(1.3)

a3

L R PR T S R . .
. A random vector (x,,xé) with non-negative, integer-valued
components is said to have the bivariate generalized Waring dis-
tribution with parameters a,k,m and p (BGWD(a,k m3p) if its p.f.

[

ig g1ven by ‘ -, ;
‘ '-u:tw‘ ISR AE I

Plrsm) . - et (2)"(2) RERE :

Pr —P(X =r x l)' (a+p)(k+ ) (a+k+m+p)( r+1) [ A 1

e ak,m,e0; r,250,1,2,... (1.4)

The p.g. f. of (x,,x ).is given by

Ponoe ’
a(s,b)= Sltm) - F1(a kom3aticmeoss,b) (1.5)
10 (+m) |

where F1 represents the' Appell hypergeometric function of type
1 defined by PR o fh{;iﬂz' :

!

It ¢ ST S o g 8 ;B’ r [}
. , (r+£) (r)” (8) s ¢
F.( ;B.B 3v38,t)= - 7
e < YI% ko Z ; QY(’+2) ! 21 .
, i il e, - (8 z)e[ =1,1]x [ 1,1]

For information on the .chance mechanisms that give rise to this

|rrv18~‘

RN TAY B

d15tr1but1on and on,the. estlmatlon of .its parameters see Xekalaki
\ I R

(198Lb, 1985) ‘,, Yo
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2. THE MULTIVARIATE GENERALIZED WARING DISTRIBUTION

Irwin's(1963) original derivation of the UGWD was in the
context of a biologicel problem. He obtained it as an inverse
factorial distribution starting from Waring's expansion for the

function (x—a)_1, x>a>0, i.e. from the formula

+o

_l_= _ELEL__' . (2_1)
8 yz0 X(r+1)

. . . 1
which he generalized for the funCtlon»—T_:ETZ;;’ (x>0).

Xekalaki(1984a) used a similar approach in deriving the BGWD by

further generalizing (2.1) for the function T;:;%—————-where k and
(k+m)

m are distinct positive integers.'

In the sequel, we will provide a further generalization of
{(2.1) which will lead to a multivariate version of the generalized
Waring distribution. .

For k., i=1,2,...,n, distinct positive real numbers, define

a real function of x by

n
flx)= ——= T — , ko=0. (2.2)
(k) i=t (x+1i1k y )
It is known that, for any real function g(x) and a>0
- glx-a)=(1+8)%g(x) (2.3)
and
r .
2.k
Ag(x)= (-r)(L)g(x+z)/zl, r=0,1,2,..4 (2.4)
2=0 '
where Ag(x)=g{x+1)-g(x). Moreover, if gi(x), i=1,2,...n
are n functions of x.y :
n n or, i-1 -
A" Mg (x)]= ] mt T A Tei(xr ] rs), ro=0 (2.5)
i=1 Eri=m i=1 j=0 :

=N
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and it can b& shown uslng (2 h) ,that,

( 17 i ’*’s»~ '
A (r) 3r-0 RSP (2.6)
(2) l (£+r) S BRI RS ‘:.'— 4y '
Therefore, comblnlng (2.3), (2 2), (2 5) and (2 6) we obtain
e e d 1
=(1+4) (1+8)™% 1 -
ey, ) (zx,) i=1 !
17 [ans i’ N (x+ ¥ kj)(k )
. . j=0 kg
o =+§° 2y (+1) R ;11,,"»»-,. 1
( rs0 Tl e (X+k0+k1+“‘+ki-1)(ki)
! REE TS S TPRN R TEO SR o
. . ,f'.'»; s - Ir,
Y ‘ . . :f ' a(zri)( 1) 1 n r 1 -
R R o o e ‘
P r1,...,rn“‘} 2 n i=1 (x+ z (r +k. ))(k )
FENST S \;g'ﬂﬁn=f01 P B
A (Zr )(k1)(r )--.(k )(r )
v F T...x 1
r1,._..,rn (Er1+£k )1 Tn

[N P ‘raﬂtl ‘g e

(Zr )(k1)( )-..(kn)(rn)

(x- o &;
X a)(zki) -‘.; o~ (2 7)
’(x+2k1)(zr. (r1)!...(rn)| '

f 1

((p :

4 N
x(l‘.ki) 1,...,r;> '
The multiple series in the right?ﬁ;nd'side is convergent fof x>a.

Hence we obtained a'multipléfaéries which converges to 1 and
therefore its successive.termsLcanlbehconsidered as defining a
multivariate discrete distribution. In the sequel, we set x=a+p.,
p>0 and refer to the distribution defined by the resulting

expressions of the successive!terms.of the series in (2.7) as the

mltivariate generalized Waring distribution with parameters

a,gi(k1,..{,kn) and p(MGﬁD(a;k,,ké;;;,,kn;D)EMGWD(a;E;D)). i.e.

the following definition may be given. S
A random vector X= (X‘, areeerky Jwith non-negative, integer-

valued components will'be' said to have the MGWD(a; k,p)a,p,k >0,

i=1,...,n if its p.f. is given by '




THE MULTIVARIATE GENERALIZED WARING DISTRIBUTION 1053

p(Eki) a(zri)(k1)(r1)“'(kn)(rn)- r;=0,1,2,...

=P(X=r)= ’
Pp=ismt (“*p)(zki) (a+p+2ki)(zri)(r1)!"'('n)' i=1,...,n

_ (2.8)

It should be mentioned at this point that the name multi- o
variate generalized Waring distribution for the distribution in
(2.8) does not reflect only the fact that its derivation was based ;
on a multivariate generalization of Waring's expansion. As shown
in the sequel, the structural properties of (2.8) present further
Justificstion for the choice of the name.

The successive probabilities of the MGWD(ajk;p) are related:

by first order recurrence relationships,thus

n
B lysennst net 2t e oty [a+ 2 zi](kh+z ) .

P
SO RLPIEREEL [a+ ): K, + { Jt.](!. +1)
s i, 1 h
) 1=1 i=1
2=0,1,2,...5 i=1,2,...,n.
It is a generalized hypergeometric distribution since its
p.g.f. can be expressed in terms of Lauricella's hypergeometric

function of type D, i.e, - L

(Ek )
G(t)‘ TE:;“;;‘;-FD(a k1,..., ,a+ E k, +p it) (2.9)
where o
. r;
“tr) 0 B
FplasBysBpseansBrivit)s - 21 (rodt .

Y N
 STPREYE (Eri) i

The fact that p>0 ensures the convergence of (2.9) for all
the values of the parameters a,k,,;.;,kn, and p for tie[—1,1],
i=1,2,...,n.

Obviously, the MGWD(a,k;p) reduces to the BGWD(a;k1,k2;p)
when n=2 and to the UGWD(a k1;p)when n=1,

Note that the MGWD(a3k;p) as defined by (2.9) is a member: of
Slbuya and Shimizu' 8{1981) and of Janardan and Patil's(1972)
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families of multivariete. generalized hypergeometric distributions.

i

. 3. STRUCTURAL PROPERTIES

Consider a random vector X= (X1, 2,...,X ) of non-negative,
integer-valued components that has the MGWD(a 3k 30) (X~MGWD(ask;3p)).
Then the following properties hold. - ‘

(i) Xi“UGWD(a,ki;p),i=1;2,;#;,n.;'j

‘1

\If,;',,.~ S

] .
(ii) ] x, -ucWp(a, Z k‘.,p) {11,12, -+»ite{1,2,...,n}, ssn.
J ‘ 'j . 1 j - ':'1 - s .
c (1i1)(x; ,xi ,...,x.r) MGWD(a k; Lk ,...,ki;p),
1 2 - D PR P s

o, LTI

.{11,12,.,.,1 Yeln 2,...,n}, ssn,

(I [

(iv) (x, ,xi yeoo X )l(x WXot BT A

1 2 S s i 141 s+2 n
i ) 'l" CLe
i Do
: MGWD(a+ ) x; 3k; ok, ,...,k. [ k. ),
; J=s+1 7j 1 "2 a J =g+1 J

{i‘,ia,.;.,is]U{i;;a,is;e;:iA,ih}={1,2,...,n}, s<n.

Lo

(v) (x;, ] X,)-BGHD(a; S HR) ks30),i=1,...,n, '
JAL B | 41 :
I F TS P . .
(vi) X; 1€ T X;)-veun(ar § x;,k; 30+ } ko) is=t,.,n.
J#i S | S J#i
Proof. Let G (s) idenote the P.g.f. of a r.v. 2,
p( k ) . cr .
(i) (t )= T—;;j?———;— F (a k1,...,kn;a+2ki+p;1,...,1,ti,1,...,1)
Tk .
p(k ) o : . :- w g

7—1—7—————- (a k.,a+k +p t. ) ~UGWD(a,k; ;p)-
Py 2 | o

\__,l,r_‘:t,' J,‘.

(ii) Without loss of generallty ‘assume lj—J,J =1,2,.4+,8. Then .
!

[
°( zk ) URER
= i=1 ) . .
G.XJ(F?—] (av0) 7 F (a R preve kg satTigtost, . ot,1,...,1)
J 7 ( Z ki) R ' s n-s

i=1
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gt 211: ) . . fa
— i= ' ot )™ . I
R F1(5,,'§ ki,p,t) Ucwn(a,_z ki,p) . .
Z i=1 i=1
(iii) Puttlng 1.-3,3 1,2,...,8 we have G (t)=
X1,...,Xs
"( {k ) n
a+p Fy (2 kt""’kn;a+i§1ki+p;t1""’ts’1""’1)
i=1
( {k ) .
—(——)——————FD(a;kP...,kS;e& J k405t sennsty)
i=1
(1x)
i=1
LMowD(a 3k x_3p) -
a; 197" sap . i
(vi) Set again ij=j, J=1,2,.4.,0. Xekalaki(1983e) has shown that {
G (40eest )= e
x1,...,xs|xs+1,...,xn‘ 1 8 ‘ili?
2% . ™ B
_..;__———————Gx(tv...,ts,o,...,o)*—?—-——-—)—cGx(1,...,1, i
3t g+ 1 at n -~ at s+1 at n -~ “’ 4
st1 """ 'n st1 """ 'n i}
0s.020) i
where x=xs+1+...+xn.Then the result follows immediately if Eﬁﬁ
ik
ocne observes that . !Jﬂ
Y 4e.otT 'i”‘ ¥
3 1 n 1|
= FD(a;bI,...,bn_;c;'g)= ;
1 n e
Bt ...0t i
. It
ik
ik
ET ) II )(r ) }"r
. i
(zr ) FD(a+zri’b1+r1,-o-:bn+rn’C+Er (3'1) ,l!!‘
i H;'zz’fi
-
(v) Let Y= ) X,. Then i
j#i J i) 8
P (k) it
hitt
GX.,Y(ti’t)' atp I:‘D("';kv"'’kn’aﬂ:l‘{jw’~-—-~r—--t""’t i iliiﬁ
i (Ekj) i1 '
bbae.aat) :ll:
: n-1 it
! it
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O(Zk.) B ‘i Lo St
k‘;a+2kj+°;ti,t)"BGWD(a;ki, ; kj;p)
i) ) J#i

(vi) The proof of this property in an immediate consequence of (v)
(see Xekalaki, 198ka),

L T

Hence, as impiied-bj'propefties (i), (ii) and (iv), the
marginal distributions (conditional and unconditional) as well
as their convolution are: of the same form (UGWD's).. This fact
is very interesting from both .the theoretical and the
practical viewpoints. Theoretically, these properties exhibit
e symmetry analogous to that'existing in the case of the
multivariate normal distribution. To appreciate the practical
value of them consider an accident situation. Then properties \
(i), (ii) end (iv), imply that the distribution of accidents
within the entire éeriodvof;observation and the distributions
of accidents within non-overlapping subperiods are of the
same form and yet the, individual's performances in the various
subperiods are correlated. oy y

Another 1nterest1ng fact 1s‘that propositions(iv) and{vi)
are equivalent in the case -s=1 and this implies that the’
conditional distribution of Xi does not depend on the indi-

vidual values of‘thé‘éonditionihg r.v.'s but on their sum,i.e.

X, |[X.,J#1}d X. l z X.. This in turn implies(taking into

_account relat10nsh1p(1 3)) that' t)
I R (a+.§.xj)ki
BOX; | (=, ,5#1} ) E(x | I x.= ¥ x)e—df
L é#ivazj#i 7 e ] kg
. [P j#i ']

%

. il :
k.(a+ ) x.)(pt)k.-1)(a+ § !k.+x.)+o~1)
. jgi J g J .5&1 57
o+ 2 x.=1)(p+ | k.-2)
ST R

XEKALAKI

-
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5 ' s
From proposition{i) it follows that the marginal means and
variances are for p>1 and p>2 respectively

ak e.ki(p+a—1)(o+ki-1)

i 2 , .
——,0.= , 1i=1,2,.4.,0, « (3.2)
pm1 Xy (p-1)2(p-2)

Yx.©
1

Also from proposition (iv), for s=2 the covariances are
{see Xekalaki, 198la)
a(a+p-1)kik.

X;%5 sl 1,5=1,2,00 0,031,052 (3.3)
I (p-1)%(p-2) ‘

The fact that o

g

X.X exists only if p>2 implies that the
i%j

components of X are always positively correlated.
The factorial moments of the MGWD(a;k;p) can be obtained, for

ri=0,1,2,;..;i=1,2,...,n by thg formula

n
a
(3r.) m (k)
rs goq 1 (ri) (3.1)

i =
(rysrpseeesty) (o—1)(p-2)...(p-iri)

n
Obviously, they are finite only for e> z r. which is the
i=1

necessary condition for the series

FD(é4‘i-ri;k1+r1,...,kn+rn;a+p+'§ (ki+ri);1)
1=1 o i=1
to be convergent.

The mode of the MGWD(ajk;p) will now be located using
Janardan and Patil's (1970) technique.They followed an epproach due
to Moran to locate the mode x for various multivariate discrete

distributions with the assumption that a< 2 x;<B for some a,B>0,
i
to reduce the number of modes.

Moran's condition for x to be a mode of a multivariate dis-

X

crete distribution with p.f. p_ is

P -
x1,...,xi~1,xi+1,xi+1,...,xj_1,xj 1,xj+1,...,xn

px1,x2,...,xn

<1, 1,351,2,000,00
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Following this definition we have.for the MGWD(a;k;0)that
§=(x1,...,x )is a mode if and only.if

T
(k )(x +1)(k )(x 1))( lx ! L

< 1

(k. )(x )(k )( )(x +1)!(x.—l)l 2

P
AN R ,':_J,.rz

or equlvalently if and only 1f R

x5 (k.—1)<(1+x )(k -1), 1,3=1,2,...,n0. 0 (3.5)
Giooon AL
:.}.1A| s \ :’t‘
If we also impose the restrlctlon a< 2 X,;<B we have from
. . CE i DL gstiatn Ti=1

(3.5)by summlng over all i that

x5 { 2 k.—n)<(n+ X x. (k.—1) (n+B)(k -1)

¢ .A e

vwhich 1mp11es that

. 5 5 S IS .

n . L .
x5 <(n+8) (ks=1)/( { k.-n),j=1,2,...,n. (3.6)
On the other hand, summlng both sides of (3.5) over j we

obtaln A N
e P TL T ROV R
n : tid n
(_Z kj'“)('+xi)3(ki'1).I xjf(ki—l)a.
j=1 i J=1 -
Hence, D d f.' ﬁ.'; N‘,.—
Pty e :

x;>- 1+a(k.—1)/(2k -n), i=1 2,...,n (3.7)

Thus, from (3.6)and(3.7) it follows that the mode x of the
MGWD(a;%;p)‘satisfies the inequalities

—1+a(ki—1)/(ij;n)fxif(n+s)(ki-j)/(ij~n), i=1,2,...,n
: J 2 A R d .
n
where a,B are positive constants satisfying a< z X, <B.
i=1

s . FREE M Lt ',..
Flnallv, u51ng(3 1) it can be ea511y shown that the p.g.f. of
the MGWD(ajk;p) satisfies the second order partial differential
equations = I

T B
f
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2 n
t.(1-t,) G (t)+(1—t ) [ b — 6 (t)+[a+ ) x +o-
i i 3ti j#i J Btiatj | X- 2=1 A
(a4l +1)t, ] G (t) k; 2 b 3 Gy (t) -ak, G (t)—o i=1 2,...,n.
i J B

4. THE MGWD' IN RELATION TO ACCIDENT THEORY

Let us now examine how the multivariate distribution defined
in section 2 may arise in the context of accident theory. ;

Consider a population of individuals whose accident proneness .
over a period of observation is represented be the r.v. v. Assume
that the period of observation is split into n non—overiapping
subperiods and let ki|u represen# the accident liability of the
individusls for subperiod i (i=1,2,...,n),Then, the numbers
X, ,X

1, 2""’
proneness (v) and liabilities (xilv, i=1,2,...,n) over the n

X, of accidents incurred by individuals of the same

subperiods can reasonably by regarded as independent Poisson
(Ailv) r.v. 's with joint p.g.f.
x t "'1 +|-u+x tl —1
. (£)me o ) ot
Z{l?g,“ ~

Suppose that the liability parameters Ailv’ i=1,2,...,n vary

! 2,30, i=1,2,...,n RUR)

independently among individuals of the same accident proneness v

and let their joint probability density function {(p.a.f.) be
B
n \)-ki - %Ai ki~1
f{A|v)= 1 TET© A k;%0, i=1,2,...,n
i=1 T8y

Then, the distribution of sccidents for individuals with the same

(4.2)

proneness is the multiple negative binomial with parameters k=

(k1""’kn) end p=1 v/(1+v),i.e.

n
_ -k,
lev(g)-.n (1+v(1-t.)) i . (4.3)
-~ 1=1 . :
Suppose further that the accident proneness parameter v varies

from individual to individual according to a beta distribution of .

the second kind(Pearson type VI) with p.d.f.
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I(a+p) ' s 1(1+v) -(a+p)

I'(a)r{p 18>0, 020,

s(v)=
“ h ;‘."(

Then, the resultlng accident dlstrxbutlon over the n subperiods of

observation will have p.g.f. G (t) =K (G | (t)):

‘h R l

P(Org) T
T_——j——___— FD(a,k ,...,
(I;) R

) . "'\. o DA .
That is, the joint distribution of the numbers X1,X

:\;‘.»4
’

a+p+'{k ;£)-MGWD(askse). (k)

preees X
of accidents incurred by individuals with varying accident
proneness and expdsedrto‘variablejexternal risk of accident over
n non-overlapping time periods isithe MGWD(a;k;p).

Note.that interchanging the .forms of the distributions of the
liability .and proneness parameters.leads to the same accident dis~,
tribution. i,e, if:{;&h=br:r;,md: . .

Il [ ,u S VI ST ';3,3 i [

| T(o Zk ) n x ki-1 “n g ~(ptlks) -n
£ U)W e b
st
p,A.;ki$0, i=1,2,...,n .

and

the final accident distribution.is again the MGWD(a;k;o).

At this point,;itﬁis worth mentioning that the accident‘model
considered in this section allows .for.differences in the exposure
to external risk from person to person within each period as well
as for differences.in the pisk’exposﬁre of the same person between

periods, Accident proneness is assumed to differ from person to

person within each period but is regarded constant for a given
person throughout the ‘entire period'of observation. Of course, the
contribution of & person's accident proneness to the person's
accident experience is not expected to be the same for each period

of observation, In fact, as demonstrated in the sequel, using the

A T Y e e e b

; MGWD one can assess the significance of the contribution that
accident proneness, accident liability and chance have had in a
given situation for each of the time intervals considered a8 well

88 for the whole time period,' 'tf:v /1

L
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Suppose that & period of observation is divided into n non-
overlapping sub-periods and that the MGWD(a;E;p) describes -
satisfactorily the resulting multiveriate accident distribution.
Then, since the accident distribution for the entire period is the . .
uGWD(a, Zk +p) the variance 02 of the total number of accidents in:: !
the overall perlod ¢an be partltloned into three additive componentsE
due to accident proneness (Uv), accident liability (OA) and chance

(og) e,

02=o§+0\2)+0§ (ll -5) ; .
(see Irwin(1968)) where ¥
ala+1) Z ki ala+p- 1)(1§1k ) 2 ai§1ki - ”
N T2y (o-1)2(p-2x % P i

Inspecting these formulae one can observe that, for n=1 they
cannot provide distinguishable estimates for oi and 03. As Irwin -
(1968 )pointed out, this is the result of the fact that the UGWD
(a,k;p) is symmetricel in a and k(ugwD{a % ;p ) ~UGWD(k,a;p)) which
implies that any method of parameter estimation will lead to two

solutions for a and k. So, Irwin(1968) had to decide judging from . i

extra information he had concerning the individuals under obser- e
vation. However,Xekalaki (1984a) showed that if the observations ' g
can be rearranged in a blvarlate form, one does not have to resort ‘f}‘”
to personal judgement by using the BOWD({case n=2) since then the ’

question of symmetricity does not arise. This is also the

case with the multivariate version of the generalized Waring‘disL
tribution. Relation (2.8) indicates that the MGWD {ajk;jp) is not i
symmetrical in a and ki(i=1,2,...,n) and hence distinguishable : - o
estimates can be obtained for the lisbility and proneness } !
components of the variance through relationships (k.6). By an
argument analogous to that used by Xekalaki (1984a) for the ' %‘
bivariate case one can have a further breakdown of the varisnce
components due to liability, proneness and chance into components '; iy
corresponding to the subperiods of time considered. Table I

summarizes the results.
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{“¢ f~quQ_@MmEI“

....

t 2K
i I e R LI RHERIER i

Component Marginal variance Variance of

due to . Jof X;(i=1,2,,..,n): w1 Xy #Xoto 4K
o n
Sape | Q‘ki Lo s e s ,"'_’ . & 2 ﬁ_
Chance : —3:7——-gg [ __ifl_i_
’ ' -1
] ateeeny %2
s s o | B(&EHE=1)( Y X,
| atase-ne2 jo1 9
Proneness 5 s A . Dy
(B-1)%(8-2) o (6-1)°(p-2)
ECTOCNT B
a(a+1)k, Y B a(a+1) Z"
NPT i
Llabllltynt —Y(p-2) ., B (ﬁ—I)(S —Z)
. P S i (RN L SR 4 '.
» a(a+a 1)k (k sp=1) i | alarp-1) Z ﬁa( { KJ+ﬁ -1)
J=1_Y j=1
Total . |, 14} 2
(8- 12 (6=2) (6-1)(-2)

*3 represents an estimator of a parameter 9.°
RSN SN R T B

1 et ' Bl i

Hence, 1f for a populatlon of 1nd1v1duals one can have the
joint frequency dlstrlbutlon of acc1dents over n time perlods,
then one is in a position to estlmate the contribution that each
of the three kinds of factors has hadeln each period as well as in

the entire perlod of observatlon.‘$m .
Note : If we let k* denote the vector that arises by consider-
ing a given permutatlon”of the components k1,k2,...,kn of the
vector k, then MGWD(a;g;p)'MGWD(a;E*;p)..This implies that some
ambiguity may arise in estimating tﬁe components of the n margioal
variances, Howevér, in a manner analogous to that of the bivariate
case, one can observe that éhe random component of the variance
coincides wlth the marglnal mean correspondlng to the same time
period and hence eliminate this amblgulty by selecting k. 80 that
Gg X ; (i refers to period i). i
i .

¢
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