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Summary 

When an investlgator records an observation by nature according to a certain stochastic 
model the recorded observation will not have the original distribution unless everJ observation is 
given an equal chance of being recorded. A number of papers have appeared during the last ten 
years implicitly using the concepts of weighted and size-biased sampling distributions. 

In this paper we examine some general models leading to weighted distributiosls with weight 
functions not necessarily bounded by unity. The examples include. probability sampling in sasnple 
surveys additive damage models visibility bias dependent on the nature of data collection and 
two-stage sampling. Several important distributions and their size-biased fornls are recorded. A 
few theorems are given on the inequalities between the mean values of two weighted distributions. 
The results are applied to the analysis of data relating to human populations and wildlife 
management. 

For human populations the following is raised and discussed. Let us ascertain from each snale 
student in a class the nusHber of brothers including himself and sisters he has and denote by k the 
number of students and by B and S the total numbers of brothers and sisters. What would be the 
approximate values of B/(B + S) the ratio of brothers to the total number of children asld (B + 
S)/k the average number of children per family? It is shown that B/(B + S) will be an 
overestimate of the proportion of boys among the children per family in the general population 
which is about halB and similarly (B + S)/k is biased upwards as an estimate of the average 
number of children per family in the general population. Some suggestiosls are oJ%ered for the 
estimation of these population parameters. Lastly for the purpose of estimating wildlife popu- 
lation density certain results are formulated within the framework of quadrat sasnpling involving 
visibility bias. 

1. Introduction 

When an investigator records an observation by nature according to a certain stochastic 
model, the recorded observation will not have the original distribution unless evesy observa- 
tion is given an equal chance of being recorded. For example, suppose that the original 
observation X has f(x) as the pdf (which may be probability when X is discrete and 
probability density when X is continuous), and that the probability of recording the observa- 
tion x is O < w(x) < 1, then the pdf of XW, the recorded observation is 

fw(x) = w(x) f(x) ( 1.1 ) 

Key Words. Weighted distribution; Probability sampling; Damage model; Quadrat sampling; Visibility 
bias. 

179 

This content downloaded from 195.251.235.181 on Wed, 8 Oct 2014 07:39:47 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


180 BIOMETRICS, JUNE 1978 

where co is the normalizing factor obtained to make the total probability equal to unity. Thus 
co may be referred to as the visibility factor. Note that fLt' = f if and only if w(x) is a constant. 

Rao (1965) introduced distributions of the type (1.1) with an arbitrary nonnegative 
weight function w(x) which may exceed unity and gave practical examples where wtx) = x or 
xa are appropriate. He called distributions with arbitrary w(x) weighted distributions. In this 
paper we use this definition of a weighted distribution with arbitrary w(x), of which ( 1. 1 ) is a 
special case. The weighted distribution with w(x) = x is also called a sized biased distribu 
tion. We shall show in Section 2 of this paper how the weight w(x) = x occurs in a natural 
way in many sampling problems. 

A number of papers have appeared during the last ten years implicitly using the concepts 
of weighted and size-biased sampling distributions, the results of which are briefly surveyed 
(with relevant references) in a recent paper by the authors (Patil and Rao 1977). A study of 
size-biased sampling and related form-invariant weighted distributions was made by Patil 
and Ord (1975). 

In this paper, we examine some general models leading to weighted distributions with 
weight functions not necessarily bounded by unity. The results are applied to the analysis of 
data relating to human populations and wildlife management. 

2. General Models Leading to Weighted Distributions 

2.1 Probability Sampling in Sample Surveys 

A well known example is what is called pps (probability proportional to size) sampling in 
sample survey methodology where the original pdf of a variable is changed according to a 
given design of selection of samples to improve the efficiency of estimators of unknown 
parameters. 

Let Y be a rv concomitant with the main rv X under study and pl(Y), p2(x: y), p3(X) and 
p4(y s x) be the marginal pdf of Y, the conditional pdf of X given Y, the marginal pdf of X 
and the conditional pdf of Y given X respectively. Let us first observe a value y of a rv yttJ with 
pdf 

g(Y P1(Y)/ Jg(Y) p1(S2)dy (2.1 ) 

where g(y) is a chosen non-negative function. Then an observation is made on X using the 
conditional distribution p2(x 4 y). The pdf of the resulting rv Xtt' is 

tP2(XlA2)g(Y)pl0n)dy 

= p3(X ) XV(X )/ S p3(X ) w(x )dx (2. 2 ) 
Jg0')Pl02)dy 

where 

w(x) = JP4(Y I x) g(y) dy (2.3) 

which is a weighted distribution of X with the weight w(x) not necessarily bounded by unity. 
Further w(x), in such a situation, may involve the unknown parameters of p3(X). Thus, for 
the observed value xtv the appropriate pdf is the weighted pdf (2.2). In practice P1(.Y) is 
completely known and g(y) is chosen to maximize the efficiency of inference on the unknown 
parameters of interest in p3(X). 
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WEIGHTED DISTRIBUTIONS AND APPLICATIONS 181 

2.2 Daswlage Model of IRao (l965) 

Suppose that we are sampling from a pdf f(x), but while realizing an observation x it goes 
through a 'damage process' with the result that we finally have an observation z from the 
conditional distribution with pdf c(z | X = x) which we may denote simply by c(z | x). The 
marginal pdf of the observed value z is 

d c(z N x) f(x) dx (2.4) 

which has the form of a mixture of distributions. 
Let us suppose that an observation is recorded only when the original value is unchanged 

through the damage process. The pdf of such an observation xw is 

c(x | x) f(x)/E(c(X 1 X)), (2.5) 

which is a weighted distribution with w(x) = c(x 1 x), where c(x: x) = e(Z = x: X -- x), the 
conditional probability that an observation x remains unchanged. Examples of such distribu- 
tions are considered by Rao (1965) and Rao and Rubin (1964). A truncated distribution is a 
special case of (2.5), where c(x 1 x) takes the value zero in a certain region of the sample 
space of X and unity in the complement. 

2.3 Visibility bias 

Let us consider a discrete random variable X with pdf f(x). For instance, X may be the 
number of individuals in a group or a colony in which case f(x) is the probability that a group 
consists of x individuals. Let us suppose that a group gets recorded only when at least one of 
the individuals in the group is sighted and each individual has an independent chance d 
of being sighted. Then the probability that an observed group has x individuals is 

ftV(X)= w(x) f(x)/E(w(X)) (2.6) 

where w(x) = [1-(1-d)X]. It may be noted that E(w(X) is the probability of observing a 
group. 

The limit of ftt2(X) as d O is easily seen to be 

x f(x)/E(X) (2.7) 

which is thus an approximation to (2.6) when d is very small. The weight w(x) = x 
corresponds to size biased sampling and the distribution (2.7) provides an appropriate model 
in many practical situations. See, for example, the analysis of data on sex ratio in Rao (1965) 
and Section 4 of this paper. 

The significance of the weight function w(x) = 1 - (1 - d)x and the limiting value x 
would be apparent from the following examples. 

Exassaple l (Haldane 1938, Fisher 1934, Rao 1965, Neel and Schull 1966, etc.). If we wish 
to study the distribution of the number X of albino children (or children with a rare anomaly) 
in families with proneness to produce such children, a convenient sampling method is first to 
discover an albino child and through it obtain the albino count xtv of the family to which it 
belongs. If the probability of detecting an albino is , then the probability that a family with 
x albinos gets recorded is w(x) = 1 - (1 - IS)X, assuming the usual independence of Bernoulli 
trials. In such a case xw has a weighted binomial distribution with the weight function as 
defined above. 

Example 2 (Cook and Martin 1974). In aerial census data collected for estimating wildlife 
population density, visibility bias is generally present because of the failure to observe some 
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182 BIOM ETRICS, JUNE 1978 

animals. Suppose that the animals are found in groups and group count X had pdf f(x) and 
the probability of sighting an animal is d. Conditional on observing at least one animal in a 
group, a complete count is made of the group and the number of animals is recorded. If the 
sampling process is such that each animal has an independent chance d of being sighted, then 
the selection probability is w(x) = 1 - (1 - d)X. The observed group count XLt' has thepdf 
w(x )f(x )/E(w(X)). 

In both these examples, the parameter d may be small, in which case the weight function 
w(x) = x would be appropriate. The exact treatment of quadrat sampling for animal 
populations for given d is given in Section S of this paper. 

2.4 Two-Stage Sampling (A Limit Theorem) 
First let us consider a discrete r.v. X such that 

P(X = i) = lri, i = 1, . (2.8) 
Suppose that nature has produced a large sample of size N from the distribution (2.8) and in 
the sample the observation i occurs ni times, so that nl + n2 + f = N. Further let us 
suppose that we take a subsample of size n from the finite set of N observations by drawing 
one observation at a time with replacement and giving a chance proportional to sli w(i) to the 
observation i. Then the probability that the subsample consists of r1 ones, r2 twos, is 
proportional to 

[E11w(1)]rl [n2w(2)]t2 [(n1/N)w(l)]tsl [(n2/N)w(2)]r2 (2 9) 
[n1w(l) + n2w(2) + ]n [(Hl/N)w(l) + (n2/N)w(2) + W]n 

As N , the expression (2.9) tends in probability t.o 

[71 Wt 1 )]t 1 [lr2 w(2 ) ]r2 (2 1 O ) 
[X1 w( l ) + lr2 w(2 ) + * ]n 

In the limit r1, r2, constitute a sample of size n from the weighted distribution 
p(x'v = i) = w(i)lrz/E w(i)lrz. (2.11) 

It is seen that in (2.1 1), the weight w(i) can be arbitrarily subject to the condition that a 
chance mechanism exists for drawing a sample from the finite set (x1, , XN) giving a chance 
proportional to w(xi ) for xi Consider, for instance, the problem of estimating the probability 
that a child inherits a certain defect. For this purpose we may obtain the list of children 
referred to a clinic and record the number of defective and non-defective children in each of 
the distinct families to which they belong. In such a method of sampling, the chance that a 
family with r defective children is brought to record is proportional to r, if the children 
referred to the clinic can be considered as a random sample of all defective children in the 
population under study. 

A similar result holds in the case of a continuous rv X with pdf f(x) when we subsample 
from an original large sample (say of size N), giving a chance proportional to w(x) to 
observation x in the original sample. In such a case as N , the subsample of fixed size n 
may be considered as a random sample on a rv XU' with the pdf 

w(x) f(x)/E(w(X)) (2.12) 
Examples of such sampling arise if we want to determine particle size distribution by 
choosing a sample of particles hit by random points selected in the space enclosing the 
particles. 
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2.5 Examples 

It may be worthwhile now to record some of the important distributions and their 
modified forms under siz.e-bias with w(x) = x. It may be noted that in the case of discrete 
distributions XU' must necessarily have p(xw = O) _ o 

3. Some Properties of Mean Values of Weighted Distributions 

In this section, we prove a number of theorems on the inequalities between the mean 
values of two weighted distributions. 

Theorem 1. Let a non-negative rv X have pdf f(x) with E (X) < . Let xw have pdf fw(x) 
= xf(x)/E (X). Then E(XW) - E(X) - V(X)/E(X), where V stands for variance, and 
therefore E(Xt0) > E(X) for non-degencrate X. 

Proof: Straightforward. 
Remark. The inequality E(XW) > E(X) substantiates the intuitive result that the size- 

biased xw records larger values of X more often than their natural frequency, and its smaller 
values less often. 

TheoresH 2. Let rvX have pdf f(x). Further let the weight function w(x) > O have E(w(X)) 
< . Let X2' be the w-weighted rv of X with pdf fW(x) = w(x)f(x)/E(w(X)). Then E(XW) > 
E(X) if cov[X, w(X)] > O and E(XW) < E(X) if cov [X, w(X)] < O. 

TABlE 1 
Certain Basic Distributions and their Size-Biased Forms 

Random variable (rv) pf(pdf) Size-biased rv 

Binomial, B(n,p) (X)px(l -p)n x 1 + B(n-l,p) 

Negative Binomial, NB(k,p) (k + x-1 ) k 1 + NB(k + l,p) 

Poisson, Po(X) e-XAt|x $ 1 + Po(X) 

Logarithmic series, L(ov) {-log(l -ov)} oe /x 1 + NB(l,ov) 

Hypergeometric, H(n,M,N) ( )M(X)(N-M)(n -X)/N(n) 1 + H(n-1 ,M-1 ,N-1 ) 

Binomial beta, BB(n,a,^y) ( ),((a + x, zy + n-x)/$(a,^y) 1 + BB(n-l,a,^y) 

Negative binomial beta, NBB(k,a,^y) ( ):(a + x,^y + k)/,B(a,^y) 1 + NBB(k + l,a,^y) 

Gamma,G(oe,k) oekxk-le-6Yx/r(k) G(oe,k + 1) 

Beta first kind, B1(h,^y) x6-l(l -x-l/ (05 )/) B1(6 + 1,8) 

Beta second kind, B2(6,^Y) x6-l(l + x) /:(6 oY 6) B2(6 + 1,^Y-6-1) 

Pearson type V, Pe(k) x -k -1 exp(-x- l)/r(k) Pe(k-1 ) 

Pareto, Pa(oe,^y) zovzx-(T+ 1 ), x 2 oe Pa(oe, oy-1 ) 

Lognormal, LN(,u,(T2) (27r¢2) I/2 exp-2(109 x 8 ) 1 LN(y + (J2 tr2) 
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184 BIOMETRICS, JUNE 1978 Proof: Straightforward. 
Theoress1 3. Let X and xw be defined as in Theorem 2. Further let X be aon- negative. Then 

E(X'8) > E(X) if w(x) T in x and E(Xtt') < E(X) if w(x) 1 in x, where T means increclsing and 
means decreasing. 
Proof: Follows from Theorem 2 since cOV[X,w(X)] > 0 if w(x) T x and the reverse is true if 

w(x) T x, which can b easily demonstrated. 
Theorestl 4. Let non-negative rv X have pdf f(x). Let the weight functions as/(x) > 0 have 

E(wi(X)) < O for i = 1, 2, defining the corresponding wi-weighted rv's of X deIloted by X"'i. 
Then E(XU'2 ) > E(X'l'l ) if r(x ) = W2(X )/Wl(X ) T in x and E(X'1'2 ) < E(X'l'l ) if r (x ) 1 in x . Proof: Follows when one notes that XW2 is r-weighted rv of Xlt11@ Resnark. The result in Theorem 4 is interesting in that the ratio of the weight functions is 
a decisive criterion, and not any direct inequality between the weight fUIlGtiOIlS, clS one may 
think. For example, let w1(x) = x(x-1), and w2(x) = x2, from which r(x) = W2(X)/W1(X) =X/ 

(x - 1) = 1/[1-(l/x)] i x, implying that E(X't'2) < E(XU'l), and not the reverse because OIlC 
observes w2(x) > w1(x ). 

4. A Natural Exasnple of Weighted Binomial Distribution 4.1 Test of the Model 
Let us ascertain from each male student in a class the number of brothers, including 
himself, and sisters he has and denote by k the number of students and by B aIld S the total 
numbers of brothers and sisters. What would be the approximate values of B/(B -r 57), the 
ratio of brothers to the total number of children and (B + S)/k, the average number of 
children (a.n.c.) per family? It is easily seen that B/(B + S) will be an overestimate of the 
proportion of boys among the children ill the general population which is about half, and 
similarly (B + S)/k is biased upwards as an estiamte of the a.n.C. per family ill the general 
population. Surprisingly, when the number of boys in the class is not very small, you CaIl 
make a fairly accurate prediction of the relative magllitudes of B and S, and the ratio B/ 
(B +S). This was stated in the form of an empirical theorem in Rao (1977). It was observed 
that (B-k)/(B + s-k) is closer to half than B/(B + 57) (see Table 2). This was explained 
on the hypothesis that the distribution of b, the number of brothers giveIl b + s, the total 
number of brothers and sisters, is a weighted binomial with weight proportional to the size of 
the observation, i.e., writing C for the binomial coeffieient, 

p(b | b + s) = b C(b + s,b)(.5)b+s/E(b) 
=C(b+s- l,b-1)(5)t2+5-1 (4.1) Let (bi, si), i = 1, , k be the observation of k boys, and B = Nbi, s = ESi. Thell under 

the model (4.1) 

p(B-k = x | B + S-k - T) = C(T, x)(.5)T. (4.2) To test the hypothesis that b has a weighted distribution of the type (4.1), we have computed 
X2=(2x- T)2/Ton 1d.f. 

(43) from the data for each city (see Table 2). The chi-square values are small, indicclting the 
plausibility of the hypothesis. A more detailed test of the hypothesis, i.e. the validity of the 
model (4.1), was carried out by computing chi-square values for each family size withill each 
city. The chi-square values were again small. 
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TABLE 2 
Estimates of Sex Ratio and Family Size from Data on /\4ale Respondents 

B B-k B + S 
Placeandyear k B S B + S B + S-k x2 k 6 

Delhi :75 29 92 66 .58 .488 .07 5.45 4.25 
Calcutta : 63 104 414 312 .57 .498 .04 6.96 5.30 
Waltair :69 39 123 88 .58 .488 1.09 5.41 4.36 
Hyderabad : 74 25 72 53 .58 .470 .36 5.00 3.46 
Tirupati (students) : 75 592 1902 1274 .60 .507 .50 5.36 4.24 
Tirupati (staff) : 76 50 172 130 .57 .484 .25 6.04 4.20 
Poona : 75 47 125 65 .66 .545 1.18 4.04 3.15 
Tehran : 75 21 65 40 .62 .500 .19 5.00 3.18 
Isphahan :75 11 45 32 .58 .515 .06 7.00 5.70 
Tokyo : 75 50 90 34 .73 .540 .49 2.48 2.25 
Columbus :75 29 65 52 .62 .523 2.91 4.00 2.79 
State College :75 28 80 37 .68 .584 2.53 4.18 3.21 
College Station :76 63 152 90 .63 .497 .01 3.84 3.04 
London & Bradford :76 43 80 39 .67 .487 .02 2.77 2.15 

* It is interesting to note that Tokyo has the smallest family size (number of children). Among the Indian cities Poona has a 
smaller value, and it would be of interest to investigate this phenomenon. 
Note It has not been possible to ascertain the actual family sizes in the populations of different cities quoted in Table 2 except 
in the cases of Indian cities. In these cases the figures were close to 6, as predicted. 

WEIGHTED DISTRIBUTIONS AND APPLICATIONS 185 

4.2 Estimation of Family Size 

Let f(b, s) be the relative frequency of families with b brothers and s sisters in the general 
population. Then under the assumption made in Section 4.1 the probability of the observa- 
tion (b, s) or (b, t) where t = b + s coming into our record is 

fW(b, s) = b f(b, s)/E(B) = b p(t) p(b s t)/E(B) 

where 

p(b | t) = C(t b) 7Uh( 1 - 7r)t-h 

Then 

pW(t) = t p(t)/6, b = E(T) 
where 6 is the parameter of interest. Hence 

Et(1/T)= 1/6 

which shows that the harmonic mean of the observed ti is an estimator of b. 
If the exact form of p(t) is not known then we may estimate 6 by 

6 = k/z( l /tz ) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

The estimate 6 of b is computed for each city and given in Table 2. It is seen that the observed 
average (B + S)/k is larger than the estimated value in each case. 

Sincep(b | t) given in (4.5) is independent of 6, we observe that under the assumed model, 
t is sufficient for b. If the form of p(t) is known, we may use the likelihood function 

(4.9) 

to estimate b. For instance, if p(t) is geometric, then the maximum likelihood estimate of 6 is 

k k 

rl pW(ti ) = 6 - k H tiP(ti ) 
i=l i=l 
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186 BIOM ETRICS, JUNE 1978 

g 2K + 2 (4.10) 
where T = tl + + tk. If p(t) is logarithmic, then 

61 1-(1 - cv) log (1 - cv)l -lcr (4.1 1) 
where cx = 1 - (k/T). The formulae (4.10) and (4.1 1 ) are not appropriate for the present data 
as p(t) does not seem to be either geometric or logarithmic, as claimed in some studies (see 
Feller, p. 141). 

5. Quadrat Sampling with Visibility Bias 
For the purpose of estimating wildlife population density, quadrat sampling has been 

found generally preferable. Quadrat sampling is carried out by first selecting at random a 
number of quadrats of fixed size from the region under study and ascertaining the number of 
animals in each. Following Cook and Martin (1974) we make the assumptiolas as given 
below: 

A1: Animals occur in groups within each quadrat and the number of groups within a 
quadrat has a specified distribution. 

A2: The number of animals in a group has a specified distribution. 
A3: The number of groups within a quadrat and the numbers of animals within the 

groups are all independently distributed. 
A4: The method of sampling is such that the probability of sighting (recording) a 

group of x animals is w(x). 

Let X and X't' be the rv's representing the number of animals in a group in the population 
and as ascertained. Similarly, let N and N2' be the rv's for the number of groups within a 
quadrat. It is clear that since the method of ascertainment does not give equal chance of 
selection to groups of all sizes (unless w(x) is constant), the rv's X and X't' do not have the 
same distribution, and so is the case with N and NW. The following theorem provides the 
basic results in quadrat sampling theory. 

Theorem 5. Under the assumptions A1 - A4 we have the following results. 

(i) P(N2' = sa1 | N= n) = ( )6tzrtl(l _ 66))rl r 

where 

U = E w(x) P(X = x) 

is the visibility factor (the probability of recording a group). 

(ii) ( ) nEt (sn ) ( ) ( ), 
i.e. the visibility bias induces an additive damage model on the true quadrat frequency with 
binomial survival distribution (see Rao 1965). (iii) The probability that m observed groups in 
a quadrat have xl, , xm animals is 

rn 

P(Xl'v = X1, , Xm&t) = Xrn | NtV = m) = pt P(XU'i = xi) 
i =1 
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WEIGHTED DISTRIBUTIONS AND APPLICATIONS 187 

where it may be noted, 

P(XW = x ) = w(x ) P(X = x )/co . 

(iv) Let Sw = X1W+ + Xmw Then 

p(sw = y) = E p(NW = m) p(sw = y | m) m = 1 

p(sw = y | m) = , w(x,) . w(xm) P(X1 = x,) P(X = xm) 

Proof: Under the assumptions and notations used we have the basic probability equality 

P(N = n, Nw = sn, Xlw = xl, , Xmw = xm Xm+l = Xm+l , Xn = Xn) 

= P(N = n) (m ) I| P(Xj = xj)w(xj) I| [1-w(xj)] P(Xj = Xj). (5.1) 
j-l j=m+ 

From (5.1 ) summing out Xm+l, , Xn we have 

P(N = n, Nw = m, Xlw = xl, , XmW = xm) 

= P(N = n) ( ) com(l -co)n-m II P(Xj'V = Xj). (5.2) 

Then the results (i), (ii), and (iii) of the theorem follow from (5.2). Summing (5.2) over n 
frommtom,wehave 

m 
P(N = m, Xlw = xl, , XmtV = xm) = p(Nw = m) I| P(X 

j=l 

from which the result (iv) follows. 
Note 1: The expression (5.3) enables us to write down the joint likelihood of the numbers 

of groups observed in diSerent quadrats and the numbers of animals observed in all the 
groups sighted. Thus, if ml, , mk are the numbers of groups in k quadrats and xfj is the 
number of animals in theXth group of the ith quadrat, the joint likelihood is the product of 

k 

tI P(NW = mi) (5 4) 
i = 1 

and 
k mi 

II II P(XxxW = xev). (5.5) 
i=l j=l 

Results (ii) and (iii) of the theorem give the methods of computing the individual terms in 
(5.4) and (5.5) from the population distributions of N and X and the weight function w(x). In 
general, the unknown parameters are those occurring in the specified distributions of N and 
X and the additional visibility factor co (or p the probability of sighting an animal). All these 
could be estimated using the product of (5.4) and (5.5) as the likelihood function. 

Note 2. Cook and Martin (1974) consider the special case where 

N PO(X), Poisson with parameter A, (5.6) 

X ax SX/g(0), power series distribution, (5.7) 

w(x) = 1-(1-d)X. 
(5.8) 
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It may be noted that whatever w(x) may be, Nw pO(6) 6 ! Aco where 

co = z sX w(x ) 0 x/g(S ) a n d xw ax w(x ) Sx /cog(S ) 

Thus, there are three parameters 6, co and 0. Then the parameter 6 is estimated from the 
likelihood (5.4) and co, 0 from (5.5). Cook and Martin (1974) provided the necessary 
computations in such a case, choosing w(x) as in (5.8). 

If N is not a Poisson variable then the distribution of NU' involves co as an additional 
parameter (see Rao 1965 and Sprott 1965), in which case the product of (5.4) and (5.5) 
provide the joint likelihood for the estimation of all the unknown parameters. 

In the special case where N and X are as distributed in (5.6) and (5.7) respectively and 
w(x) = dx (i.e., when a group is observed if and only if all the animals are sighted), 

N/1 po(r6) 6 = ),C;> and xw aX fX/g(0), 0 = 0d 

so that the parameters A, 0 and d are confounded and are not individually estimable. In a 
different context, Kemp (1973, 1975) observes the confounding of 0 and d in the special case 
of N being degenerate at one. 

Re'sunle' 

Quand un chercheur recueille une observation qui suit de par sa nature un nzodele stochas- 
tique, I'observation recueillie n'obe'ira a la distribution d'origine, que si chaque e'le'ment observ- 
able recJoit la seleAnle chance d'eAtre recueilli. Un certain nombre d'articles sont apparus ces dix 
dernieres annees, qui utilisent implicitement les concepts de distributions ponde'rees avec 
echantillonnage d'efJectif biaise. 

Dans cet article, nous exanlinons quelques modeles ge'neraux conduisant a des distribu- 
tions ponde'rees non ne'nessairement limite'es par l'unite'. Les exemples comprennent . I'e'chantil 
Ionnage probabiliste.dans des enqueAtes sur e'chantillons, les nlodeles de don1nlages additifs, le 
biais de visibilite' lie' a la nature du recueil des donne'es et l'echantillonnage a deux niveaux. On 
rapporte plusieurs distributions importantes et leurs deformations provoquees par un biais 
d'efectif On donne quelques the'orenles sur les ine'galite's entre valeurs moyes?nes de deux dis- 
tributions pondere'es. L es re'sultats son t appliques a l'analyse de donnees se rapportant a des 
populations hunlaines et au controle des populations sauvages. 

Pour des populations humaines, la question suivante est posee et discutee . denlandons a 
chaque etudiant d'une classe, de sexe male, le nombre de freres (lui meAme y conlpris) et de soeurs 
de sa fratie. Soit h le nombre d'etudiants, B et S le nombre total de freres et de soeurs. Que seront 
les valeurs approche'es de B/(B + S), rapport du nombre de freres au nombre total denfants, et 
de (B + S)/h, nombre moyen d'enfants par famille ? On montre que B/(B + S), est une sur- 
estimation de la proportion de garcJons parmi les enfants de la population gene'rale, proportion 
eglale a I /2 environ.Et que de meme, (B + S)/h est biaise' vers les valeurs e'leve'es en tant qu'esti- 
nlation du noselbre d'enfants par famille dans la population gene'rale. On propose quelques sug- 
gestions pour l'estimation de ces parametres de population. 

Enfin, en vue d'estimer la densite des populations sauvages on formule quelques resultats 
dans le cadre de l'e'chantillonnage quadratique avec biais de visibilite'. 
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