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1. Introduction to Mixture Models 

 
Mixture models are widely used in statistical modeling since they can model 

situations which a simple model cannot adequately describe. In recent years, 
mixture modeling has been exploited mainly due to high-speed computers that 
can make tractable problems that occur when working with mixtures (e.g. 
estimation). Statistics has benefited immensely by the development of advanced 
computer machines and thus more sophisticated and complicated methodologies 
have been developed. Mixture models underlie the use of such methodologies in a 
wide spectrum of practical situations where the hypothesized models can be given 
a mixture interpretation as demonstrated in the sequel. 

In general, mixtures provide generalizations of simple models. For example, 
assuming a specific form for the distribution of the population that generated a 
data set implies that the mean to variance relation is given for this distribution. In 
practical situations this may not always be true. A simple example is the Poisson 
distribution. It is well known (see, e.g., Johnson et al., 1992) that for the Poisson 
distribution the variance is equal to the mean. Hence, assuming a Poisson 
distribution implies a mean to variance ratio equal to unity. With real data sets 
however, this is rarely the case. Quite often, the sample mean is noticeably 
exceeded by the sample variance. This situation is known as overdispersion. A 
Poisson distribution is no longer a suitable model in such a case and the need of a 
more general family of distributions becomes obvious. Such a flexible family may 
be defined if one allows the parameter (or the parameters) θ  of the original 
distribution to vary according to a distribution with probability density function, 
say )(g ⋅ .  

 



 

Definition 1. A distribution function )(F ⋅ is called a mixture of the distribution 
function )|(F θ⋅  with mixing distribution )(G ⋅θ  if it can be written in the form  

 ∫
Θ

θθ θθ= )(dG)|x(F)x(F |xx , (1) 

where Θ  is the space in which θ takes values and ( )Gθ ⋅  can be continuous, 
discrete or a finite step distribution.  

The above definition can be also expressed in terms of probability density 
functions in the continuous case (or the probability functions in the discrete case). 
The above mixture is denoted as )(G)x(F |x θ∧

θ
θ . In the sequel, a mixture with a 

finite step mixing distribution will be termed a k-finite step mixture of ( | )F θ⋅ , 
where k is a non-negative integer referring to the number of points with positive 
probabilities in the mixing distribution. 

Mixture models cover several distinct fields of the statistical science. Their 
broad acceptance as plausible models in diverse situations is reflected in the 
statistical literature. Titterington et al. (1985) provide an extensive review of work 
in the area of mixture models up to 1985. In recent years, the number of 
applications increased mainly because of the availability of high speed computer 
resources. Moreover, since many methods can be seen through the prism of 
mixture models, there is a vast literature concerning applications of mixture 
models in various contexts. Recent reviews on mixtures can be found in Lindsay 
(1995), Bohning (1999), McLachlan and Peel (2001). 

The purpose of this paper is to bring together various models from diverse 
fields that are in fact mixture models. The resulting collection of models may be 
far from being exhaustive as the focus has been on methodologies that are 
common in statistical practice and not on results concerning special cases. To this 
extent, the number of articles cited was kept to a minimum and reference was 
made only to a selection of papers that could pilot the reader in the various areas. 

In Section 2 of the chapter two basic concepts are discussed in the context of 
which the mixture models are used: overdispersion and inhomogeneity. Section 3 
presents various statistical methodologies that use the idea of mixtures. An 
attempt is made to show clearly the connection of such methodologies to mixture 
models. Finally, in Section 4 a brief discussion is provided highlighting the 
implications of a unified treatment of all the models discussed. 

 
 



 

2. General Properties 
 

2.1 Inhomogeneity models 
 
Mixture models are used to describe inhomogeneous populations. The i-th 

group of individuals of the population has a distribution defined by a probability 
density function ( | )if θ⋅ . All the members of the population follow the same 
parametric form of distribution, but the parameter θi varies from individual to 
individual according to a distribution ( )Gθ ⋅ . For example, considering the number 
of accidents incurred by a population of clients of an insurance company, it is 
reasonable to assume that there are at least two subpopulations, the new drivers 
and the old drivers. Drivers can thus be assumed to incur accidents at rates that 
differ from one subpopulation to the other subpopulation, say 1 2θ θ≠ .This is the 
simplest form of  inhomogeneity: the population consists of two subpopulations. 
Allowing for the number of subpopulations to tend to infinity, i.e., considering 
different categories of drivers according to infinitely many characteristics, such as 
age, sex, origin, social, and economic status, etc. a continuous mixing distribution 
for the parameter θ of the Poisson distribution arises. 

Depending on the choice of the mixing distribution ( )Gθ ⋅ , a very broad family 
of distributions is obtained, which may be adequate for cases where the simple 
model fails. So, a mixture model describes an inhomogeneous population while 
the mixing distribution describes the inhomogeneity of the population. If the 
population were homogeneous, then all the members would have the same 
parameter θ , and the simple model would adequately describe the situation. 

 
2.2 Overdispersion 

  
A fundamental property of mixture models stems from the following 

representation of the variance of the mixed variate X.  
 ( ) ( ( | )) ( ( | ))Var X Var E X E Var Xθ θ= + . (2) 

The above formula separates the variance of X into two parts. Since the 
parameter θ represents the inhomogeneity of the population, the first part of the 
variance represents the variance due to the variability of the parameter θ, while 
the second part reflects the inherent variability of the random variable X if θ did 
not vary. One can recognize that a similar idea is the basis for ANOVA models 



 

where the total variability is split into the “between groups” and the “within 
groups” components. This is further discussed in Section 3. 

The above formula offers an explanation as to why mixture models are often 
termed as overdispersion models. A mixture model has a variance greater than 
that of the simple model (e.g., Shaked, 1980). Thus, it is commonly proposed that 
if the simple model cannot describe the variability present in the data, 
overdispersed alternatives based on mixtures could be used. 

 
3. Fields of Application 

 
3.1 Data Modelling 

 
The main advantage of mixture models lies in that they provide the possibility 

of generalizing existing simple models through an appropriate choice of a mixing 
distribution which acts as a means of “loosening” the structure of the initial model 
by allowing its parameter to vary. A wealth of alternative models can thus be 
considered whenever the simple (initial) model fails and many interesting 
distributions may be obtained from simple and well-known distributions such as 
the Poisson, the binomial, the normal, the exponential, through mixing 
procedures.  

In recent years, the computational difficulties for applying such complicated 
models have disappeared and some new distributions (discrete or continuous) 
have been proposed. Moreover, since mixture models are widely used to describe 
inhomogeneous populations they have become a very popular choice in practice, 
since they offer realistic interpretations of the mechanisms that generated the data. 

The derivation of the negative binomial distribution, as a mixture of the 
Poisson distribution with a gamma distribution as the mixing distribution, 
originally obtained by Greenwood and Yule (1920) constitutes a typical example. 
Almost all the well-known distributions have been generalized by considering 
mixtures of them. A large number of Poisson mixtures have been developed. (For 
an extensive review, see Karlis, 1998). 

Perhaps, the beta binomial distribution (see, e.g., Tripathi et al., 1994) is the 
most famous example of binomial mixtures. Alternative models have been 
described in Alanko and Duffy (1996) and Brooks et al. (1997). 

Negative binomial mixtures have also been widely used with applications in a 
large number of fields. These include the Yule distribution (Yule, 1925, Simon, 
1955, Kendall, 1961, Xekalaki, 1983a, 1984b) and the generalized Waring 



 

distribution (Irwin, 1963, 1968, 1975, Dacey, 1972, Xekalaki, 1983b, 1984a). 
Note that negative binomial mixtures can be seen as Poisson mixtures as well. 

Normal mixtures on the parameter representing the mean of the distribution 
are not common in practice. Mixtures of the normal distribution on the parameter 
representing its variance are referred to as scale mixtures (e.g., Andrews and 
Mallows, 1974). For example, the t-distribution is a scale mixture of the normal 
distribution with a chi-square mixing distribution. Barndorff-Nielsen et al. (1982) 
described a more general family of normal mixtures of the form ( , ) ( )N af gµ θβ θ θ

θ+ ∧ , 

where N(α,β)f  stands for the probability density function of the normal distribution 
with mean α and variance β. The distributions arising from such mixtures are not 
necessarily symmetric and have heavier tails than the normal distribution. 
Applications of normal scale mixtures have been considered by Barndorff-Nielsen 
(1997) and Eberlein and Keller (1995). 

Similarly, exponential mixtures are described in Hebert (1994) and Jewell 
(1982), for life testing applications. The beta distribution can be seen as a Gamma 
mixture, while the Gamma distribution can be seen as a scale mixture of the 
exponential distribution (Gleser, 1989). Many other mixture distributions have 
been proposed in the literature. 

A wide family of distributions can be defined to consist of finite mixtures of 
distributions, with components not necessarily from the same family of 
distributions. Finite mixtures with different component distributions have been 
described in Rachev and Sengupta (1993) (Laplace - Weibull),  Jorgensen et al. 
(1991) (Inverse Gaussian – Reciprocal Inverse Gaussian),  Scallan (1992) 
(Normal – Laplace), Al-Hussaini and Abd-El-Hakim (1989) (Inverse Gaussian-
Weibull) and many others. 

Finally, note that mixture models can have a variety of shapes that are never 
taken by simple models, such as multimodal shapes. These are usually 
represented via finite mixtures. So, for example, mixing two normal distributions 
of equal variances in equal proportions can result in a bimodal distribution with 
well-separated modes, appropriate for describing data exhibiting such a behavior.  

 
3.2 Discriminant Analysis 

 
In discriminant analysis, one needs to construct rules so as to be able to 

distinguish the subpopulation from which a new observation comes. Assuming a 
finite mixture model one may obtain the parameters of the subpopulations from a 



 

training set, and then classify the new observations via simple probabilistic 
arguments (see, e.g., McLachlan, 1992). This approach is also referred to as 
statistical pattern recognition in computer science applications. 

Consider a population consisting of k subpopulations, each distributed 
according to a distribution defined by a density function ( | )j jf θ⋅ , j=1,2,. . . , k . 
Suppose further that the size of each subpopulation is pj . Usually, data used in 
discriminant analysis also contain variables Zj , j=1,2, . . . , k,  which take the 
value 1 if the observation belongs to the j-th subpopulation and 0 otherwise. 
These data are used for estimating the parameters θj , pj  and are referred to as 
training data. Then, a new observation x is allocated to each group according to 
its posterior probability of belonging to the j-th group 

1

( | )
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=

= =

∑
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One can recognize the mixture formulation in the above formula, as well as 
the fact that this formulation comprises the E-step of the EM algorithm for 
estimation in finite mixture models. The variables Zij are the "missing" data in the 
construction of the EM algorithm for finite mixtures. 

However, such data sets often contain a lot of unclassified observations, i.e., 
observations that do not relate to specific values of Zj , j=1,2, . . . , k   and hence 
one can use these data for estimation purposes. The likelihood function for such 

data is expressed in terms of the  mixture 
1

( | )
k

j j j
j

p f x θ
=

∑  and standard mixture 

methodologies must be used for estimating the parameters. Note that unclassified 
observations contribute to the estimation of all the parameters (see, e.g., Hosmer, 
1973).  

Usually, the densities ( | )j jf θ⋅ are assumed multivariate normal with both the 
mean vector and the variance-covariance matrix being variable. 

It is interesting to note that although the EM algorithm for mixtures was 
introduced quite early by Hasselblad (1969), it did not find wide usage until 
computer machines became widely available. This typically reflects the impact of 
computer resources in mixture modeling. The same is true of a wide range of 
fields that, despite their early development, attracted greater interest only after the 
generalized use of statistical software. Cluster analysis is another typical example. 

 



 

3.3 Cluster Analysis 
 
Finite mixtures play an important role to the development of methods in 

cluster analysis. Two main approaches are used for clustering purposes. The first 
considers distances between the observations and then clusters the data according 
to their distances from specific cluster centers. The second approach utilizes a 
finite mixture model. 

The idea is to describe the entire population as a mixture model consisting of 
several subpopulations (clusters). Then, a methodology could be to fit this finite 
mixture model and subsequently use the estimated parameters to obtain the 
posterior probability with which each of the observations belongs to the j-th 
subpopulation (McLachlan & Basford, 1989). According to a decision criterion, 
each observation is allocated to a subpopulation, thus creating clusters of data. 
The problem of choosing the number of clusters that best describe the data, 
reduces to that of selecting the number of support points for the finite mixture 
(see, e.g., Karlis & Xekalaki, 1999).  

Usually, multivariate normal subpopulations are considered (Banfield & 
Raftery, 1993 and McLachlan & Basford, 1989).  Symons et al. (1983) found 
clusters of Poisson distributed data for an epidemiological application, while data 
containing both continuous and discrete variables can be analyzed via multivariate 
normal densities where thresholds are used for the categorical variables (see, e.g., 
Everitt & Merette, 1990). 

 
3.4 Outlier-robustness Studies 

 
Outliers in data sets have been modelled by means of mixture models (see, 

e.g., Aitkin & Wilson, 1980). It is assumed that an outlier comprises a component 
in a mixture model.  More formally, the representation used for the underlying 
model is 

(1-p) ( | )f θ⋅  + p )(g ⋅ ,  
where ( | )f θ⋅   is the true density contaminated by a proportion of p observations 
from a density ( )g ⋅ . Hence, by fitting a mixture model we may investigate the 
existence of outliers. In robustness studies, the contamination of the data can also 
be regarded as an additional component of a mixture model. 

In addition, for robustness studies with normal populations it is natural to use 
a t-distribution. Recall that the t-distribution is in fact a scale mixture of the 



 

normal distribution. Other scale mixtures have also been proposed for examining 
robustness of methods for normal populations (e.g., Cao & West, 1996). 

Note further, that since mixtures of a distribution tend to this distribution if a 
degenerate mixing distribution is used, it would be natural to consider the general 
mixture model as leading to the simple model as the variance of the underlying 
model decreases. 

 
3.5 Analysis of Variance (ANOVA) Models 

   
The wellknown technique of the analysis of variance is a particular 

application of mixture models. It is assumed that the mean of the normal 
distribution of the entire population, varies from subpopulation to subpopulation 
and the total variance is decomposed with respect to randomness and mixing. 

The simple ANOVA model assumes prespecified values for the means of the 
different components, not allowing them to vary. The case where the means come 
from a distribution with density )(g ⋅ corresponds to the so-called random effects 
model described in the sequel. It is interesting that the simple ANOVA models are 
based on the inhomogeneity model which allows for subpopulations with different 
means. The decomposition of the variance given in (2) is the classical ANOVA 
model separating the total variance into the ''between groups'' variance and the 
''within groups'' variance. 

Beyond the widely applied classical ANOVA model for normal populations, 
similar ANOVA models have been proposed for discrete data as well. For 
example, Irwin (1968) and Xekalaki (1983b, 1984a), in the context of accident 
theory, considered analyzing the total variance into three additive components 
corresponding to internal and external non-random factors and to random factors. 
Also, Brooks (1984) described an ANOVA model for beta-binomial data. 

 
3.6 Random Effects Models and Related Models 

 
Consider the classical one-way ANOVA model. It is assumed that the i-th 

observation of the j-th group, say Xij , follows a N(θj,σ2) distribution, where θj  is 
the mean of the j-th group. The simple ANOVA model assumes that the values of 
θj’s are prespecified. Random effect models assume that the parameters are not 
constant but they are realizations from a distribution with density g(⋅). The 
resulting marginal density function of the data for each group is of the form 



 

2

1

( ) ( ; , ) ( )
jn

j ij
i

f f x g dθ σ θ θ
=

= ∏∫
Θ

x , 

where nj is the sample size of the j-th subpopulation. The usual choice for g(⋅) is 
the density function of the normal distribution, resulting in normal marginals. 
This choice was based mainly on its computational tractability, since other 
choices led to complicated marginal distributions. 

Such random effects models have been described for the broad family of 
Generalized Linear Models. Consider, for example, the Poisson regression case. 
For simplicity, we consider only a single covariate, say X. A model of this type 
assumes that the data Yi , i=1, 2, . . ,n  follow a Poisson distribution with mean λi  
such that  

log( )i i ia Xλ β ε= + +  
for some constants  a,β and with εi having a distribution with mean equal to 0 and 
variance say φ. Now the marginal distribution of the observations yi  is no longer 
the Poisson distribution, but a mixed Poisson distribution, with mixing 
distribution clearly depending on the distribution of εi. 

From the regression equation, one can obtain that 
~ ( exp( )) ( )i i i t

Y Poisson t a X g tβ+ ∧ , 

where exp( )i it ε=  with a distribution that depends on the distribution of εi. 
Negative Binomial and Poisson Inverse Gaussian regression models have been 
proposed as overdispersed alternatives to the Poisson regression model (Lawless, 
1987, Dean et al., 1989). If the distribution of t is a two finite step distribution, the 
finite Poison mixture regression model of Wang et al. (1996) results. The 
similarity of the mixture representation and the random effects one is discussed in 
Hinde and Demetrio (1998). 

The above example from the Poisson distribution can easily be generalized. 
All the random effect models introduce a mixing distribution for the error which 
adds one more term to the total variability.  

Very similar to the random effect model is the formulation of repeated 
measurement models, where the added variability is due to the variance induced 
by the series of observations on the same individual. Starting from a linear 
regression (in general one can consider any link function suitably linearized) one 
can add variability by regarding any term of the linear regression model as a 
random variable. So, allowing the intercept parameter to vary leads to random 
coefficient regression models (see Mallet, 1986). Also, error-in-variables models 



 

arise by letting the covariates themselves vary. Finally, random effect models are 
obtained if the error term is allowed to vary. 

 
Lee and Nelder (1996) discussed the above models under the general caption 

of hierarchical generalized linear models. 
 

3.7 Kernel Density Estimation 
 
In kernel density estimation, the aim is to estimate a probability density 

function (.)f  on the basis of a sample of size n by smoothing the probability mass 

of 1
n

 placed at each of the observations ( ix ) by the empirical distribution function 

according to a kernel  ( , )n iK x⋅  . This is usually a symmetric probability density 

function of the form  ( , ) ,   1,   2,   ...,   i
n i

x xK x x K i n
h
−   = = 

 
, where h is a 

switching parameter which handles the smoothing procedure (see, e.g., Silverman, 
1986). Thus, in kernel density estimation a kernel mixture model is considered 
with equal mixing probabilities. More specifically, the density estimate ˆ (.)nf  of 

(.)f  at the point x  is obtained by 

1

1ˆ ( )
n

i
n

i

x xf x K
n h=

− =  
 

∑ . 

One can recognize that the above representation of the kernel estimate is a n-
finite mixture of the kernel ( , )K ⋅  ⋅ . Though this mixture representation has been 
recognized (see, e.g., Simonoff, 1996), it has not been exploited in practice. The 
idea is to use certain kernels in order to obtain estimates with useful properties. 
For example, data restricted on the positive axis can be estimated using 
exponential or gamma kernels (see, e.g., Chen, 2000), depending on the shape (J-
shaped or bell shaped data). Similarly, discrete data can be estimated via Poisson 
kernels etc.  

Moreover, specific approaches can be used in order to achieve certain 
smoothing properties. By using such approaches the choice of the smoothing 
parameter h can be reduced to the choice of the kernel parameters so that the 
smoothing properties be fulfilled. Wang and Van Ryzin (1979) described such an 
approach in an empirical Bayesian context for the estimation of a Poisson mean. 
They proposed estimating the discrete density, given the data X1,X2, …., Xn  by 



 

1

exp( )1ˆ( )
!

xn
i i

i

x xP x
n x=

−
= ∑  

i.e., as a mixture of n Poisson distributions with parameters equal to the 
observations xi, i=1, 2, …, n. 

 
3.8 Latent Structure Models and Factor Analysis 

 
In latent structure models it is assumed that beyond the observable random 

variables there are other unobservable or even non-measurable variables, which 
influence the situation under investigation. The main assumption in the case of 
latent structure models is that of conditional independence, i.e., the assumption 
that for a given value of the unobservable variable the remaining variables are 
independent. Since inference is based on the unconditional distribution, we 
obtain, by the law of total probability, a mixture model where the mixing 
distribution represents the distribution of the unobservable quantity which thus is 
of special interest in many situations (see, e.g., Everitt, 1984). It is very 
interesting that many methods proposed for mixture models are applicable to 
latent variable models  (see, e.g., Aitkin et al., 1981). 

For example, in psychological tests the probability that the i-th person will 
correctly answer x questions is described as p(x|φi) where φi represents the ability 
of the i-th person. Additionally, it is assumed that given the ability of each person 
the scores x are independent. (This is the idea of conditional independence). 
Since, ability is a rather abstract notion that cannot be measured, the researcher 
may assume either a parametric form of distribution for its values (e.g., a normal 
distribution with some parameters) or a finite step distribution (as in the case 
where φi can take only a finite number of different values).  This has a common 
element with the method of factor analysis for continuous variables 
(Bartholomew, 1980). 

A formulation of the problem is the following. Suppose that one observes a set 
of p-variables, say x =(x1,x2, …., xp). A latent structure model supposes that these 
variables are related to a set of q unobservable and perhaps non-measurable 
variables (e.g., some abstract concepts such as hazard, interest, ability, love, etc.), 
say y = (y1,y2, …., yq.). For the model to be practically useful, q needs to be much 
smaller than p. The relationship between x and y is stochastic and may be 
expressed by a conditional probability function π(x|y) being the conditional 
distribution of the variables x given the unobservable y.  The purpose of latent 



 

structure models is to infer on y, keeping in mind, that we have observed only x. 
The marginal density of x can be represented as a mixture, by 

( ) ( ) ( )f p dπ= ∫x x | y y y . 
One can infer on y using the Bayes theorem, since 

( ) ( )( | )
( )

p
f

ππ =
x | y yy x

x
. 

Hence, the problem reduces to one of estimating the mixing density )(p ⋅ . As 
described earlier, this density can be either specified parametrically, and hence 
only the parameters of the defined density must be estimated, or it can be 
estimated non-parametrically (see, e.g., Lindsay et al., 1991). 

Latent structure models can be considered as factor analysis models for 
categorical data. The classical factor analysis model assumes that a set of 
observable variables, say x =(x1,x2, …., xp) can be expressed as a linear 
combination of a set of unobservable variables, say y = (y1,y2, …., yq.), termed 
factors. More formally 

= +x By ε  
where the matrix B contains the factor loadings, i.e., its (i, j) element is the 
contribution of the j-th factor to the determination of the i-th variable. The vector 
of errors ε contains the unexplained part of each variable and it is assumed to 
follow a N(0,D), where 2 2 2

1 2( , ,..., )pdiag σ σ σ=D . Conditionally on the factors y, 
x|y ~ N(By,D) distribution, and the factors follow themselves a N(0,Iq) 
distribution. Then, the unconditional distribution of x is a N(0, BBt+D)  
distribution. Note that the variance-covariance matrix is decomposed into two 
terms, the variance explained by the factors and the remaining unexplained part. 
This decomposition is the basis for the factor analysis model. 

 
3.9 Bayes and Empirical Bayes Estimation. 

 
Bayesian statistical methods have their origin in the well-known Bayes 

theorem. From a Bayesian perspective, the parameter θ of a density function, say 
( | )f θ⋅  has itself a distribution function )(g ⋅ , termed the prior, reflecting one’s 

belief about the parameter and allowing for extra variability. We treat θ as a scalar 
for simplicity, but clearly, it can be vector valued as well. The prior distribution 
corresponds to the mixing distribution in (1). 



 

The determination of the prior distribution is crucial for the applicability of 
the method. Standard Bayesian methods propose a prior based on past experience, 
on the researcher’s belief, or a non-informative prior in the sense that no clear 
information about the parameter exists and this ignorance is accounted for by a 
very dispersed prior. Instead of determining the prior by specific values of its 
parameters, recent hierarchical Bayes models propose treating the parameters of 
the prior distribution as random variates and imposing hyperpriors on them. Such 
an approach can remove subjectivity with respect to the selection of the prior 
distribution. 

A different approach is that of the so-called Empirical Bayes methodologies 
(see, e.g., Karlin & Lewis, 1996). Specifically, the Empirical Bayesian methods 
aim at estimating the prior distribution from the data. This reduces to the problem 
of estimating the mixing distribution. This obvious relationship between these two 
distinct areas of statistics have resulted in a vast number of papers in both areas, 
with many common elements (see, for example, Maritz & Lwin, 1989, Laird, 
1982). The aim is the same in both cases, though the interest lies in different 
aspects. 

Putting aside the relationship of Bayesian approaches and mixture models, 
there are several other topics in the Bayesian literature that use mixtures in order 
to improve the inferences made. For example, mixtures have been proposed to be 
used as priors, the main reason being their flexibility  (see, e.g., Dalal & Hall, 
1983). Beyond that, such priors are also robust and have been proposed for 
examining Bayesian robustness (Bose, 1994). Escobar and West (1995) proposed 
mixtures of normals as an effective basis for nonparametric Bayesian density 
estimation. 

 
3.10 Random Variate Generation 

 
The mixture representation of some distributions is a powerful tool for 

efficient random number generation from these distributions. Several distributions 
(discrete or continuous) may arise as mixture models from certain distributions, 
which are easier to generate. Hence, generating variables in the context of such a 
representation can be less expensive.  

For example, variables can be generated from the negative binomial 
distribution by utilizing its derivation as a mixture of the Poisson distribution with 
a Gamma mixing distribution. Another, more complicated example of perhaps 
more practical interest is given by Philippe (1997). She considered generation of 



 

truncated gamma variables based on a finite mixture representation of the 
truncated Gamma distribution.  

Furthermore, the distributions of products and ratios of random variables can 
be regarded as mixtures and hence the algorithms used to simulate from such 
distributions are in fact examples of utilizing their mixture representation. For 
more details, the reader is referred to Devroye (1992). 

 
3.11  Approximating the Distribution of a Statistic 

 
In many statistical methods, the derived statistics do not have a standard 

distributional form and an approximation has to be considered for their 
distribution. Mixture models allow for flexible approximation in such cases. Such 
an example is the approximation of the distribution of the correlation coefficient 
used in Mudholkar and Chaubey (1976). In order to cope with the 
inappropriateness of the normal approximation of the distribution of the sample 
correlation coefficient, especially in the tails of the distribution, they proposed the 
use of a mixture of a normal distribution with a logistic distribution. Such a 
mixture results in a distribution with heavier tails suitable for the distribution of 
the correlation coefficient 

  
3.12 Multilevel Models 

 
Multilevel statistical models assume that one can separate the total variation 

of the data into levels and estimate the component attributed to each level (see, 
e.g., Goldstein, 1995). Consider a k-level model and let (yij, xij) denote the i-th 
observation from the j-th level. In the context of the typical linear model  

ij j j ij ijy a b x e= + +  
one has to estimate the parameters ,j ja b , j=1, … , k and the variance σ2  of the 
data. 

A multilevel statistical model treats the parameters jj b,a  as random variables 
in the sense that 0 1,    and    j j j ja c u b c v= + = +  where ( , )j ju v  follows a bivariate 
normal distribution with zero means and a variance covariance matrix. Then, the 
simple model can be rewritten as 

1 ( )ij o ij j j ij ijy c c x u v x e= + + + + . 
A variance component is added corresponding to each level.  For this reason, 

the model is also termed as the variance components model. Since normal 



 

distributions are usually used (mainly for convenience) the resulting distributions 
are also normal.  The mixture representation is used for applying an EM algorithm 
for the estimation of the parameters (Goldstein, 1995). 
 
3.13 Distributions Arising out of Methods of Ascertainment 

 
When an investigator collects a sample of observations produced by nature 

according to some model, the original distribution may not be reproduced due to 
various reasons. These include partial destruction or enhancement of 
observations. Situations of the former type are known in the literature as damage 
models while situations of the latter type are known as generating models. The 
distortion mechanism is usually assumed to be manifested through the conditional 
distribution of the resulting random variable Y given the value of the original 
random variable X. As a result, the observed distribution is a distorted version of 
the original distribution obtained as a mixture of the distortion mechanism. In 
particular, in the case of damage, 
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Various forms of distributions have been considered for the distortion 
mechanisms in the above two cases. In the case of damage, the most popular 
forms have been the binomial distribution (Rao, 1963), mixtures on p of the 
binomial distribution (e.g., Panaretos, 1982, Xekalaki & Panaretos, 1983) 
whenever damage can be regarded as additive (Y=X–U, U independent of Y) or 
in terms of the uniform distribution in (0, x) (e.g., Xekalaki, 1984b) whenever 
damage can be regarded as multiplicative (Y= [RX], R independent of X and 
uniformly distributed in (0, 1)). The latter case has also been considered in the 
context of continuous distributions by Krishnaji (1970b). The generating model 
was introduced and studied by Panaretos (1983).  

 
3.14 Other Models 

 
It is worth mentioning that several other problems in the statistical literature 

can be seen through the prism of mixture models. For example, deconvolution 



 

problems (see, e.g., Caroll & Hall, 1988, Liu & Taylor, 1989) assume that the 
data X can be written as Y+Z, where Y is a latent variable and Z has a known 
density f. Then, the density of X can be written in a mixture form, thus 

( ) ( ) ( )g x f x y dQ y= −∫ , 
where )(Q ⋅  is the distribution function of the latent variable Y. The above model 
can be considered as a measurement error model. In this context, the problem 
reduces to estimating the mixing distribution from a mixture. Similar problems 
related to hidden Markov models are described in Leroux (1992). 

Simple convolutions can be regarded as mixture models. Also, as already 
mentioned in Section 3.10, products of random variables can be regarded as 
mixture models (Sibuya, 1979).  

Another application of mixtures is given by Rudas et al. (1994) in the context 
of testing for the goodness of fit of a model. In particular, they propose treating 
the model under investigation as a component in a 2-finite mixture model. The 
estimated mixing proportion together with a parametric bootstrap confidence 
interval for this quantity can be regarded as evidence for or against the assumed 
model. The idea can be generalized to a variety of goodness of fit problems, 
especially for non-nested models. 

From this, it becomes evident that a latent mixture structure exists in a variety 
of statistical models, often ignored by the researcher. Interesting reviews for the 
mixture models are given in the books by Everitt and Hand (1981), Titterington et 
al. (1985), McLachlan and Basford (1989), Lindsay (1995), Bohning (1999), 
McLachlan and Peel (2001) as well as in the review papers of  Gupta and Huang 
(1981), Redner and Walker (1984) and Titterington (1990). 

 
4. Discussion 

 
An anthology of statistical methods and models directly or indirectly related 

to mixture models was given. In some of them, the mixture idea is often well 
hidden in the property that a location mixture of the normal distribution is itself a 
normal distribution. So, the standard normal theory still holds and estimation is 
not difficult under a normal distribution. 

 A question that naturally arises is what one can gain by such mixture 
representations of all these models. As has been demonstrated, beyond the 
philosophical issue of a unified statistical approach, some elements common in all 
these models can be brought about. Many of these models have a structure that is 



 

of a latent nature such as containing, unobserved quantities that are not 
measurable, but nevertheless play a key-role in the model.  

All the models discussed imply the two basic concepts of inhomogeneity and 
overdispersion. Further, any mixture model admits an interesting missing data 
interpretation. Thus, a unifying approach in modeling different situations allows 
the application of methodologies used in the case of mixtures to other models. 
Mixture models, for instance, provide the rationale on which the estimation step 
of the well-known EM-algorithm is based for the estimation of the unknown 
values of the parameters which are treated as “missing data.” For example, Goutis 
(1993) followed an EM algorithmic approach for a logistic regression model with 
random effects. In general, such EM algorithms for random effect models can 
reduce the whole problem to one of fitting a generalized linear model to the 
simple distribution; such procedures are provided in standard statistical packages. 
Hence, iterative methods that provide estimates can be constructed.  Other 
techniques can also be applied, like nonparametric estimation. (See, Lindsay, 
1995, for an interesting elaboration). Such approaches reduce the need for specific 
assumptions when applying the models leading to more widely applicable models. 

As mentioned in the introduction, the impact of computer resources on the 
development of mixture models and on the enhancement of their application 
potential has been tremendous. Although early work on mixtures relied on 
computers (e.g., the development of the EM algorithm for finite mixture models 
by Hasselblad, 1969, and the first attempt for model based clustering by Wolfe, 
1970), the progress in this field was rather slow until the beginning of last decade. 
The implementation of Lindsay’s (1983) general maximum likelihood theorem 
for mixtures, a milestone in mixture modeling, relies on computers. Non-
parametric maximum likelihood estimation of a mixing distribution became 
computationally feasible either via an EM algorithm (as described in detail by 
McLachlan & Krishnan (1997) and McLachlan & Peel (2001) or via other 
algorithmic methods a detailed account of which is provided by Bohning (1995). 
Another example is the development of model-based clustering through mixture 
models. Such models became accessible by a wide range of research workers 
from a variety of disciplines, only after the systematic use of computers (see, e.g., 
McLachlan & Basford, 1989). Finally, Bayesian estimation for mixture models 
became possible via MCMC methods (see, e.g., Diebolt & Robert, 1994) that 
required high speed computer resources. The multiplicity of applications of 
mixtures presented in Section 3, reveals that the problems connected with the 
implementation of the theoretical results would not have become tractable if it 



 

were not for the advancement of computer technology. The results could have 
remained purely theoretical with a few applications by specialists in certain fields. 
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