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On Recursive Evaluation of Mixed Poisson Probabilities and 
Related Quantities 

GORDON E. WILLMOT 

Willmot GE. On recursive evaluation of mixed Poisson probabilities and 
related quantities. Scand. Actuarial J. 1993; 2: 114~ 133. 

Recursive formulae are derived for the probabilities of a wide variety of 
mixed Poisson distributions. Known results are unified and extended. 
Related formulae are discussed for transformed mixing random variables, 
shifted and truncated mixing distributions, compound distributions, and 
tail probabilities. Applications of these models are briefly discussed. Key 
words: Pearson system, Pareto, generalized gamma, transformed beta, 
Weibull, Delaporte, Rayleigh, compound distributions, tail probabilities, 
power transformation, Poisson arrival queue, hazard rate, force ofmortality. 

1. iNTRODUCTION AND BACKGROUND 

Mixed Poisson distributions are widely used for modeling claim counts when the 
portfolio is thought to be heterogeneous, and the mixing distribution represents a 
measure of this heterogeneity. See, for example, Biihlmann (1970) or Beard et al. 
(1984). With the exception of negative binomial or Poisson-inverse Gaussian 
distributions (e.g. Willmot, 1987), most mixed Poisson distributions tend to be 
difficult to evaluate, a factor inhibiting their use. Other parametric mixing distribu
tions are considered in Albrecht (1984) and Willmot (1986) and references therein. 

In this paper it is demonstrated that simple recursive formulae hold for the mixed 
Poisson probabilities for a wide variety of continuous mixing distributions, even 
though explicit formulae are complicated. Thus, define 

iX' x"'e-X 
Pm = --,-f(x) dx; m = 0,1,2, ... 

Xo In. 
(1) 

to be the mixed Poisson probabilities where f(x) is a probability density function 
(pdf) and 0 ~ Xo < Xl ~ 00. While (1) may be difficult to evaluate for certain choices 
of j(x) , simple recursive relations may hold (i.e. when (7) below is satisfied). The 
mixed Poisson probability generating function (pgf) associated with (1) is 

P(z) = t Pmzm = rX1 

eX(=-llj(x) dx, Izl < 1. 
m=O J'\"o 

(2) 

In Section 2 a simple technique is presented for the derivation of recursive 
formulae for a wide variety of choices of f(x). In addition to unifying known results 
for distributions such as the negative binomial, Sichel's distribution (gamma and 
generalized inverse Gaussian mixtures, respectively), and the Poisson-beta mixture, 
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Scand. Actuarial J. 2 Recursive evaluation of mixed Poisson probabilities 115 

other mixing distributions such as the Pareto and generalized Pareto are considered. 
The situation where the hazard rate or force of mortality of the mixing distribution 
is a ratio of polynomials is discussed. 

Power transformed mixing random variables such as the transformed or general
ized gamma and the transformed beta are considered in Section 3. In addition, 
inverse random variables such as the inverse gamma are also discussed. 

In Section 4 it is shown how the results may be easily extended to shifted mixed 
distributions, an example being the Delaporte distribution (e.g. Schroter, 1990) as 
well as truncated mixing distributions such as the truncated normal and the 
truncated gamma. Compound mixed Poisson recursions are discussed in Section 5. 

Evaluation of the tail probabilities, 

,'lj 

gm = L Pk; 111 = 0, 1, 2, ... 
k=m+ 1 

with generating function (e.g. Feller, 1968, p. 265) 

~ _ 00 _m _ PC;;) - 1 
G(.<o) - m"Y;o g1ll~ - Z - 1 

is considered in Section 6 along with applications to queueing theory. Define 

F(x) = fl fey) dy 

( 3) 

( 4) 

(5) 

(with the understanding that F(x) = 1 if x < Xo and F(x) = 0 if x > XI) to be the 
survivor function of the mixing distribution. It is well known and easily shown 
(using integration by parts on (2), for example) that 

( 6) 

Further remarks and extensions are considered in Section 7, including an 
exponential-inverse Gaussian mixture (e.g. Bhattacharya & Kumar, 1986). 

2. A GENERAL RESULT 

In this section a fairly general method is proposed for the derivation of recursive 
formulae for the evaluation of mixed Poisson probabilities. The basic methodology 
is presented, and various examples are given which both unify and extend known 
results. 

Consider the mixed Poisson probabilities defined by (1) with pgf (2). Suppose that 

i 

" tl x" d () L...,.. 
_ log/ex) = 1'/ x = _n c--~ 0 __ 

dx I/I(x) ± I/Inx" 
(7) 

11=0 

Densities which satisfy (7) are a generalization of the Pearson system (e.g. Ord, 1972, 
pp. 8-9) since d/dx logf(x) may be expressed as a ratio of polynomials. For 
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116 G. E. Willmot Scand. Actuarial J. 2 

notational convenience, let k = max(i,j) and define "In = 0 for n ¢ (0, 1,2, ... , i) 
and ljJ" = 0 for n ¢ (0, 1,2, ... ,j). Then '1(x) and ljJ(x) may be assumed to be 
polynomials of degree k. 

Note that 

d 
dx {eX<Z- 11"(X)ljJ(x)} = e* -IY(X){zljJ(x) + ¢(x)} (8) 

where 

k 

¢(x) = L ¢"x" = '1(x) + ljJ'(x) -ljJ(x). (9) 
n=O 

Obviously, one has from (9) that 

¢" = "In +(11 + l)ljJn+l-ljJlI; n =0, 1,2, ... , k. (10) 

One may then integrate (8) over (xo, XI) to get the differential equation 

k 

L {zljJ" + ¢" }pC"J(z) = f(XI)ljJ(xI)eXICz-IJ - f(xo)ljJ(xo)eXo(Z-I) ( 11) 

where p(n)(z) = S:~b x"e xcz -IY(X) dx is the nth derivative of P(z) = P(OJ(z). One 
may equate coefficients of z'" in (11) to get a recursive formula for the coefficients 
{p",;m =0, 1,2, ... }. 

After some rearrangement, this yields the recursion 

k 

L {¢n +mljJ,,+I}(m +n)!Pm+n =f(xdljJ(xdx'i'e-·~1 -f(xo)ljJ(xo)xo'e- xo. (12) 
n= -1 

In (12), P_I = 0, x o' is interpreted as 1 if Xo = m = 0, and x'j'e- x1 is interpreted as 
o if XI = 00. 

Note that (12) may be re-expressed as 

k 

L {¢1I + mljJ,,+ I}(m +n)CnPm+n =f(x\)ljJ(xdh",(xI ) -f(xo)ljJ(xo)/z",(xo) 
n= -1 

where aCb) = nf~ I (a + 1 - i) and hm(J.) = J."'e -!.Im! is a Poisson probability. 
Analogously, (11) may be written as 

k 

L {zljJn + ¢n }pCnl(z) = f(xdljJ(xI)P"1 (z) - f(xo)ljJ(xo)Pxo(z) 
n=O 

where P;.(z) = e!.(;;-I) is a Poisson pgf. 

Also, one can always arrange that (12) be a homogeneous difference equation 
(i.e. that the right hand side of (12) is identically 0). If the numerator and 
denominator of (7) are each multiplied by X - Xo then ljJ(xo) = 0 and the terms 
involving Xu on the right hand side of (11) and (12) both vanish. Similarly, 
multiplication by x - XI results in ljJ(xl) equalling 0 and multiplication by 
(x - xo)(x - xd causes ljJ(xo) and ljJ(XI) to each be O. This does, however, result in 
a differential equation of order k + 1 or k + 2 rather than k, however. 
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Scand. Actuarial 1. 2 Recursive evaluation of mixed Poisson probabilities 117 

Alternatively, if one has already derived the nonhomogeneous equation (12), the 
homogeneous equation may be obtained from it. Equation (11) may be differenti
ated, and subtraction of ( 11) multiplied by Xo from it eliminates the term involving 
Xo. The term involving XI may be eliminated in a similar manner. 

Some examples of the use of (11) and (12) are now given. 

2.1. Negative binomial distribution 

Suppose that the mixing distribution is the gamma distribution with 

f1.(f1.x)' - Ie -IL~ 
f(x) = r(0() ,x > 0 

where f1. > 0 and 0( > 0 so that Xo = 0 and XI = 00. One has 

d O(-l-f1.x 
~d logf(x) = . 

X X 

Thus l/J(x) = x and (9) yields ¢(x) = 0( - (1 + f1.)x. Then (II) becomes 

;:P '(z) + O(P(;:) - (1 + f1.)P '(z) = 0, 

and (12) is the usual negative binomial recursion (e.g. Panjer & Willmot, 1992) 

(m + O()p". = (1 + f1.)(m + 1 )p", + I ; m = 0, 1, 2, .... 

2.2. Sichel's distribution 

o 

If the mixing distribution is the generalized inverse Gaussian distribution with pdf 

x 2 +112 

. f1. -'X,-Ie -~-

f(x) = 2K.(fL/l- I ) , x >0 

where {t > 0, fJ > 0, and - 00 < Je < 00 then the resulting mixture is Sichel's 
distribution (e.g. Panjer & Willmot, 1992). The Pois~on-inverse Gaussian distribu
tion is the special case Je = -1/2. Now 

!!..l "(. _ fL2 + (Je - 1)2fJx - x 2 

dx ogj x) - 2fJx2 

Thus one may set l/J(x) = 2/lx 2 and so 

¢(x) = fL2 + 2/l(), + l)x - (1 + 2fJ)X2. 

Hence from (11) one obtains the second order differential equation 

2fJzP"(;:) + f1.2P(Z) + 2fJ(Je + l)P'(z) - (1 + 2fJ)P"(z) = 0, 

and (12) is the well-known recursion (e.g. Willmot & Panjer, 1987) for 
m = 2,3 ... , (1 + 2fJ)m(nz - l)Pm = 2/l(m - l)(m + Je -1)Pm_1 + fL2Pm _2 . 0 

2.3. Poisson beta 

If 

. reO( +fJ) X·-I(fL -X)P-I 
f(x)=r(O()r(fJ) fLo+P-I ,0<X<f1. 
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118 G. E. Willmot 

where 0( > 0, {3 > 0, and 11 > 0 then with Xo = 0, XI =)1, one has 

!i 1 I . _ (0( - l)IL - (0( + (3 - 2)x 
og (x) - . 

dx X(,L - x) 

Thus one may choose tjJ(x) =)1X - x 2
, yielding 

cjJ(x) = 110( - (0( + (3 + p)x + x~ 

and so (11) becomes 

Z {)1P'(:;) - P "(z)} + 1100P(Z) - (0( + (3 + IL)P '(z) + P "(z) = O. 

Also, (12) becomes 

(m + 2)(m + I)Pm+2 = (m + l)(m + 0( + (3 + I1)P",+ 1-11(0( + m)p", 

Scand. Actuarial J. 2 

in agreement with Willmot & Panjer (1987). Note that boundary conditions are 
obtainable from the explicit expressions for the pgf and probabilities in terms of the 
confluent hypergeometric function M( .) (e.g. Abramowitz & Stegun, 1965, p. 504), 
namely 

P(z) = M{O(, 0( + (3, )1(z -l)} 

and for m = 0, 1, 2, ... 

I1mr(O( + fl)r(O( + m) 
p - M(O( + m, 0( + (3 + 111, -11) 

In - rem + 1)r(O()r(O( + (3 + m) 

_ IL'" e -~rcO( + (3) r(0( + m) f3 (3 
- M( ,0( + + m, IL). 

I(m + l)r(O()r(O( + (3 + m) 

If 0( = 1, then the choice tjJ(x) = IL - x implies that cjJ(x) = x - (11 + (3) and (11) 
becomes {I1Z - ()1 + (3) }P(z) + (1 - z)P'(z) = - {3. Differentiation of this equation 
gives the above equation with 0( = I and hence the same recursion, but this latter 
form yields the additional information (with z = 0) that PI = (11 + fl)po - (3. In this 
case the factor m + 1 drops out and the distribution belongs to the class studied by 
Sundt (1992). On the other hand, if (3 = 1, then the choice tjJ(x) = x implies that 
cjJ(x) = 0( - X and (11) becomes O(P(z) + (z - l)P'(z) = O(e~(=-l). This yields the 
recursion (rn + l)Pm+ 1= (m + O()p", - O()1"'e-~/m! for In = 0,1,2, .... As discussed 
following (12), the term O(el.(=-I) is eliminated by the original choice tjJ(x) = X(11 - x) 

yielding the original recursion with {3 = 1. 0 

2.4. Pareto and generalized Pareto mixtures 

Consider the generalized Pareto mixing density (e.g. Hogg & Klugman, 1984) 

nO( + (3) IL'X# - I 

I(x) = r(0()r({3) (IL + x)-+P' x> 0 

where 0( > 0, {3 > 0, and 11 > O. Then 

!i I I' _ ({3 - 1)11 - (0( + l)x 
~ ~)- .' 

dx X(I1 + x) 
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Scand. Actuarial J. 2 Recursive evaluation of mixed Poisson probabilities 119 

Hence, r/I(x) = J1.X + x 2 and (9) yields ¢(x) = 1311 + (1 - IX - J1.)x - x 2. From (11) 
one obtains 

[3J1.P(Z) + {,IZ + (1 - IX - II)}P '(;:;) + (z - I)P 1/(;:;) = 0 

and (12) becomes for m = 0, 1,2, ... 

(m + 2)(m + I)Pm+2 = (m + 1)(m + 1 -IX -11)Pm+ 1 + II(m + {J)Pm. 

To begin the recursion, one has from formula (13.2.5) on page 505 of Abramowitz 
& Stegun (1965) that explicit expressions for the probabilities are given for 
In = 0, 1, 2, ... by 

11"'r(1X + f3)r(m + [3) 
Pm = r(1X)r([3)r(m + 1) U(m + [3, m + 1 -IX, II) 

where U(·) is the confluent hypergeometric function of the second kind. Also, for 
large rn one has the asymptotic formula (Willmot, 1990a) 

r(IX+[3),I" -0-1 

Pm ~ r(1X)r([3) In , 
m --+ 00. 

Similarly, the pgf (2) is 

_ _ r(1X + [3) r _ 
P(.;,)- . U l [3,I-IX,J1.(l- .. )}. 

r(cx) 

The Pareto distribution is obtained with 13 = 1. In this case one has r/I(x) = J1. + x 
and, from (9), ¢(x) = -(IX+J1.)-X. Thus, (11) becomes 

{J1.= - (IX + J1.) }P(2") + (2" - 1)P'(.::) = -IX. 

Differentiation yields the first differential equation with [3 = 1, but this latter form 
yields the additional information (with;:; = 0) that 

PI = IX - (IX + J1.)Po. 

In this case (12) becomes for m = 0, 1,2, ... 

(m + 2)plIl+~ = (m + 1 -IX - J1.)Pm+ 1 + IIPm 

and the distribution belongs to the class studied by Sundt (1992). D 

2.5. Polynomial ratio hazard rate mixtures 

In general, one may express the pdf f(x) in terms of the force of mortality or hazard 
rate p(x) as 

f(x) = J1.(x)e -fJ I'(Y) dy 

(e.g. Lawless, 1982). Thus one has 

d . {d }. dx logf(x) = dx log p(x) - II(X). 
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120 G. E. Willmot Scand. Actuarial J. ~ 

If 

r 

8 ") L 8"x" 
(x n~O 

Il(X) = -" = ---;---
y(x) k 

LYnX" 
n=O 

then 

~ I _ 8'(x)')'(x) - 8(x)y'(x) - {8(x)}2 
dx ogf(x) - 8(x)y(x) 

and so one may derive a recursive formula with t/J(x) = 8(x)y(x). Polynomial hazard 
rate models (including linear hazard rate models such as the Rayleigh) are of this 
form (e.g. Gross & Clark, 1975). 

Various transformations on the mixing random variable or the mixing density 
preserve the form (7). Examples include scale transformations, posterior densities in 
mixed Poisson processes (e.g. Willmot & Sundt, 1989b). as well as power trans
formed mixing random variables (Section 3 below) and shifted and truncated 
mixing distributions (Section 4 below). 

3. POWER TRANSFORMED MIXING RANDOM VARIABLES 

Property (7) is often preserved under various transformations on the mIxmg 
random variable. In other words, if X has pdf f(x) which satisfies (7) and Y == d(X) 

with pdff*(y), thenf*(y) satisfies (7) for various choices of de). 
An important class of transformations is the class of power transformed mixing 

random variables. In this case, the pdf is of the form iclx c
- ~r(x<) wheref(-) is itself 

a pdf. If X has pdf f(x), then XI!e has this pdf. If (7) holds. then one has 

d I I I"" C - 1 . I ",(XC) -log.r c X c - f(X<)l = -- + CX<- --. 
dx l J x t/J(X C

) 

(13) 

If c is an integer then (13) may also be expressed as a ratio of polynomials and the 
results of the previous section applied. Some examples are now given. 

3.1. Transformed or generalized gamma mixtures 

The transformed gamma distribution is obtained by a power transformation on a 
gamma random variable with density given in Example 2.1. Thus one has 

where I-l > 0, c > 0, and IX > O. 
This distribution is considered by Hogg & Klugman (1984) and Lawless (1982). 

The Weibull is obtained with IX = 1 and the gamma with c = 1. The resulting 
mixed distribution is thus a generalization of the negative binomial distribution. 
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Scand. Actuarial J. 1. Recursive evaluation of mixed Poisson probabilities 121 

One has 

~ 1 f(·) = (CIX - 1) - ILCX
c 

d
Og x . 

x x 

Thus if c is a positive integer one may set !{I(x) = x and then (9) glves 
¢(x) = CIX - X - !LCX c

• From (11) one obtains the differential equation 

zP'(::) + ClXP(:;) - P'(::) -ILCP(c)(;:) = 0 

and from (12) the recursive formula 

flC{"rJl (m + i) }Pm+c + (m + I)Pm+l = (m + crx)Pm· 

The usual negative binomial recursion is recovered when c = 1. D 

3.2. Transformed beta 

Consider the transformed beta pdf 

1(rx + fi) CJ1.'X,P-l 
f(x) = l(rx)l(m (J1. + XC)>+fJ' x> 0 

where rx > 0, f3 > 0, J1. > 0, and c > 0 (e.g. Hogg & Klugman (1984, p. 185) or 
Panjer & Willmot (1992, pp. 122-123»). The generalized Pareto (c = 1), the Pareto 
(c = 1, f3 = 1), the Burr (f3 = 1), and the log-logistic (f3 = 1, rx = 1) are special cases. 
Since 

~ 1 f(· _ J1.(cf3 - 1) - (1 + crx)XC 
og ."\) - l' 

dx !LX + x c
+ 

it follows that for c a positive integer, one may choose !{I(x) = J1.X + XC + I. Then 

¢(x) = Cf3!L - !LX + c( 1 - rx)x'" - xC+ 1 

and so one obtains 

(z - 1){J1.P '(;:) + p(c + I)(;:)} + cflfLP(Z) + c(1 - rx)P(c)(z) = O. 

Hence one obtains for m = 0, 1,2, ... 

{
c+ 1 } { C} 
)](m+i) Pm+c+l= {m+c(l-rx)}Dl(m+i) Pm+c 

- !L(m + I )p,., + 1 + p(m + cfJ)p",· 

In addition, one has the simple asymptotic formula (e.g. Willmot, 1990a) 
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122 G. E. Willmat Scand. Actuarial 1. 2 

It is worth noting that if cf3 = 1, one may choose ljJ(x) = /l + XC and 

¢(x) = -~L - {I + C(IX -1)}x C
-

1 - Xc. 

This yields the differential equation 

Differentiation yields the first differential equation, but this latter form yields the 
additional information (by setting;: = 0) that 

( 1) I-~ 
rlX+~~L C { I} /l 

Pc = (1)- IX -1 +~ Pc-I- c!Po. 
c!r(ct)r 1 +-

c 

D 

An important subset of this class is the set of inverse transformations obtained with 
C = - 1. In this case (13) becomes 

2 11(X- I
) 

X x 2ljJ(X- I)· 

This expression is easily expressed as a ratio of polynomials by multiplying by a 
sufficiently high power of x. Many distributions correspond to this case such as the 
inverse Weibull, inverse transformed gamma, and the following distribution. 

3.3. Inverse gamma 

Consider the reciprocal of a gamma variable with pdf given m Example 2.1. 
Then 

where /l > 0, IX > 0 and 

d . /l - (IX + l)x 
dx logf(x) = x2 . 

Thus ljJ(x) = x 2, implying that ¢(x) = /l + (1 - ct)x - x 2 and (11) becomes 

/lP(z) + (1 - IX)P '(z) + (z - l)P "(z) = o. 

In this case one has for In = 0, 1,2, ... 

(m + 2)(m + I)Pm+2 = (m + 1)(m + 1 -1X)Pm+ 1 + /lPm. 
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Scand. Actuarial J. :2 Recursive evaluation of mixed Poisson probabilities 123 

Explicit expressions for PC:;;) and {P,,, n = 0, 1,2, ... } are obtainable in terms of the 
modified Bessel function of the third kind (e.g. J0'rgensen, 1982). Thus one obtains 

and for m = 0, 1, 2, ... 

m+et 

2J1.-2-K",_,(2J/t) 
Pm = . 

r(cx)r(m + 1) 

Also, it follows from Willmot (1990a) that 

J1.' -.-1 
Pm ~ r(CX) 111 ,In -> 00. 

As mentioned by J0'rgensen (1982), the reciprocal gamma distribution is a limiting 
case of the generalized inverse Gaussian distribution, implying that the present 
mixed distribution is a limiting case of Sichel's distribution (2.2). 0 

4. SHIFTED AND TRUNCATED MIXING DISTRffiUTIONS 

Other transformations also preserve the form (7). One such operation involves 
shifting the density f(x) , leading to a mixing density of the form f(x - ,1.0), 

Xo + ,1.0 < x < Xl + ,1.0. In this case (2) is replaced by 

which implies that the mixed distribution is the convolution of a Poisson distribu
tion with mean Ao and the mixed distribution mixed by the unshifted pdf f(x). 

If f(x) satisfies (7), then 

i 

L 17~X" 
d I f( 1 ) _ '7(x - Au) _ .11. ~-=-o __ - og x - An - . --. 

dx ljJ(x - ,1.0) f ,/,* " 
~ '/In X 
n~O 

(14) 

where {'7~,'7i, ... ,'7n and {ljJ~,ljJi,.·.,ljJn are constants. Thus, (14) is of 
the same form as (7), implying that a differential equation of the foml (II) holds 
for the pgf. As in the discussion following (12), one may wish to eliminate any 
non-zero Poisson terms by multiplying the numerator and denominator of (14) 
by one or more of the factors (x - Xo - ,1.0) and (x - Xl - ,1.0). In addition, it is 
worth noting that if the mixed Poisson distribution with un shifted mixing distribu
tion belongs to the class studied by Sundt (1992), then a recursion for the mixed 
Poisson distribution with shifted mixing distribution may also be found using the 
techniques described in Section 4 of that paper. This is the case in the next two 
examples. 
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124 G. E. Willmot Scand. Actuarial J. 2 

4.1. Delaporte's distribution 

Ruohonen (1988), Willmot & Sundt (1989a), and Schr6ter (1990) considered the 
mixture by a shifted gamma distribution with pdf 

where j1. > 0, IX > 0, and Aa > O. Thus, 

~l f( _1X-1+j1.Aa -j1.X 
d

. og x) - .' , 
x x - lea 

implying that one may choose ljJ(x) = x - Aa, and so ¢(x) = IX + Aa( 1 + It) -
(I + j1.)x. Thus the pgf P(z) = eAot=-I){l- j1.-I(Z -1)}-" satisfies 

{-AoZ + IX + AaO + It)}P(::) + {z - (l + j1.)}P'(z) = 0, 

and equating coefficients of zm yields (with P -I = 0) for 111 = 0, 1, 2, ... the recur
sion of Schr6ter (1990), namely 

(1 + j1.)(m + I )Pm + 1 = {IX + AaC 1 + It) + m }Pm - AaPm _ 1 • o 

4.2. Shifted Pareto 

Albrecht (1984) considers the Poisson mixed over the density 

f(X)=~(~r"-I, x>j1. 

where IX > 0 and j1. > O. Evidently f(x + j1.) is the Pareto density in 2.4. Thus the pgf 
is given by 

PCz) =lXe l'(=-llU{I, I-IX,lt(1-Z)} 

and from Albrecht (1984) explicit expressions for the probabilities are given for 
m > IX by 

where r(n, x) is the incomplete gamma function CRogg & Klugman, 1984, p. 219). 
Also, from Willmot (1990a), 

Pm _1Xj1."nz- o - l , m-->oo. 

Since 

d 1X+1 
- logf(x) = - -- , 
dx x 

the choice ljJ(x) = x implies that ¢(x) = -IX - x and from (11), 

IXP(Z) + (1 - ;;;)P'(z) = lXel'(=-ll, 
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Scand. Actuarial 1. 2 Recursive evaluation of mixed Poisson probabilities 125 

leading to the recursion for m = 0, 1,2, ... 

(m + I)PlIl+ 1 = (m - rx)p", + rxJ1.me-~/mL 

The Poisson term may be eliminated by the choice !/I(x) = x(x -II) = x 2 -ltX, 

implying that ¢(x) = J1.rx + (J1. + 1 - rx)x - x 2. Thus one obtains from (11) the 
relation ItrxP(z) + {(It + 1- rx) - J1.;:;}P'(z) + (z -1)P II(z) = 0. This yields the alter
nate formula for m = 0, 1, 2, ... 

(m + 2)(m + I)Prn+2 = (m + 1)(m + 1 + It - rx)Pm+ 1 -It(m - rx)Pm. o 
Suppose that the mixing distribution is obtained by truncating a known density, 

i.e. the mixing distribution is of the form Kf(x) , x~ < x < xi where 
K- 1 = J::~f(x) dx. Clearly, (7) is unaffected by this transformation since 

d r ) d f -d 10g1. Kf(x) J = -d log (x) 
x x 

(15) 

and the only change in (11) is the replacement of Xo and XI by x ~ and x r 
respectively. One may wish to eliminate any non-zero Poisson terms in the same 
manner as in the discussion following (12). 

4.3. Truncated gamma 

As an alternative to Ruohonen's (1988) proposal of shifting the gamma density, 
one could consider instead the Poisson mixed by the truncated density 

J1.(ttX),-l e -/lX 

f(x) = { . }' x > Xo l(rx) 1 - l(rx, ItXo) 

where r(rx, x) is the incomplete gamma function (Rogg & Klugman, 1984, p. 219). 
As in 2.1, the pgf 

lx, '(--1)' d It"{1 - r(rx, (J1. + 1 - z).\"o)} 
P(z) = e'· 'f(x) x = '---'~--~-----'--'-

Xo (It + 1 - z)"{1 -l(rx, J1.Xo)} 

satisfies the difTerential equation 

from which one obtains the recursion for m = 0, 1, 2, ... 

(1 + J1.)(m + I)Pm+ 1 = (m + rx)p", + f(xo)X'O'+ le-xo/m L 

Alternatively, elimination of the Poisson term with !/I(x) = x(xo - x) = xox - x 2 

implies that ¢(x) = rxxo - {(rx + 1) + xo(1 + J1.)}x + (1 + J1.)x 2, and, from (11) 

rxxoP(z) + {xoz - (1 + rx + (1 + J1.)xo)}P'(z) + {(1 + It) - z}P"(z) = ° 
from which one obtains the recursion for m = 0, 1, 2, ... 

(1 + J1.)(m +2)(m + 1)Pm+2 =(m + l){m + 1 +rx +xo(1 + J1.)}Pm+l -xo(m +rx)Prn. 
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126 G. E. Willmot 

4.4. Truncated normal 

Suppose that the Poisson mixing density is given by 

where <1>( .) is the standard normal distribution function. Then 

d /1--X 
-d logf(x) = -,- . x 0'-

If ljJ(x) = 0'2 then ¢(x) = (/1- - 0'2) - x and (11) yields 

{O' 2z + (II - O' 2)}P(z) - PI(z) = -O'2f(xo)e Xa (=-I). 

Equation of the coefficients of zm yields, for In = 0, 1, 2, ... 

(m + 1 )Pm + 1 = (/1- - O' 2)Pm + O' 2Pm _ 1 + O'2f(xo)x~e -Xalm !, 

Scand. Actuarial 1. 2 

with P_I = 0 and Xo = 1 if Xo = m = O. If Xo > 0 then the choice I/I(x) = O'
2(xo - xl 

implies that 

¢(x) = {Xo(11 - 0'2) - O' 2} - (xo + It - O' 2)x + x 2. 

This results in 

{O'2xoZ + xo(/1- - 0'2) - O' 2}P(z) - {O' 2z + Xo + II - O' 2}PI(Z) + PII(z) = O. 

This yields the alternate recursion, for m = 0, 1,2, ... 

(m + 2)(m + I)Pm+2 = (xo + /1- - O' 2)(m + l)Pm+ 1 

+ {O' 2(m + 1) - Xo(11 - a 2)}Pm - O' 2XOPm_1 

with P_I = O. Explicit expressions for the probabilities to begin the recursion follow 
from the pgf, namely, 

e~I=-IJ+!I.lz-I))2{1 - <1>(0'( 1 - z) + ~)} 
P(z) = () 1 _ <I> Xo - II 

0' 

o 

Similarly, recursions may be derived for other distributions whose support is 
restricted through truncation to non-negative values, including the Cauchy and 
Student's t -distribution. 

5. COMPOUND DISTRIBUTIONS 

Often in actuarial applications one IS interested In the compound distribution 
{qo, ql' Q2, ... } with pgf 

'l0 

Q(~) = L q",z'" = P{ C(z)} (16) 
m=O 
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Scand. Actuarial 1. 2 Recursive evaluation of mixed Poisson probabilities 127 

where C(z) = ~~ ~ 0 c",zm is the pgf of the associated claim size distribution and P(z) 
is given by (2). In general, recursive formulae for {qo, ql, q2""} may be derived 
from the difference equation (12) for {PO,PI,P2""} as in Willmot & Panjer (1987) 
or directly from the differential equation (11). 

In what follows it is assumed that the support of the claim size distribution is 
discrete on the non-negative integers. For continuous claim size distributions, the 
treatment is similar and hence is omitted. 

A straightforward treatment may be accorded the special case of (7) when the 
Poisson mixing density satisfies 

~ logf(x) = '10 + l11 X . 
dx t/lo + t/llx 

(17) 

Then the mixed Poisson pgf (2) satisfies (11), i.e. 

{t/loz + (~lo + t/ll - t/lo)}P(z) + {t/llz + (111 -llt1l}P'(z) 

= (t/lo + t/ll XI )f(xdeX11~-IJ - (t/lo + t/ll Xo )f(xo)e xo(> II. 

If z is replaced by C(=) then a differential equation results for Q(z), namely 

{t/lo C(=) + (110 + t/ll - t/lo) }Q(z)C'(z) + {lit I C(z) + (III - t/ld }Q'(z) 

= (t/lo + t/ll XI )f(xdC'(z)eX,;qzl -I) - (t/lo + t/ll xo)f(xo)C'(z)eXo:C(~I-I;. 

For notational convenience, define 

if) 

C2 (z) = L C~12Z'" = {C(z)j-2, (18) 
117=0 

and 

.Jj {t/lo/(O)C(Z), x = 0 
BxCz) = L b",(x)zln = x-I(t/lo + t/llx)f(x)ex:C(Ol-I:, 0 < x < 00. 

m~O 0, X = 00 

(19) 

Then one has 

('11 - t/ll ){zQ'(;:;)} + t/ll C(z){zQ'(z)} + ~o {zC~(z) }Q(z) 

(20) 

A recursive formula for {qo, ql' q2' ... } is obtained by equating coefficients of zm 
in (20), yielding for nz = 1, 2. 3 .... , 

(21) 

beginning with qo = P( co). If Co > 0 one would have to solve (21) for qm' 
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128 G. E. Willmot Scand. Actuarial J. 2 

From (19), bm(O)=t/lof(O)cm and b",(oo) =0. For xE(O,oo),b",(x)=x- 1 

(t/lo + t/llx)f(x)'m(x) where ~:~o ,,,,(x)zl>l = ex{C(z)-IJ. Evidently, {'o(x), 'I(X), ... } 

are compound Poisson probabilities which may be computed from the usual 
recursion (e.g. Panjer & Willmot, 1992, p. 171), i.e. Lm(X) =m-Ix ~k'~1 kCkLm_k(X) 
for m = 1, 2, 3, ... beginning with LO(X) = e -x(i - co). 

Some examples are now given, some of which may also be derived by applying 
theorem 9 in Sundt (1992). 

5.1. Compound Poisson-truncated gamma 

From 4.3, 

d IX - 1 
- logf(x) = -- - Ji. 
dx x 

and '10 = IX - 1, '11 = - Ji., t/lo = 0, and t/ll = 1. Then (21) becomes 

'" {k } (1 + Ji.)q", = L 1 + - (IX - 1) ckqm-k + b",(xo), 
k~O m 

generalizing the usual compound negative binomial recursion since b",(O) = O. The 
recursion begins with qo = P(co) where P(z) is given in 4.3. D 

5.2. A compound Poisson-beta mixture 

Willmot (1986) considered the Poisson mixed over the beta (2.3) with IX = 1, i.e. 

[3(Ji. - x)fJ- I 

f(x) = p , 0 < x < Ji.. 
Ji. 

One has 

~ logf(x) = 1 - [3 
dx Il-X 

and so '10 = 1 - [3, '11 = 0, t/lo = Ji., and t/ll = -1. Then (21) becomes 

_ m {( k ) Ji. k *2} q",- L 1+-(Ji.+[3-1) Ck-~-Ck qm-k-[3c",. 
k~O m ~ m 

5.3. Compound Poisson-Pareto 

As in 2.4, if 

f(x) = 1XJi.·(Ji. + x) -.-1, x> 0 

then '10 = -(IX + 1), '11 = 0, t/lo = Ji., and t/ll = 1. Then (21) becomes 

'" {( k ) It k } q",,= L 1--(l+IX+lt) Ck+-
2
·- ct 2 qm_k+ IXC",. 

k~O In 111 

5.4. Compound Poisson-truncated normal 

From 4.4, '10 = Ji., '11 = -1, t/lo = a 2
, and t/ll = o. Thus (21) yields the recursion 

m k { (J2} 
qm = L - (Ji. - ( 2)ck + -2 ct 2 

qm-k + bm(xo). 
k~Om 

D 

D 

D 
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Scand. Actuarial J. 2 Recursive evaluation of mixed Poisson probabilities 129 

5.5. Compound Delaporte 

From 4.1, '10 = ex - 1 + /1Ao, '11 = -/1, t/lo = -Ao, and t/ll = l. Thus (21) becomes the 
recursion of Schroter (1990), namely 

o 

5.6. Compound Poisson-shifted Pareto 

From 4.2, '10 = -(ex + 1), '11 = 0, t/lo = 0, and t/ll = l. Thus from (21), 

o 

6. TAIL PROBABILITIES AND APPLICATIONS 

One can always derive a recursive formula for the tails (3) from the recursion for 
the original probabilities by virtue of the relation (4) which may be rewritten as 

P(z) = I + (z - I)G(z). (22) 

Differentiation of (22) yields, with G(O)(z) = G(z), 

(23) 

valid for 12 = 1, 2, 3, .... A differential equation III P(z) may be expressed as 
a differential equation in G(z) by direct substitution from (22) and (23) into (11) 
and a recursion for {g,,; 12 = 0, 1, 2, ... } then derived. One could also insert 
p" = g,,_1 - g" in (12). 

A more direct approach may be used when the survivor function F(x) is of a 
relatively simple form. In these situations (6) may be employed. 

Define 

00 exo(~-I)-1 

A(z) = L (/",zln = ----
m~O Z - 1 

(24) 

Then 

cY~ 

am = L In =0, 1,2, ... (25) 
j~m+ 1 

and (6) may be written as 

Ix! 

-'0 ex(~-I)F(x) dx = G(z) - A(z). (26) 

In general, it is known that 

(27) 
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130 G. E. Willmat Scand. Actuarial 1. 2 

where J.t(x) is the force of mortality. Thus, if the force of mortality is a ratio of 
polynomials as in 2.5, then 

~ {ex(z-11P(x)y(x)} = ex(=-IJP(x){zy(x) + y'(x) - 8(x) - y(x)}. 

Integration of this expression over the range of support, i.e. (xo, XI), yields the 
differential equation 

max(k,r) 

L {zYn + (n + I)YII+I - (8" + y,,)}{G(n)(z) -A(IIJ(Z)} + y(xo) exo(~-IJ = 0 (28) 
n=O 

since P(xd = 0 and p(xo) = 1. In (28), it is assumed that G(O)(z) = G(z), 
A (Ol(z) =A(z),Yn =0 if n!j:{0,1,2, ... ,k} and 8n =0 if n~{0,1,2, ... ,r}. A 
recursive formula for {gil; n = 0, 1, 2, ... } is easily obtained from (28) by equating 
coefficients of zn. 

It is worth noting that in this case, (28) is normally a lower order differential 
equation than would be obtained by first using IjJ(x) = 8(x)y(x) to obtain a 
differential equation for P(z), and then using (22) and (23) to obtain one for G(z). 

Mixed Poisson distributions of this type arise naturally in connection with 
Poisson arrival queue length distributions. Models of this sort have been used in 
connection with loss reserving (e.g. Willmot, 1990b). For example, for the M/G/l 
queue length distribution, assume that arrivals occur according to a Poisson process 
with rate .Ie and service occurs according to the service distribution function F(x) 

with mean II. Let p = .leJi. < 1. Then the equilibrium probability generating function 
of the number in the system may be expressed as (e.g. Tijms, 1986, section 4.4.3) 

Q(z) = 1 - p + pzH(z) 

where 

H(z) = -'---( l_--'-p_)K----'(---'-z) 
1 - pK(z) 

and 

r'" "- {1-F(X)} K(z) = Jo e' "'(- - I) It dx. 

(29) 

(30) 

(31) 

Evidently, (31) is essentially of the form discussed in this section, so if the service 
time hazard rate is a ratio of polynomials, the coefficients of K(z) may be obtained. 
Also, (30) is a compound geometric pgf so the associated distribution may be 
obtained recursively (e.g. Sundt & Jewell, 1981). Finally (29) gives the required 
queue length probabilities. A wide variety of Poisson arrival queue length distribu
tions involving mixed Poisson pgf's of the form (31) are discussed by Neuts (1986). 

7. FURTHER REMARKS 

In this paper it is demonstrated how to derive recursive formulae for a wide variety 
of mixed Poisson probability distributions and related quantities by first obtaining 
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Scand. Actuarial 1. 2 Recursive evaluation of mixed Poisson probabilities 131 

a differential equation for the associated generating function. The approach re
quires polynomial type representations for the density or survivor function. In other 
cases it may be necessary to replace l/J(x) formally by l/J(x, z) in (8) in order to 
derive a differential equation for PC;;). The idea is to select a function l/J(x, .:) such 
that a /8x{ ex(=-Ilj(x)l/J(x, .:)} equals ex(z-Ilj(x) multiplied by a (hopefully simple) 
power series in x and z. Integration then yields a differential equation for P(z). 

7.1. Exponential-inverse Gaussian mixture 

If the mixing distribution is the exponential-inverse Gaussian distribution (e.g. 
Bhattacharya & Kumar, 1986) with pdf 

1"1 (I 2P )1/21 
f(x) =J1.(l +2f3X)-1/2eP' - + x " x >0, 

then 

d 13 1/' - logf(x) = - - J1.( 1 + 2f3x) - -. 
dx 1 + 2f3x 

In this case, however, one may multiply e,·.:(>llj(x) by 

One has 

e<= - IlJ(X)l/J(x, z) = {J1. + (z - 1)(1 + 2f3x) 1/2}e X <" -1)+ ~{1 - (I + 2px)ll'} 

and differentiation with respect to x yields, after some algebra, 

8 _ .. {f3 (;;-1)2 } -8 {e X (--Il[(x)l/J(x,z)}=e-,(--11(x) -(z-I)-p- (1+2f3;-o;;). 
x II J1. 

Integration over (0, 00) yields 

13. (z - 1) 2 
1 - p -.: = - (z - I)P(z) -llP(;;) - {PC;;) + 2f3P'(z)} 

J1. p 

which may be written as 

yielding the recursive formula (by equating coefficient of zm) 

2f3PI = Cll _/12) + (J1.2 + 13 -1)po, 

4f3p"2 = (J1.2 + 513 - l)pI + (2 - f3)po -II, 

and for nz = 2, 3, 4, ... 

2f3(m + l)p", + I = {J1."2+ f3(l +4m) -l}p", + {2-f3(2m -1)}Pm_1 -Pm "2' 

The pgf (2) can be put into a recognizable form by making the change of variable 
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l32 G. E. Willmot Scand. Actuarial J. 2 

This yields 

J1r(~eh(z) { (1 )} 
P(z) = {2fJ(l _ z) }1/~ 1 - r 2.' h(z) 

where h(z) = (2fJ) -1(1 - z) {I + IlO - z) -J F and nn, x) is the incomplete gamma 
function (e.g. Hogg & Klugman, 1984, p. 219). Recursive evaluation of the 
probabilities may begin with Po = P(O). D 

Numerical aspects of the use of these recursions such as stability have not yet 
been examined. Similarly, initial or boundary conditions such as asymptotic or 
exact expressions for certain probabilities need to be obtained. 
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