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1, INTRQDUCTION -

Most random phenomena appear to be anaidgqus‘, in certain ba-
sic aspects, tcasuitable random sampling scheme. Therefore, urn
models have become very popular stochastic devices translatmg
realistic problems into mathematt.cql ones. Almost all. of the ba~
sic discrete distributions of,proba‘bi!it'y theory can be‘obtamed
from considerations of sampl irig-frou|~én—ur4n problems while others
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can be thought of as limiting cases of the former, Characteris-
tic is the case of the binomial and the negative binomial distri-
butions and that of the Poisson and the logarithmic series di~
stributions. In all the cases a series of drawings is made from
an urn filled with balls 6f two or more colours, a sampled ball

of a particular colour bejing considered as a success. A compre-
hensxve account of such urn models is given by’ Johnson and ’
Kotz (1977),

Quite early, the notion of success was generalijzed to refer
to a run of k balls of one particular colour where k1. Fréchet
(1943), for example, examined the problem of determining the dis-
tribution of the number of runs of k 1ike outcomes in a series of
n Bernoulli trials as well as that of the number of trials needed
to the first success run. Also Feller (1970) discusses the asym-
ptotic behaviour of these two distributions. Since then, several
authors have considered problems of this or similar nature leading
to generalized forms of the basic probability distributions, The
‘papers by Philippou (1983), Philippou et al. (1983), Hirano
(1984), Panaretos and Xekalaki (1984), Xekalaki et al, (1984) and
the references there in cover a substantial amount of work in
" this direction. The distributions obtained through models asso-
ciated with runs of k like elements are usually called distribu-
tions of order k, So, in the above mentioned literature the bi-
nomial, the geometric, the negative binomial, the Poisson, the
compound Poisson, the beta-geometric the beta-negative binomial
and the logarithmic series qistributidns of order k have been de-
fined. Of these, the binomial, geometric and negative binomial
distributions of order k have arisen in sampling, straight or in-
 verse, with replacement while the rest have been obtained through
Vimiting or mixing operations.

In this paper an urn containng balls of two colous is again
used, but sampling, straight or inverse, is done without replace-
ment or with additional replacements. So, in sections 2,3 and 5
the hypergeometric, negative hypergeometric and generalized
Waring distributions of order k are defined and studied, Means,
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variances, modeis leading to these distributions as well as limi-
ting cases are examined.

The relationship of each of these distributions to distribu-
tions of order k already existing in the literature is also exa~
mined. Moreover, in section 4 a logarithmic series distribution
of order k is introduced. |

2. THE HYPERGEOMETRIC DISTRIBUTION OF ORDER k

Consider an urn that contains a white and b black balls,
Assume that n balls are drawn,one at a time and without replace-
ment. Let X denote the number of occurrences of a run of k white
balls. ' .

Theorem 2.1: The probability function (p.f.) of the random varia-
ble {r.v.) X defined as above is given by

k-1 X, ) {n-Ix. , :
P(X=x) = E x‘fofok,x) é——lzé————l) x=ﬂ,1,2,...,[£]
m= (a+b)(n) |
(2.1)
where the symbol denotes summation over all the non-negative

values of x,,X,,...,X, subject to the condition x,+2x, +...kx, =
= n-m~kx and a'' ’=a(a-1}...(a-r+1), r=0,1,..., (@' ’=1 and
Bix =X 42Xt 00k, ) '

!
Proof: Let W denote the outcome {white ball} and B the outcome
{black ball} in a single trial. Then, a typical outcome of the
event {X=x} can be represented by the arrangement

2122...zzxi+xww.ﬁ.w (0smsk-1)

where X of the Z's are of the form B Xg of the Z's are of the

form WB,...; Xy of the Z's are of the form W...W B and x of the
a 5

2's are of the form WW...W so that Lix;tkx+m=n , Osmsk-1.

. X +X
The number of all possible such outcomes is <}1’X2"",xwx)-
These are mutually exclusive and gach of them has probability

ézxi )ékx»pmi{( i-1 )XT)

P(Z,2,...7, . WM., .MW)=>2
e X % (zix1+kx+m)
{a+b)
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" Therefors, |
L Kl (in) (kx+m+2(i-l)xj)
CR(Kex) = § IX{*X b a x=0.1,,,,,[ﬁ]
h m=0 2 r_lgotcgka'x (:ix-"'kxfﬂ‘)
(asb) !

.. with :E: és defined befofe. This expression is equivalent to -
= LZ 1) and hence the theoqem has been established,
Note that, when k=1, (2.1) reduces to

. ()M . (i) (n'fx)/ (a;b) TR

| (asb) M)

. wnich1s the p.f. of the usual hypergeometric distribution w\th
parameters a, b and n. Therefore, we can regard the distribution
deflned by (2.1) as a generalization of the hypergeometric dis-

- tribution and consider the following definition, ‘

| Def1n1t10n 2.1: A non-negative integer-valued r.v. X with support

{.g in {0, 1....,[?}} (n>0, k a positive integer) will be said to

~ have the hypergeometric distribution of order k if its p.f. 15

ﬂ;'given by (2.1),

if‘ Hirano (1984) defined the binomial d1str1but1on of order k
with p.f. .

:.:‘. zx. . . .
' x)= B\ o0 g !
: l:’P( P =x) mZQZ( X) P (P) ! (2.2)

X Qt!!)xk|
Xﬂ"ﬂ,‘,.-.%], 0<P<I’ q"'—'1_p

in. the context of an urn model slmrlar in nature to the one con-
- sidered ‘in this section only each of the n sampled balls was re-
' turned to the urn before the next ball was drawn. The theorem
N that follows sﬁows that the hypergeometric distribution of order

k tends to the binomial distribution of order k if the numbers
- of black and white balls are increased while their proportion is
:  kept constant.

7Theorem 2.2: Consider a r.v. X whose p.f. is given by (2. 1). Let
o l\m stand for limit as a-++«, b +» 50 that a/(a+b) +p, = Then

i 1&@ P‘xfﬁ? PNy 0™ x).
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Proof: (in)(n-in)
1im P(X=x)=lim{Z( Byt j b

Xy 3o s Xy oX (a+b)(")
n-Ix

, X,
=k§1 EX+X - Vim ( a ) 1( b ) !
m= XqoeenaXy oX H awb/ a+b

which leads to (2.2) and hence establishes the result.
The case k=1 leads to the well known result conderning the bi-
nomial limiting case of the nypergeometric distribution,

3. THE NEGATIVE HYPERGEOMETRIC DISTRIBUTION OF ORDER k. .

Consider again an urncortaining a white and b black balls.

In the previous section the distribution of the number X of
occurrences of a run of k white balls in a sample of n balls ta-
- ken without replacement was derived. If sampiing were done with
replacement, the resulting distribution would, of course, be the
binomial distribution of order k as defined by (2.2). Suppose
now that each sampled ball is-returned to the urn along with one
additional ball oflﬁgg'same colour before the next ball is drawn
and let X be the number of runs of k white balls in a sample of
size n. As shown by the following theorem, the resulting distri-
bution of X is a negative hypergeometric typé of distribution,
Theorem 3.1: The p.f. of the r.v. X defined as above is given by

b,.
EX j#X ) Qxi)a("'zxi)

X-X -
(a*b)r( )

m= KyseeesXy X

x=0,1,2,;..,[E]

s . (3.1)
where the inner summation Z extends over all the non-negative
values of x,,...,x, such that Zix; = n-m-kx and a(r)=a(a+l)...
oca(a+r-1), f‘=.1,2,... ’(a(0)=1)0

X .+
X]X

Praof: The event {X=x} is the union of
Froot , g XyaeeoaXy oK

matually exclusive outcomes each of which is represented by
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: : ' ; 3
?!ZZ"'szi?XEy'ﬁ'u Osmsk-1 where again X € of the Z's are of
' the form gw‘_ M B, isl 2....,k and x of 2's are of
“the form WW...W so that £1xi+m+kx=n. {The outcomes W and B are
. . g k . . .
- defined as in section 2), Each of these outcomes occurs with a
- probability given by \

b(zxi)a(m+ki+£(i-l)xi)

(212 Ty -

‘ , (a+b)(zixifm+kx)
- for fixed m, Osmsk-1, Hence,

IX{+X ) qﬁxif(“ﬁkx+z(i-j)xi) x=0,1'f"'[n]

3

P(X=x)= } ,
e LR M (a*b)(zixi*m+kx)
which by the definition of is equivalent to (3.1). Hence the
result, | ‘ |

For k=1, (3.1) takes the form

| b
2-x)2(x) _ [-a)[-p ~a-b )
A x)() (afb)( (x)("-x)/( ") WOt

which represents the p.f, of the negative hypergeometric distri-
" bution with parameters a,b and n. Therefore, (3.1) defines a ge-
neralized negative hypergeometric distribution,

" pefinition 3.1: A non-negative, integer-valued r.v. X with sup-

" port ig {0,1,...,n} is said to have the negative hypergeometric

; distribution of order k with parameters a,b and n if its p.f. is

- given by (3.1). .

~ Theorem 3.2: Let X be a r.y. whose distribution conditional on

. another r.v, p with support (0,1),1s the binomial distribution of

~order k with parameters n and p and p.f. given by (2.2). Let

" the distribution of p be the beta with parameters a and b and
probability density function (p.d.f.) ’

r(ath)  a-1 )b—i

f{p) = ——— p (1-p

, O<p<t , a>0 , b>0 (3.2)
r(a)r(b) |

; ~Then the distribution of X is the negattve hypergeometric of

"ﬂorder k with parameters a,b and n as def1ned by (3.1).

’f ":PF00f The proof is straightforward,
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. i . .

The result of this theorem establishes a refationship be-
tween the negative hypergeometric distribution of order k and the
binomial distribution of order k similar to that existing for the
case k=1, pamely that the negative hypergeometric of order k is a
mixture on p of the bimonial distribution of the same order when
p has a beta distribution., This relationship is used in what
follows to derive the probability generating function (p.g.f) and
the moments of the negative hypergeometrit distribution of order
| ,
Let X and p be defined as in Theorem 3.2 and let Gy (s) deno-
te the p.g.f. of X. Then

| Gy(s) =f lep(s).f(p)dp _ (3.3)

where, G | {s) is the p.g.f. of the binomial distribution of
order k given by
{ Ex\.+i—1

. . EX .
B (8= 14 (5-1) _ P

i=1 J= E\ Lrx -J -ki xl,...,xk,i-1

(3.4)
(see Hirano (1984)). Then, using (3.2), (3.3) and (3.4) we
obtain

b
n ‘ ex,fis-ox,
G (s)= 1+(s 1) i ¥ o B zxi*"? ———l—————)
j=ki Zrx =j-ki XT""’xk’1'1 (a+b)(j)

Also, since

[n/K] n . '
E(Xr’P)= Y Gt-G-n ¥ - Ixi+ 1 e IX,
i=1 I EUS D 0 SEN S T VSRS e B p
r i k
. r=1,2,..

(see Hirano (1984)) we have for the moments of X

o my Pex (3-2x )

LA g ry o
E(X {i-(i~1 .
( ") f i-(i-1)") z xl""'xk'1'l -(a+b)(j)

=1 j=ki err=J-ki

It will now be shown that the binomial distribution of order
k is a limiting case of the negative hypergeometrxc distribution
of order k.
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o Theorem 3. 3: Let X be a r,y. whose p,f. is given by (3.1) and let
ifé;fuk n pbe another r.v. having the binomial distribution of order
. kas defingd by (2.2), Then, if arw , brre 50 that a/(ash}op,
~ 0<ps1, the distribution of X tends to the distribution of Y .n.p.

- Proof: Let im denote limit as a+t=, b+e S0 that a/(a+b)sp,
: : H .

.k-l ,  £&-*& ‘ : REX-)a(n-zx,)

e ki' / bn : _( b )zxi g
=), . ) im '
;, m=o>3\x,-g.,.,xk,,g () (%) |

: 'P‘“k np)e %0 1,;..,[§] :

- The above result lnd1cqtes that, JUSt like in the case k=1,
:jf;sgmpllng from an urn with an additiona) replacement becomes
't{f equivalent to sampling with replacement in the usual sense when
7. the initial numbers of black and white balls are 1ncreased qt a
?;j\constant proportion p, | ,
0 Note: If each ball that is drawn at randon Js replaced to-
fff{ gether with c(ca1) ba]ls of the same co]our, the resulttng p f.
. of X will be

IX (X \P(q¥c)u,(b+(zxi-l)é)a(a+c)."(a+(h-fxi-0c)

'P(x s)wkilz

j.‘m~0 ! x},...,XK.ij o | (§+b)(a*b+c)...(a%bt(n-i)é)
| | SR = TN [ B
f§~1¥ PRI 7 - (b) ' a) " 1 ,
RECEEhY B LU RN

X1 ;’- e gxk 'x ) (a*b)
o s | (ﬂ)

:555The distribution given in (3.5) is a generalization of the Polya
; ;rd1$tr1but1on (which -is obtalned for k=1) and hence 'we can give
;i;,the fol lowing def1n1tlon.



DISTRIBUTIONS ARISING FROM GENERALIZED SAMPLING SCHEMES .

Definition 3.2: A non-negative, integer-valued r.v, X taking
values in !0,1,...,[?/@j,, where k is a positive integer, is said
to have the Polya distribution of order k with parameters a,b,c
and n if its p.f. is given by (3.5).

Note that the distribution in (3.5) reduces to the distri-
bution in (3.1), (2.2) or (2.1) according as ¢ equals 1,0 or -1.

4. A LOGARITHMIC SERIES DISTRIBUTION OF ORDER k.

In this section a logarithmic series distribution is defined
as limiting form of a distribution arising in the context of an
inverse sampling scheme, ’

Consider an urn containing balls numbered from 0 through to
k, & balls bearing a zero and b1=b balls bearing number 1,
i=1,2,...,k. Suppose that successive drawings are made with re-
placement till m jzeroes are obtained. Let X denote the sum of
the numbers drawn before the m-th zero.

Theorem 4.1: Let X be a.r.v, defined as above and let P (X x)
denote its p.f, Then

X,

{zx.-1)1! 1
» b
Tim P_(X=x|X>0)={1 : 1
m+g m( x|X>0)={1n (Fk+a) :Z:x11...xk! (Fk+a)
: i

_ x=1,2,... {4.1)
where denotes summation over all non-negative values of
XqaXgreesaXy SO that z1x1-x
Proof: Let X denote the number of balls bear1ng number 1,
i21,2,...,k drawn before the m- th zero-ball. Then _

Pm(x=x)=:E::P(X1=xI,f..,XK=xk) where :E:: extends oygr_al] non-

negative values of KqaesesX) SO that zixjéx and

m Ix

e Exi+m-1 , a b i
PIXy=X pae e aXy=x, )= bkva | |Bkea
_ XqoeeoaXy ,m-1

xi=0,1,... s i=1,2,...,K
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- : . : m IX.
S - | ?
P (X~,,‘ £x.+m 1 SE%E : BE%E (4.2)
.‘m :;‘ = ‘;"'txkom'1 b \

Ly x=0,1,2,.
The probab1l1ty’d1str1but1on glven by (4. 2) was def1ned by
. Steyn {1956) and shown to arise as a gamma mixture of the Poisson
# ;dwstrlbutlon of order k by Philippou (1983) who refers to it as
~ the compound Poisson distrtbut1on of order k.

e va10usly,

- Therefore,

A f‘ ?ut

o ' ', IX.

Sl [ - ’ b 1 am

P {X=x]X>0)= Ex -1 (B'r) —_—d . xe1,2,...
A m 422: xiv@‘-vxkamf1 b (bk+a)m-3m o

X,
1 a m(zx )

7'-11m P (x-x|X>0) 2{: ....x (bkga) Tim - .

,’_] -Q,m(zx.) ;o "&X-) iy (mt!%kxi¢1) (Zx--l)!
S lim L2 lim _*_—"—“—f = lim
aed (bk+a)“‘ "m0 [bkea\" .m0 (bk+a)m] bk+a  -Tn{a/( bkfa))

~a a a

- This implies that (4.3) is true and hence the theorem has been
- established,

- For ks 1, (4.1) reduces to the ord1nary logarlthmlc series

1{1. d]stp]butloﬂ with parameter b/a and p.f.

P(x X)" 1 . . (b/a)x,
n(1y b) X

3 'x=1,2,.'.

S0 we may give the following definition. .
V'Beflnltion 4.1: A positive, integer-valued r.v, X w1li be said to
© have the logarithmic series distribution of order k with parame-

ter9>0 if its p,.f. is giyven by

e (1! (g (ek 1))£xi |
i P(X-X) EE: L0k g X=1,2,... (4.3)

In(ek+1) | x,!.f.xk!




DISTRIBUTIONS ARISING FROM GENERALIZED SAMPLING SCHEMES E -~ 883

" Note that the logarithmic series distribution of order k de-
fined by (4.3) differs from Aki et al.'s (1983) logarithmic se-
ries distribution of order k with p.g.f.

k k+1 o
G(s) = In 1221%?5§-- // kinp {4.4)
This is natural since (4.3) is the limiting case of the negative
binomial distribution of order k éiven‘by (4.2) which is diffe-
rent from that considered by Aki et al. (‘983)k
Let G(s) denote the p.g.f. of X defined als above. Then

IX.
xR

6(s)= § ijzz(zxi“)’ (o/(ok+1))

x=1 “In(6k+1) Xpleox ! ' .

: 1
1 3 :E: ZX ;-1 ﬁﬁ TURY

In(ek+1) x=0 21X1=X+1 ) )\:‘,;-';sxk i=1 146k
Letting x;=r., i=1,2,...,k.and x= r+ ¥ (i-1 X; the above expres-
sion becomes 1=
r

n

k .
G(s) THT%F:TT rz jiz ' r1 o5

S § 1 o \' jz: r Sr152r2 Skrk
r Posqensl R
In(ek+t) r=1 " \l+ek ] zro=r \71°1°"k
1 - N\ (% Sl)r
gt ) 9 i=1
i.e. (' ;§ ) & .
8 i '
Io\1- 751 o1 S : : .
G(s) = - T+ok 1=} : (4.5)
In(1+0k)

Then the moments of X can be derived using (4.3). For exam-
ple we have for the mean ' .

. S _
E(X) =6 '{1 i/ In(1+0k) = ok{k+1) / (21n(1+6k)).
i= ‘

\ The form of (4.5) suggests the possibility of répresenting
the logarithmic series distribution of order k as a random sum of



/

Y 7)o 5 ’ " PANARETOS AND XEKALAKI

discrete uniform r.v;s as indicated by the following proposition.
'Proposit1on 4:1; Let Y1.¥2,.., be a sequence of independent, po-
§1t1ve, nteger-yalued r.v.s distributed uniformly in (1,2,...,k},
'Let z be énother r.v, 1ndependent of Yl,Yz.... whose distribution
77415 the logarithmic series distribution with parameter ok/{1+ek),

. Then the distribution oﬂ the r.v, X= Y,th seet¥7 is the loga-

rithmic series distribution of order k as defined by (4.3) or{4.5

- o The fellow1ng theorem will now be shown, :
, f;‘Theorem 4,2; Let Y1,Y2,.,. be a sequence of independently and
'ﬁ];-identically dlstr1buted r.v. s with p.f,

(ek/(ekﬂ))y
yrn ok+ [

"P(Y-"H = Y“tzoﬂr

§n¢ let Z be another r.y. distributed independently of UTICTIRY
<7 according to a Poisson distribution with parameter Aln(ek+1)..
;?f: Then, the distribution of the r.v. X=Y +Y2 ...+YZ is the negati-
ove binomial distribution of order k deflned by (4.2) for b/a=a.

;!:fProof The resu1t is an -immediate consequence of the fact that

 Gyls) = 65 (Gy(s)) ==_‘(1fe(k-i§‘ s’y

Note: The Poisson distribution of order k has a p.g.f, of the
K _

form
- exp{a( ] s -k)} , A>0 (Phlllppou et.al, (1983)) and can be

44',‘regarded as’ fﬂe distribution of a Poisson sum of discrete uniform
r.vis on {l,2.....k} as noted by Xekalaki et al (1984)). Further
' the negatiye binomial d1str1but10n of order k defined by (4.2)

*

" has & p.g. f.of the form {1+6(k- { s )/a} - (Philippou, (1983))

- which suggests thattt can ariseasanegative binomial distribu-

~ tion with parameters m and p=5%EF generalized by a uniform dis-
©tribution on {(1,..,,k}, i=1,2,,., , Combining these facts with

,' the résu]ts of Proposition 4.1 and Theorem 4,2, oreis led to the
T following equivalent genesis schemes of the negative binomial di-
. stribution of order k as defined by”(4 2):
‘, - Negative binomial (m, p = -—BF) V uniform {1,.,.,k}

Pmsson (A) Agamma 'EE) V uniform {1,... .k}
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Poisson of order k (1) A gamma (m,%)

Poisson (ak) V uniform {1,...,k} A gamma (m,%)

Poisson (Aln(1+ek)) V log. series of order k (o)

Poisson (Aln(1+8)) V log. series (T%%E) V uniform {1}....k}
(Here A denotes mixing (compounding) and V denotes generalization)

- 5, THE GENERALIZED?NARING DISTRIBUTION OF ORDER k
; ‘ :

Let us now consider sampling from an urn filled with a whi-
te and b black balls accbrding to the following scheme. A ball
is drawn at random, its colour is noted and the ball is replaced
along with one additional ball of the same colour before the next
ball is drawn. Let W and B denote the outcomes {white ball} ,
and {black ball} in one drawing respectively, and define 5, to be
the event {ww,i.w} in k consecutive drawings. Let Y be the num-

ber of drawings to the m-th occurrence of Sk. ,
Theorem 5.1: Let Y be a r.v, defined as above. Then its probabi-
Tity distribution is given by '
e fy-zry)
P{Y=y) =Z Eri+m—l 7 | y=-km,km+1_....
rl,...,rk,m—1 (a+b)(y) | (5.1)

where }E: denotes summation over all non-negative values of Fyoee
«oaT) Subject to ziri+km =Y.

Proof: The event (Y=y} occurs if any one of the Zry+m-1
b . Y‘1,...,Y‘k,m‘1

mutually exclusive events of the form Z,Z,...Z; . 43, occurs,
¢ i
where ri-of the Z's are of the form WW...WB , i=1,2,...,k and m-1
. ' ‘ i-1 _
of the Z's are S 's (mz1) so that Zirj+km=y. The probability
of any such event is o
: b(”i) a(E(i"‘i)r1+knl) 0
— . r.: 3 L IO S
P(Z1220~.er1+m_18k)" (a+b) I i1'1 2 k
- (ziri+km) R

k
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_{;‘Tb¢r§f9f§; thg_probabi]ity Py rys rk of observang ry B's,
0 B ‘ XN
S e .

b(zf") 21*1)r‘-+km R
zri+m-‘ 1 ‘ 1 ') ri‘gnigwnv

-;ri?fﬁ’?rk rl""'rk(m" (a*b)(xir +km) g j;}az;yossk
o Then the event (Y=y}, y=km,km+1,... occurs with a probabll1-

:‘%ifgty equal tq the sum of all possxble yalues of Pr p. Of the
L 1.'..’k

‘ fﬂbave relatlonshlp for all the non- negattve values of Pyaseosby

“.ff'satlsfying the condition Tir, jtkm=y. Hence the result.

R Constder now the r.v. X,Y-km Obviously,

o P(X»x) 2. Er st qﬁr‘)a(xfkm’zr‘) | O (5.2)

, T\ wfiamelf (a*b)(x+km) x=0,1,2,...

n}:fwherezz::denotes summation ovef all the non-negative values of

o Fyalgaec. .y such that riri=x, For k=1, (5.2) represents the dis-
'trlbut10n of the number of black balls drawn before the mth white
ball which is known in the literature as the. -general ized Narvng
distribution (Irwin (1963), Xekalaki (1981)), i.e.

a
P(X=X) . (m) (x)m(x) _1 . x;o,1,z,,,, - (5.3)
(a+b)(m) (a+b+m)( ) x!

. (For information concerning the structure and applications of =
- ;‘;th1s distribution see Irwin (1975), Xekalaki (1981), (1983a,b,c),
 §€ (1984a 0) and Xekalaki and Panaretos (1983)).
| Hence (5.2) provides a generalization of (5.3) in the context
r“_of distributions of order k and therefore it leads to the fol-
: t_-]ow1ng definition,
J_ff Definition 5.1: A non- negative xnteger-valued r.v. X will be said
~ %o have the generalized Waring distribution of order k with pa-
- rameters a,b and m if its p.f. is given by (5.2).
f ~ Theorem 5. 2: Let X be a non-negative, integer-valued r.v. and let
©-pbea cont1nuous r.v. with support in (0, 1). Assume that condi-
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tional on p the distribution of X is the negative binomial distri-
bution of order k with p.f.
, EX M-l IX.
Poxsxlp) =y [ P (arp) T x=0,1.2,0
) X’,.,.,Xk,m-1 L q=1_p .

- O<pet (s. 4)
Here :E: extends over al] the non-negative va1ues of x1,....xk
for which Elx =x. Let the distribution of p be the beta of type
I with p.d.f. g1ven by (3. 2). Then, the unconditional distribu-
tion of X is the genera11zed Naring distribution of order k with
parameters a,b and m as defined by (5.2).

Proof: The proof is straightforward,

The result of this theorem is a generalization of the chance
mechanism that gives. rise to the ordinary generalized Waring dis-
tribution as a beta mixture on p of the ordinary negative bino-
mial distribution as defined by (5.4) for k=1 (see e.g. Xekalaki
(1981)). _ '

The relationship between the negative binomial and genera-
lized Naring distributions of order k can be used to derive the
mean and variance of the latter as shown by the following corolla-
ry. : ,

* Corollary 5.1: Let X be a r.v. whose p.f, js given by (5.2).Then

' (a+b-k-1) R
EX) = m | — (ke1) _ ad=l (5.5)
(a-k)(jylo=1)  be1 |
ke }(a+b-2k—2)(2"k+2')- - (2k+1)(a+b-k-j)*(k+1) alash-1)
b=1 [ (b-2) (ar2k) () (“"")(k) - be2
| (5.6)

Proof': "From Theorem 5.2 1t follows that the distribution of X can
be regarded as a mixture on p of the distribution of X|p when

X{p has a negativé binomial distribution of order k with parame-
ters m and p as defined by (5.4) and p has a beta distribution
_ofithe'first type with p.d.f. given by (3.2). Therefore,
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E()<E(E(X|p))=Em(1-p¥)/ap")  and

V(X)=E(V(X[p))=n 5(1-(2k+1_)qp"-pz"*‘)/q"’pz"

“which leads to (5.5) and (5.6),

For k=1 (5.5) and {5.6) reduce to the mean and variance of
the ordinary genar;lizeh Waring distribution. |
Theorem 5.3; Let X be a r.v, having the Poisson distribution with
parameter ~mkinp;m>0, k>0, O<p<t and let Y,,Yp,. ., be a sequence
of mutually independent r.v,'s that are identically distributed
independently of X according to a logarithmic series distribution
of order k with parameter p, O<p<l and p.g.f. given by (4.4).
Assume that p has a beta distribution of the first kind with
p.d.f. given by (3.2). Then, the r.v. Z=Y,+¥,+.. . +¥y has the ge-

‘neralized Waring distribution of order k with parameters a,bandm
Proof: The result follows ijmmediately by Theorem 5.1 if one notes
that the r.v. Z|p has the negative binomial distribution of order
k with parameters m and p and p.f. given by (5.4)

" The case k=1 leads to Xekalaki's (1981) delivation of the
ordinary generalized Waring distribution as a beta mixture on p

of the Poisson (-mlnp) V logarithmic series (p) distribution.

' The following theorem can be easily shown.

Theorem 5.4: Let X be a non-negative, integer-valued r.v. whose
‘distribution is the Qeneralized Waring of order k with parameters
a,b and m and p.f. given by (5.2), Then aS a++e, br+e 50 that _
b/(a+b)<+w the probability distribution of X tends to that of the '
negative binomial distribution of order k with parameters:nand—:s-

So, the urn scheme considered in this section can give rise
to the negative binomial distribution of order k if the initial
‘numbers of black and white balls are increased at a fixed propor-
tion. '

~ Theorem 5.5: Let X be defined as in Theorem 5.4, Then if a»+s,
e w50 that b/(a+h)+0 and mb/(ath)<+=, the probability dis-
tribution of X tends to that of the Poisson d1str1but1on of order
k with parameter mb/{a+b),
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- Proof: Let 11@ denote 1imit as a-++e, b+te, pr+e so that b/{a+bh)-+0
and mb/{a+b e, Then, from (5.2)

i

@x.Pex.f(x+km-£x.)
Vim P(X=x)=) 1im ——] ‘

H H (a+b)(x+km)x1!x2!.--xk!

km Y LX; X=IXg oy
aafa\ " m\ ‘. fa
i) ) e

!

‘ .
km kmin 2 :
. [ a Y a+b b . a . .. b
]:'@(E:B) = ]:i“) e -km Fy skmln E;BS km a6
This implies that
. b . a+h . . a . b
l!@ km 335 11@ 5 & 11@ kmln 5 S 11@ km 336
H . H H ‘ H™
i.e. a _ ., mb !
!;@lkmln 3% ° k vy i
 Therefore . -
( ' ? IX; // k
.y oy ~kmb/{a+b) bm \ n
l;@ P(X=x) = e EEZ(ETB) izt %5
which shows that under H the distribution of X tends to the Pois-
son distribution of order k with parameter mb/(a+b}.

‘ The sampling scheme,conéidergd in this! section can be
stightly modified so as to give rise to a more general form of
distribution. In fact, if each sampled ball is returned to the
urn along with ¢ {cz1) balls of the same colour, the p.f. of the
r.v. X where X+km is the number of drawings to the mth occurence
of a run of k white balls is given by

4 in+m-1 (b/C)(Ixi)(aIC)(x+km-2xi) (5.7)
P(X=x) = :E:
x1....,xk,m-1 ((a+b)/c)(x+km)
. V ix:O,],Z,...
Here denotes again summation subject to the constraint!ﬁxi=x.

For k=1, (5.7) represents the p.f, of the inverse Polya dis-
_ tribution. Hence the following definition can be given.
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Definition §.2: A non-negative, integer-valued r.v. X taking va--
lues in {0,1,2,...} is said to have the inverse Polya distribution’
of order k with parameters a,b,m and c if its p.f. is givenby(5.2
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