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Summary

Mixed Poisson distributions have been used in a wide range of scientific fields for modeling non-
homogeneous populations. This paper aims at reviewing the existing literature on Poisson mixtures by
bringing together a great number of properties, while, at the same time, providing tangential information
on general mixtures. A selective presentation of some of the most prominent members of the family of
Poisson mixtures is made.
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1 Introduction

Mixtures of distributions have been widely used for modeling observed situations whose various
characteristics as reflected by the data differ from those that would be anticipated under the simple
component distribution. In actuarial applications, for example, observed data on the number of claims
often exhibit a variance that noticeably exceeds their mean. Hence, assuming a Poisson form (or any
other form that would imply equality of the mean to the variance) for the claim frequency distribution
is not appropriate in such cases.

In general, the assumption of a specific form of distributionF������ � � � for the parent distribu-
tion of a data set imposes a certain mean-to-variance relationship, which in practice may be severely
violated. More general families of distributions, well known as mixtures, are usually considered
as alternative models that offer more flexibility. These are superimpositions of simpler component
distributions depending on a parameter, itself being a random variable with some distribution. Mixed
Poisson distributions, in particular, have been widely used as claim frequency distributions.

Definition 1. A probability distribution is said to be a mixture distribution if its distribution
functionF��� can be written in the form

F��� �
�
�

F�����dG����

whereF����� denotes the distribution function of the component densities considered to be indexed
by a parameter� with distribution functionG���� � � �.

The above definition can also be expressed in terms of probability density functions, thus

f �x� �
�
�

f �x ���g����d��

In the sequel, the above mixture is denoted asf �x ����
�

g���. The densityg��� is referred to as the

mixing density. The mixing distribution can be continuous, discrete or a distribution with positive
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probability at a finite number of points, i.e. a finite step distribution. In the sequel, a mixture with a
finite step mixing distribution is termed ak-finite step mixture of F�����, wherek is the number of
points with positive probabilities in the mixing distribution.

Mixture models cover several distinct fields of the statistical science. Their broad acceptance as
adequate models to describe diverse situations is evident from the plethora of their applications in
the statistical literature. Titteringtonet al. (1985) provide a review of work in the area of applications
of mixture models up to 1985. In recent years, the number of applications increased mainly because
of the availability of high speed computer resources, which removed any obstacles to apply such
methods. Thus, mixture models have found applications in fields as diverse as data modeling,
discriminant analysis, cluster analysis, outlier-robustness studies, ANOVA models, kernel density
estimation, latent structure models, empirical Bayes estimation, Bayesian statistics, random variate
generation, approximation of the distribution of some statistic and others.

Interesting reviews for finite mixture models are given in the books by Everitt & Hand (1981),
Titteringtonet al. (1985), McLachlan & Basford (1988), Lindsay (1995), Böhning (1999), McLachlan
& Peel (2000). Also, literature reviews on special topics related to mixtures can be found in the papers
by Gupta & Huang (1981) (on ranking and selection topics), Redner & Walker (1984) (on the EM
algorithm for finite mixtures) and Titterington (1990); an update of some topics covered in the book
by Titteringtonet al. (1985).

The aim of this paper is to bring together results concerning Poisson mixtures that have been
dispersed in diverse scientific fields. An attempt is made to include a variety of related topics, though
some topics are not treated in detail, due to, mainly, space limitations. In particular, in section 2,
some general properties for mixture models are provided, while in section 3, a detailed description of
the properties of mixed Poisson distributions is given. Some new results are also provided. Section
4 contains a brief description of various mixed Poisson distributions and some interrelationships
pertaining to their derivation. A brief review of bivariate mixed Poisson distributions is given in
section 5. Finally, several aspects of the mixed Poisson models in connection with applications are
discussed in section 6.

2 Some Properties of Mixture Models

Mixture models have interesting properties. In this section, some of their properties that are used
in the sequel are briefly presented. Some definitions, notation and terminology are also provided.

It can easily be shown that the following associative property holds for mixtures provided that
there are no dependencies between the parameters of the distributions considered.

� f �x ��� �
�

g������ �
�

h��� is equivalent tof �x ��� �
�
�g����� �

�
h�����

The proof is based on the definition of mixtures and the possibility of interchanging the order of
integration or summation.

Regardless of the form off �����, the expected value of the functionh�X� is obtained as

E �h�X�� �
�
�

Ex�� �h�X�� g���d�� (1)

with the subscript in the expectation denoting that the expectation is taken with respect to the
conditional distribution ofX . Integration is replaced by summation in the case of a discrete mixing
distribution. It follows that

E �X� � E�Ex���X�� andV �X� � V �Ex���X��� E�Vx���X��� (2)

i.e., the variance of theX in the mixed distribution is the sum of the variance of its conditional mean
and the mean of its conditional variance. Relationship (2) indicates that the variance of the mixture
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model is always greater than that of the simple component model and this explains the use of the
term “overdispersion models” used for mixture models.

Another interesting property that relates mixtures to products of random variables has been given
by Sibuya (1979). The proposition that follows shows that mixing with respect to a scale parameter
is equivalent to obtaining the distribution of the product of two random variables—the distribution
of one being of the same form as that of the simple component model, but with unit scale parameter,
and the distribution of the other being the same as the mixing distribution.

PROPOSITION1 (Sibuya, 1979). Suppose that the conditional density of X is given by f �����,
where � is a scale parameter. Assume that � is itself a random variable with density function g�����
for some parameter � (symbolically � � g�����). Then, the unconditional density of the random
variable X is the same as the density of the random variable Z � X �X�, where X� � f ����� and
X� � g�����.

The above proposition justifies the dual derivation of certain distributions as mixtures and as
distributions of products of two random variables. The Beta distribution and thet distribution are
typical examples.

Definition 2. Consider a random variableS that can be represented as

S � X� � X� � � � � � X N �

whereN� X�� X�� � � � are mutually independent, non-negative, integer valued random variables with
the variablesX�� X�� � � � distributed identically with density functionf . Let the distribution ofN
be defined by a probability functionp. Then,S is said to have acompound p distribution with
density denoted byp � f . The distribution defined by the densityf is referred to asthe summand
distribution, as it is the distribution of the summandsX i . Some authors use the termgeneralized p
distribution.

Definition 3. A compound (or generalized) distribution is termed acompound Poisson distribu-
tion if the distribution ofN is the Poisson distribution.

The following proposition connects mixture models to compound distributions in the discrete
case.

PROPOSITION 2 (Gurland, 1957). If a probability function g has a probability generating
function of the form �	�t� a��n, where 	�t� a� is some probability generating function independent
of n, the model f � g is equivalent to the model g�x �n��

n
f �n�.

PROPOSITION3 (Gurland, 1957). It holds that�
f �x ��� �

�
g���

�
� h is equivalent to � f � h� �

�
g����

Definition 4. A distribution with probability functionp is said to be theconvolution of the
distributions with probability functions f and g denoted by� f 	 g� if

p�x� �
x�

n��

f �x 
 n�g�n��

The convolution is the distribution of the sumY � X � Z , whereX follows a distribution with
probability function f andZ follows a distribution with probability functiong, respectively. In the
case of continuous random variablesX or Z we replace summation by integration.
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PROPOSITION4. The models � f �x ����g�y�����
�

h��� and � f �x ����
�

h�����g�y��� are equivalent

provided that the density function g����� does not depend on �.

The above results constitute merely a few of the properties of general mixture models. In the
sequel, we use them for deriving related results. De Vylder (1989) provided some other relationships
between mixtures and compound distributions. (See also Douglas, 1980).

Definition 5. A random variableX follows a mixed Poisson distribution with mixing distribution
having probability density functiong if its probability function is given by

P�X � x� � P�x� �
� �

�

e���x

x�
g���d�� x � �� �� � � � (3)

In terms of the probability generating function,H �s�, of X , (3) can be written in the form

H �s� �
� �

�

e��s���g���d��

Note that the right hand side of this equation isM��s 
 ��, the moment generating function of the
mixing distribution evaluated ats 
 �. This, immediately, implies that the probability generating
function of the mixed Poisson distribution uniquely determines the mixing distribution through its
moment generating function.

In the sequel, the mixed Poisson distribution with mixing distribution the distribution with density
functiong is denoted by theMP�g�, while its probability function is denoted byP�x�. Note that�
is not necessarily a continuous random variable. It can be discrete or it can take a finite number of
values. The latter case gives rise to finite Poisson mixtures.

3 Properties of Mixed Poisson Distributions

Historically, the derivation of mixed Poisson distributions goes back to 1920 when Greenwood
& Yule considered the negative binomial distribution as a mixture of a Poisson distribution with
a Gamma mixing distribution. Depending on the choice of the mixing distribution, various mixed
Poisson distributions can be constructed. (For an early review on mixed Poisson distributions, see
Haight (1967)). Since then, a large number of mixed Poisson distributions has appeared in the
literature. However, only a few of them have been used in practice, the main reason being that often
their form is complicated.

Let X be a random variable whose distribution is a mixed Poisson distribution. Then, the following
results hold (e.g. Neuts & Ramalhoto (1984) and Willmot (1990)).

(a). P�X � x� �
� �

�

e���x

x�
G���d� and

(b). P�X 
 x� �
� �

�

e���x

x�
��
 G���� d��

whereG��� �
� �

�
g�x�dx is the distribution function of the parameter�.

These results, although interesting as directly relating the distribution functions of mixtures to
those of their mixing distributions, have had only limited practical use mainly due to the complexity
of the form ofG���.
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3.1 Comparison to the Simple Poisson Distribution

Let P�x� be the probability function of a mixed Poisson distribution as given by (3) andP�x �m�

be the probability function of a simple Poisson distribution with the same mean, saym. Then, as
shown by Feller (1943),

(i) P��� � P���m�, i.e., the probability of observing a zero value is always higher under a mixed
Poisson distribution than under a simple Poisson distribution with the same mean
and

(ii) P����P��� � P���m��P���m� � m, i.e., the ratio of the probability of 1 to that of 0 is less
than the mean for every mixed Poisson distribution.

Shaked (1980) showed that the functionP�x�
 P�x �m� has exactly two sign changes of the form
+ - +, implying that a mixed Poisson distribution gives a higher probability to the eventX � ��,
and has a longer right tail. This is known as thetwo crossings theorem in the econometrics literature.
This result can be used to test if a mixed Poisson distribution is adequate for describing a dataset. A
similar result holds for other mixtures too.

Shaked (1980) also showed that for every convex functionc��� it holds that�
c�x�P�x� �

�
c�x�P�x �m��

(For mixtures of continuous densities summation is replaced by integration.) For example, for
c�x� � �x 
 m��, the property that the variance of the mixed Poisson is greater than the variance of
the simple Poisson is obtained. Multivariate extensions of this result are given in Schweder (1982).
Another generalization can be found in Lynch (1988). Recently, Denuitet al. (2001) examined the
s-convexity of Poisson mixtures and its application to actuarial topics. Stochastic comparisons of
the simple Poisson distribution and mixed Poisson distributions are discussed in Misraet al. (2003).
Roos (2003) described approximations of mixed Poisson distributions by simple Poisson distribu-
tions.

3.2 The Moments of a Mixed Poisson Distribution

As implied by (1), the moments of any mixed distribution can be obtained by weighting the
moments of the simple component models with the mixing distribution as the weighting mechanism.
In the discrete case, this holds true for the probability generating function too, forh�X� � t X . For
the probability generating functionQ�t� of theMP�g� distribution, in particular, we obtain

Q�t� � E
�
t x
�
�

� �

�

������t 
 ���g���d�� (4)

From (4), it is clear that the factorial moments of the mixed Poisson distribution are the same
as the moments of the mixing distribution about the origin. Thus, one may express the moments
about the origin of the mixed Poisson distribution in terms of those of the mixing distribution. So,
E�X� � E��� andE�X �� � E����� E���. In general,

E�Xr � �

r�
j��

S�r� j�E�� j�� r � �� 	� � � � �

where S�n� k� denotes the Stirling numbers of the second kind (see e.g. Johnsonet al., 1992,
chapter 1). In particular, we have for the variance of the mixed Poisson distribution that

Var�X� � E�X ��
 �E�X��� � E����� E���
 �E����� � E���� Var���� (5)

From the above result, it becomes obvious that the variance of a mixed Poisson distribution is
always greater than the variance of a simple Poisson distribution with the same mean. Molenaar &
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Van Zwet (1966) gave necessary and sufficient conditions for distributions to have this property. (See
also Schweder (1982), Cox (1983) and Gelfand & Dalal (1990)). Further, from (5), it follows that
the variance of the mixed Poisson distribution can be decomposed into two components: the first
component can be attributed to randomness and is the variance of a simple Poisson distribution with
mean equal toE��� and the second component is the variance imposed by the mixing distribution.
It is interesting to note that this scheme is similar to that used in the well known analysis of variance
methods (ANOVA) for normal models. Moreover, (5) implies that the variance-to-mean ratio for a
mixed Poisson distribution is always greater than 1, which is the value corresponding to the Poisson
distribution. This property has been used to test the null hypothesis that the data come from a Poisson
distribution versus the alternative hypothesis that the data come from a mixed Poisson distribution.

Carriere (1993) used the relationship between the moments of the mixed Poisson to those of
the mixing distribution implied by (4) to construct a test of the hypothesis that a mixed Poisson
distribution fits a dataset.

3.3 The Convolution of Two Mixed Poisson Random Variates

Definition 6. A distribution with probability density functionf is said to be reproducible if the
sum of two independent random variablesX � and X�, each with probability density functionf ,
follows a distribution with probability density function of the same form asf but with possibly
different parameters.

Some well known examples of reproducible distributions are the normal distribution, the expo-
nential distribution and the Poisson distribution, among others.

An interesting result in this area is given by the proposition that follows:

PROPOSITION5 (Feller, 1943). The sum of two mixed Poisson variables (MP� f �� has an MP� f �
distribution if the distribution defined by f is itself reproducible.

The proof of Proposition 5, as given by Feller (1943), is based on the fact that the convolution
of two mixed Poisson distributions is itself a mixed Poisson distribution with mixing density the
convolution of the two mixing densities. It also follows as a consequence of (4), since the repro-
ducibility of the distribution defined byf implies that the convolution of the mixing densities is also
defined byf . Therefore, the mixed Poisson distribution is anMP� f � distribution.

Next proposition is also a consequence of (4).

PROPOSITION 6 (Willmot & Sundt, 1989). The convolution of an MP� f � and a Poisson
distribution with parameter � is an MP�g� distribution with g�x� � f �x 
 ��� x � �, (i.e. with g
being a shifted version of f ).

As an example, consider the convolution of anMP� f � and a Poisson distribution. Since the Poisson
distribution can be regarded as anMP�D�� distribution whereD� is the density of a degenerate
distribution at the point�, the resulting distribution is a mixed Poisson distribution. The mixing
density, in this case, is the convolution of the densityf with the densityD �, which results in a
shifted version off . (In particular, it is the distribution of the random variableY � X � � with
the density ofX being f .) The Delaporte distribution (see e.g. Ruohonen, 1988) is the distribution
of the convolution of a Poisson distribution with a negative binomial distribution. Willmot & Sundt
(1989) showed that the Delaporte distribution is a mixed Poisson distribution with a shifted Gamma
as mixing distribution.
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3.4 Identifiability

The term identifiability of mixtures refers to the ability of identifying the mixing distribution
of a given mixed distribution. Identifying a mixture is important since it ensures that the mixing
distribution characterizes the mixed distribution.

Definition 7. Mixtures of the probability functionf �x ��� are identifiable if and only if�
f �x ���h����d� �

�
f �x ���h����d� implies thath���� � h���� for all the values of� . (In

the case of discrete mixtures, integration is replaced by summation).

In our case,f �x ��� is the probability function of a Poisson distribution. Mixtures of the Poisson
distribution (finite or not) were shown to be identifiable by Feller (1943), who pointed out that
the probability generating function of a mixed Poisson distribution is the Laplace transform of the
mixing distribution. This means that every mixed Poisson distribution corresponds to one and only
one mixing distribution. Teicher (1961) showed that mixtures onn of distributions with a probability
generating function of the form�h�t��n are identifiable. The Poisson distribution belongs to this
family, which also contains the normal, the gamma and the binomial distributions among others. The
identifiability of Poisson mixtures has also been examined by Ord (1972), Xekalaki (1981), Xekalaki
& Panaretos (1983), Lindsay & Roeder (1993) and Sapatinas (1995). The property of identifiability
is important as only in this case is it meaningful to estimate the mixing distribution. Related material
can be found in Barndorff-Nielsen (1965), Tallis (1969) and Yakowitz & Spragins (1969). Teicher
(1963) and Al-Hussaini & El-Dab (1981) have also discussed the identifiability of finite mixtures.

3.5 Modality and Shape Properties

Holgate (1970) showed that anMP�g� distribution is unimodal ifg is unimodal. Note that he
used the term unimodal to refer to distributions with one mode or with several modes at successive
points. So, the unimodality of a mixed Poisson distribution depends on the unimodality of its mixing
distribution. This result holds only ifg is absolutely continuous. It is not true for discrete mixing
distributions. For example, the Neyman distribution, which is a mixed Poisson distribution with a
Poisson mixing distribution, is known to be multimodal (e.g. Douglas, 1980) even though the Poisson
distribution is unimodal. Bertin & Theodorescu (1995) extended Holgate’s (1970) results to the case
of not absolutely continuous mixing distributions. The modality of general mixture models has been
considered by Al-Zaid (1989) and Kemperman (1991).

The shape of the probability function of anMP�g� distribution exhibits a resemblance to that of
the probability density function of the mixing distribution when its parameters are appropriately
adjusted. Lynch (1988) showed that mixing carries the form of the mixing distribution over to the
resulting mixed distribution. This fact, has been used long before its formal proof for approximating
the probability function of some mixed Poisson distributions. For example, Best & Gipps (1974)
proposed the use of the cumulative distribution function of a Gamma distribution as an approximation
to the cumulative distribution function of the negative binomial distribution. The resemblance is
much greater for larger values of the mean. If the mean is small, there is a high probability of
observing a 0 value, i.e.P��� is large. This is not true for many continuous densities, and thus the
approximation is poor. Cassie (1964) discussed the use of the lognormal distribution instead of the
Poisson-Lognormal distribution. Adell & de la Cal (1993), studied under fairly general assumptions,
the order of convergence of a mixed Poisson distribution to its mixing distribution.

Willmot (1990) examined the asymptotic tail behaviour of some mixed Poisson distributions in the
case of continuous mixing distributions. He showed that the tails of some mixed Poisson distributions
look like the tails of their mixing distributions and proposed their approximation at the tails by their
mixing distributions that are of a more tractable form. A similar result was derived by Perline (1998).
Remillard & Theodorescu (2000) showed that certain Poisson mixtures are Paretian, in the sense
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that
��x�� xa P�X 
 x� � const
 �, for some 
 �.
An interesting result implied by the fact that the probability generating function of aMP�g�

distribution specifies the moment generating function ofg is provided by the following proposition.

PROPOSITION 7 (Grandell, 1997). For two mixed Poisson distributions, say MP�g �� and
MP�g��, we have that MP�g��� MP�g�� if and only if g� � g� where � denotes convergence in
distribution.

The implication of the above result is that a limiting case of a Poisson mixture is uniquely deter-
mined by a limiting case of the mixing distribution. For example, since the Beta distribution tends
to the Gamma distribution for certain parameter values, the negative binomial distribution can be
regarded as a limiting case of the Poisson-Beta distribution.

Chen (1995), working with finite mixture models (including Poisson mixtures), studied the esti-
mation of the mixing distribution on the basis of its rate of convergence. He showed that, when the
numbern of support points is not known a priori, the best possible rate of convergence isn ���� and
can only be achieved by minimum distance estimators.

Hall (1979), Pfeifer (1987) and Khaledi & Shaked (2003) studied the distance between a mixture
model and its associated simple component model.

3.6 Infinite Divisibility and Compound Poisson Distributions

A random variableX is said to have aninfinitely divisible distribution if its characteristic function
��t� can be written in the form��t� � ��n�t��

n , where�n�t� are characteristic functions for any
n � �. In other words, a distribution is infinitely divisible if it can be written as the distribution of
the sum of an arbitrary numbern of independently and identically distributed random variables. The
simple Poisson distribution is a typical example since the sum ofn independent Poisson variables is
itself a Poisson variable.

Two noteworthy results linking Poisson mixtures to compound Poisson models through infinite
divisibility are provided by the next two propositions.

PROPOSITION8 (Maceda, 1948). If, in a Poisson mixture, the mixing distribution is infinitely
divisible, the resulting mixture distribution is infinitely divisible, too.

PROPOSITION 9 (Feller, 1968; Ospina & Gerber, 1987). Any discrete infinitely divisible
distribution can arise as a compound Poisson distribution.

Combining the above two results implies that a mixed Poisson distribution that is infinitely divisible
can also be represented as a compound Poisson distribution. Well known examples are the negative
binomial distribution (Quenouille, 1949), the Poisson-inverse Gaussian distribution (Sichel, 1975),
and the generalized Waring distribution (Xekalaki, 1983b). It is worth pointing out that, for the two
first cases, the form of the summand distribution is known, while, for the latter case, the form of the
summand distribution has not been derived in a closed form.

Note that a compound Poisson distribution has a probability generating functionG�z� of the form

G�z� � ��� ���Q�z�
 ��� �

whereQ�z� �
��

r�� qr zr is the probability generating function of the summand distributionq r � r �
�� �� 	� � � � �. Note thatq� is arbitrary and hence� is arbitrary. Obviously, the identification of the
summand distribution allows the compound Poisson representation of a mixed Poisson distribution.
Solving the above equation we find that the probability generating function of the summand is

Q�z� �

 G�z�

�
� �� (6)
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This result may also be obtained as a limiting form of the zero-truncated mixed Poisson distribution
as shown by Kemp (1967). (See also Johnsonet al., 1992, p. 352). Therefore, the probability function
of the summands can be obtained by successive differentiation of (6). In practice, this does not always
lead to a closed form for the probability function of the summand distribution. Of course, in all the
cases, one is able to calculate numerically the probability function, using Panjer’s recursive scheme.
In the case where the summand distribution is discrete with probability function, sayf �x�, the
probability function of the corresponding compound Poisson distribution, sayg�x�, can be obtained
recursively via the formula:

g�x� �
x�

y��

�y

x
f �y�g�x 
 y� (7)

with

g��� � ��� �
�� � f ���� � (8)

From (7), one is able to derive the probability function of a compound Poisson distribution from the
form of the summand distribution. For the converse result, relations (7) and (8) can be solved for
f �x� yielding

f ��� �

 g���� �

�
� f ��� �

g���

�g���
and f �x� �

g�x�

�g���



�

xg���

x���
y��

y f �y�g�x 
 y�� x � 	� �� � � �

Willmot (1986) proposed choosing the value of� by imposing the conditionQ��� � �. However,
one may verify that the successive ratios of the formf �x � ��� f �x� do not depend on�, apart from
the ratio f ���� f ���. It should be noted that the above scheme applies only to the case of discrete
summand distributions and that it cannot be used for estimation purposes. Note that making use of the
empirical relative frequencies to estimateg�x� may lead to unacceptable values for the probability
function of the summand, i.e. negative values or values greater than 1. Remedies of this fact as well
as properties of this kind of estimate are reported in Buchmann & Grubel (2003).

3.7 Posterior Moments of �

A useful result concerning the posterior expectation of the random variable� is given by the
following proposition.

PROPOSITION 10 (Willmot & Sundt, 1989). Suppose that X follows an MP�g� distribution.
Then, the posterior expectation E��r �X � x� is given by:

E
	
�r �X � x



�

P�x � r�

P�x�
�x � �� � � � �x � r��

where P�x� is the probability function of an MP�g� distribution.

Note that the above results may be extended to the case of negativer whenever�x � r� 
 �. This
enables one to find, for example, posterior expectations of the formE

	
��r �X � x



.

Johnson (1957) showed that the posterior first moment of� is linear if and only if the mixing
distribution is the Gamma distribution. Johnson (1967) generalized this result to show that the form
of the first posterior moment of� determines the mixing distribution. Nichols & Tsokos (1972)
derived more general formulae for a variety of distributions. The results of Cressie (1982) are also
pertinent. Sapatinas (1995) gave the special forms of the posterior expectation of� for other mixtures
of power series family distributions.

It is interesting to note that since the posterior expectation of� is expressed through the ratio
P�x ����P�x�, it can characterize any specific member of the family of Poisson mixtures. (See also
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Papageorgiou & Wesolowski, 1997). Ord (1967) showed that, for some basic discrete distributions,
the ratio�x���P�X � x����P�X � x�can provide useful information concerning the distributional
form of the population from which the data come. The practical value of this result, however, is limited
by the fact that different mixed Poisson distributions can lead to very similar graphs for the quantity�

x� �x���P�X�x���
P�X�x�

�
, thus making identification very difficult.

Bhattacharya (1967) showed the following result in the context of accident theory if the mixing
distribution is a Gamma distribution: Selecting at the beginning of a time period individuals with
no accidents in an immediately preceding time period reduces the expected number of accidents. In
particular, if X andY are the numbers of accidents in the first and the second period, respectively,
then E�Y ��E�Y �X � �� � �. This result is also valid for the Poisson-confluent hypergeometric
series distribution (Bhattacharya, 1966). In fact, it can be shown to hold for every mixed Poisson
distribution.

PROPOSITION11. For any mixing density g���, it holds that E�Y ��E�Y �X � �� � �.

Proof. From Proposition 10,E�Y �X � x� � �x � ��P�X � x � ���P�X � x�. Settingx � �,
we obtainE�Y �X � �� � P����P��� � m (see section 3.1), wherem is the mean of the mixed
Poisson distribution and, hence, the mean of the unconditional distribution ofY .

Haight (1965) derived the distribution of the number of accidents in a given time period given the
removal of persons with more thann accidents in an immediately preceding period for the case of a
negative binomial accident distribution.

PROPOSITION12. For any mixing density g���� � 
 � it holds that

E���X � x� �

�x��
n�� nP�n��x
n�� P�n�

�

where P�x� is the probability function of an MP�g� random variable.

Proof. The posterior density of� conditional onX � x is given by

g���X � x� �
g���

�x
n��

e���n

n�

P�X � x�
�

Hence, the posterior expectation conditional onX � x is given by

E���X � x� �

��
�

�g���
�x

n��
e���n

n� d�

P�X � x�
�

��
�

g���
�x

n���n � ��P�n � ����d�

P�X � x�
�

whereP�x ��� denotes the Poisson distribution with parameter�. Integrating by parts, we obtain

E���X � x� �
�x � ��P�X � x � ��


�x
n�� P�X � n�

P�X � x�
�

Since
�x

n�� P�X � n� �
�x

n���x 
 n � ��P�n�, the above expression becomes

E���X � x� �
�x � ��

�x��
n�� P�n�


�x
n���x 
 n � ��P�n�

P�X � x�
�

�x��
n�� nP�n�

P�X � x�
�

�x��
n�� nP�n��x
n�� P�n�

�

This completes the proof.
An interesting special case arises whenx � �, leading to a specialisation of the result of Proposition

10 regarding the posterior mean of� given thatX � �.
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3.8 Numerical Approximation for the Probability Function of a Mixed Poisson Distribution

The analytic calculation of the probabilities of Poisson mixtures is often quite involved and
resorting to numerical calculation becomes necessary. However, even in the case of powerful recursive
schemes, direct calculation of initial values is required. In the sequel, the devices used by some
numerical methods for the efficient calculation of the probabilities are outlined.

a) Taylor expansions
One of the methods, given by Ong (1995), is based on a Taylor expansion of a special function of

a gamma variable.

PROPOSITION 13 (Ong, 1995). Let g��� be the probability density function of the mixing
distribution of a mixed Poisson distribution. If g��� has a finite n-th derivative at the point k,
the probability function P�k� of the mixed Poisson distribution has the formal expansion:

P�X � k� � g�k��
�

k

n�
y��

�yh�y��k�

y�
�

where h�k� � kg�k�, h�i��k� denotes the i -th derivative of h�k� with respect to k and � y is the y-th
moment about the mean of a gamma random variable with scale parameter equal to 1 and shape
parameter equal to k.

The above approximation has some disadvantages. The first is that we cannot obtainP���. On the
other hand, evaluating the derivatives of the mixing distribution (provided that they exist), is a very
tedious task.

b) The Probability Function of the Mixed Poisson Distribution as an Infinite Series Involving
the Moments of the Mixing Distribution

An alternative useful method makes use of a formula linking the probability function of a mixed
Poisson distribution to the moments of the mixing distribution as indicated by the next proposition.

PROPOSITION14. Provided that the moments of the mixing distribution in a mixed Poisson model
exist, the probability function of the mixture distribution can be written as

P�X � x� �
�

x�

��
r��

�
��r

r �
�x�r ����

where �r ��� is the r-th moment of � about the origin.

The proof of this result is a consequence of the fact that

P�X � x� �
�

x�

� �

�

����
�� �x g���d� �
� �

�


��

r��

�
��r

r �

�
�x

x�
g���d�

�

��
r��

� �

�

�x�r �
��r

x�r �
g���d� �

��
r��

�
��r

x�r �

� �

�

�x�r g���d��

Results of similar nature have been obtained by Katti (1966), for compound distributions, by
Sivaganesan & Berger (1993), for mixtures of the binomial distribution, and by Karlis & Xekalaki
(2000), for mixtures of the negative binomial distribution.

c) Gauss–Laguerre Polynomials
Other methods utilize representations of the probability function of the mixture in terms of adjusted

Laguerre polynomials or Gauss–Laguerre polynomials. Following Presset al. (1992), some integrals
can be approximated using certain weight functions of the integrand evaluated at certain points, thus� �

�

e�x x� f �x�dx �
n�

j��

� j f �x j�� (9)
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Here,n is the number of points used for the approximation and� j andx j , j � �� � � � � n, are,
respectively, the Gauss–Laguerre weights and abscissas calculated using the methods and routines
described by Presset al. (1992). Clearly, the probability function of any mixed Poisson distribution
can be approximated using the above formula. It is interesting that using (9), the probability function
of a mixed Poisson distribution is calculated as a finite mixture of the mixing distribution. Note that
this approach has been used for fitting a mixed effect Poisson regression model by Aitkin (1996).

d) Recursive Relations for Mixed Poisson Distributions
Approximating all the probabilities of a probability function is not a good strategy, mainly because

of the computational complexity.Willmot (1993)showed that, for several mixed Poisson distributions
a recursive formula can be obtained. Specifically, provided that the mixing densityg���, satisfies the
relationship

d 
 g���

d�
�

�k
i�� si�

i�k
i�� �i�i

� � � ������

for some constantssi � �i � i � �� �� � � � � k� k 
 �, the probability functionP�x� of the MP�g�
satisfies the following recursive formula

k�
n���

�n � m�n��� �m � n��n�P�m � n� � ��

wherea�b� � a�a � �� � � � �a � b� �� and	n � sn � �n � ���n�� ��n with 	�� � �. Appropriate
modifications have been suggested by Willmot (1993) for different supports of�. Note that this
iterative scheme requires calculation of the firstk probabilities only. Ong (1995) derived a method
of using this iterative scheme that requires no exact evaluation of any probability. The idea is to start
from a pointn at the tail of the distribution setting arbitrarilyP�n� � � andP�n � �� � �. Then, by
using the above recurrence, one may obtain the valuesP�n 
 ��� P�n 
 	�� � � � � P���. Rescaling so
that the obtained series sums to 1, leads to the probability function. It is useful to start with a value
of n, for which the true value ofP�n� is negligible. It should be noted at this point that the recursion
described above is unstable and should therefore be used with caution.

The recursive scheme defined above led to the increase of the applicability of several mixed Poisson
distributions. Earlier, the difficulties in evaluating the probabilities prevented the researchers to use
many of the mixed Poisson distributions. Wang & Panjer (1993) argued the recurrence relations
might be quite unstable, mainly because of the negative coefficients of some of the probabilities
and proposed using as starting points those points where the instability occurs (i.e., the points with
negative coefficients in the recurrence representation). They also provided several examples.

3.9 Simulation Based Reconstruction

An approximate way to construct the probability function for any mixed Poisson distribution is
via simulation according to the following scheme:

Step 1. Generate� from the mixing distribution.
Step 2. GenerateX from thePoisson � distribution.

Hence, if a very large number of values is generated, an approximation of the probability function
can be obtained. Note that the speed of the simulation depends on the speed of generating a random
variate from the mixing distribution. As the number of replications increases, the approximate
probability function tends to the true probability function. Note that generating values from a mixed
Poisson distribution is possible even when the exact form of its probability function is not known.
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3.10 Weighting a Mixed Poisson Distribution

Very often, the distribution of recorded observations produced by a certain model may differ from
that under the hypothesized model, mainly because of the recording mechanism that may employ
unequal probabilities of recording the observations. The observed distribution will thus have a density
of the form

f��x� �
��x� f �x�

E���x��
�

where f �x� is the original density anticipated under the hypothesized model and��x� is a function
proportional to the probability with which an observationn is recorded. These models were introduced
by Rao (1965) and are known asweighted models. When theweight function ��x� is equal tox ,
these models are known assize biased models. The observed distribution is then termedsize biased
distribution and is defined by the density

f��x� �
x f �x�

E�x�
� (10)

In an ecological context, Patil & Rao (1978), referring to the bias induced by the recording
mechanism, used the term visibility bias and discussed various forms of��x� and their effect on
the original distribution. Also, Patilet al. (1986) provided several results for discrete forms of
distributions. It is interesting to note the following result concerning mixed Poisson distributions.

PROPOSITION15. A size biased MP(g) distribution can be obtained as a mixture of a size biased
Poisson distribution with mixing distribution defined by the size biased version of the original mixing
density g.

Proof. The size biased version of the mixing distribution, sayg ���� has density function

g���� �
�g���

E���
� � 
 �� (11)

Also, the size biased Poisson distribution has probability function of the form

f ��x ��� �
x

�

e���x

x�
�

e���x��

�x 
 ���
� x� �� 	� � � � (12)

Then, using (11) and (12), the mixed size biased Poisson distribution with mixing distributiong �

has probability function

f �x� �
� �

�

f ��x�g����d� �
� �

�

x

�

e���x

x�

�

E���
g���d� �

x P�x�

E���
�

x P�x�

E�x�
�

which is (from (10)) the size biased version of anMP�g� distribution.
For example, the size biased version of the negative binomial distribution can be obtained as

a mixed size biased Poisson distribution with a size biased Gamma distribution as the mixing
distribution. Relationship (11) has been widely used in the context of empirical Bayesian estimation
with mixed Poisson distributions (see e.g. Sundt, 1999). Seshadri (1991) has shown that mixtures of
the size biased Poisson distribution are in fact 2-finite mixtures with components the simple Poisson
distribution and the size biased Poisson distribution.

3.11 Compound Mixed Poisson Distributions

In actuarial applications, the distribution of the number of claims can as mentioned earlier, often
be assumed to be of a mixed Poisson form since it is very common that the population under
investigation is not homogeneous. Depending on the distribution of the claim size, the total amount
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paid by the insurance company follows a compound mixed Poisson distribution. The probability
density function of the total claimed amount is usually hard to derive and to compute. So, the use
of recursive relations becomes necessary. One of the best known mixed Poisson distributions, the
negative binomial distribution, has been treated in the fundamental paper of Panjer (1981) as it
is the only member of the family of mixed Poison distributions with linear first order recurrence
relations. Compound mixed Poisson distributions are discussed in detail in a series of papers, by
Sundt (1999),Hesselager (1994, 1996),Wang & Sobrero (1994),Willmot (1993)and Grandell (1997)
among others. The idea is to construct recurrence schemes based on the recurrence relation for the
probabilities of the mixed Poisson distribution. In these papers, several examples are given for many
members of the family of mixed Poisson distributions. Recurrence relationships for the moments of
compound mixed Poisson distributions are given by Chadjiconstantinidis & Antzoulakos (2002).

3.12 Mixed Poisson Distributions Arising from the Mixed Poisson Process

The derivation of the Poisson process was based on the assumptions of a constant infinitesimal
risk over the entire period of observation and of independence between any two events. These
assumptions are not always realistic. Arbous & Kerrich (1951) proposed the so-called contagious
model by assuming that, after the first event, the infinitesimal risk is reduced and remains constant for
the remaining period of observation i.e., each event results in a change in the infinitesimal risk. More
formally, the infinitesimal riskkm�t� depends on both the numberm of previously occurred events
and on timet . A well known example of such a process is the Pólya process for whichkm�t� � a�m

b�t .
The resulting distribution is the negative binomial distribution. McFadden (1965) described a more
general process the so-called mixed Poisson process. (See also Willmot & Sundt (1989) and Grandell
(1997)). AnyMP�g� distribution can be shown to arise from a contagion model if the infinitesimal
risk is defined to be the quantity

km�t� �

��
�

�m��e��t g���d���
�

�me��t g���d�
�

For t � �, the above relation simplifies to

km��� �
�m � ��P�m � ��

P�m�
� (13)

whereP�m� is the probability function of theMP�g� distribution as given in (3). This, however, has
unfortunate implications in practice as observing a data set, which can be described adequately by a
particular mixed Poisson distribution, one is not in a position to know which model led to it: a mixed
model or a contagion model? At least two models can result in the same mixed Poisson distribution.
(See Cane (1977) and Xekalaki (1983a) for a discussion on this problem).

As seen before, any mixed Poisson distribution can be obtained via a mixed Poisson process
defined by the infinitesimal risk given in (13). In the notation adopted earlier, such a model can be
represented by

Poisson�t�� �
�

g���� (model 1)

wheret is the period of observation. In general, such models lead to mixed Poisson distributions that
differ from those obtained from the model

Poisson��� �
�

g���� (model 2)

Our main interest is on the second model. However, in some circumstances, it is of interest to
consider the first model. If the observed time period is assumed to be of unit length, the two models
are identical. On the other hand, it is often interesting to considermodel 1 and examine how this
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more general model relates tomodel 2, which is most commonly used in practice. Note also that
several mixed Poisson regression models utilizemodel 1. In such cases, the Poisson parameter� is
treated as a regressor depending on a series of covariates, whilet is a random variable having its
own probability function, termed theoverdispersion parameter. For more details on mixed Poisson
regression models, one can refer to Lawless (1987), Deanet al. (1989), Xue & Deddens (1992),
McNeney & Petkau (1994), Wanget al. (1996) and Chen & Ahn (1996). Moreover, it is worth
mentioning that mixed Poisson regression models allow for different mean to variance relationships
offering a wide range of different models for real applications (see e.g., Hinde & Demetrio, 1998).

Using Definition 6 for reproducible distributions, one can see that if the mixing distribution is
reproducible,a rescaling of the random variable does not affect the distributional form of the resulting
mixed Poisson distribution, but it does affect the parameters. In this case, the probabilities of the
mixed Poisson distribution are easily obtainable. The gamma and the inverse Gaussian distributions
are some well known examples of reproducible distributions commonly used as mixing distributions.

4 Some Mixed Poisson Distributions

In this section, several mixed Poisson distributions considered in the literature are presented
(Table 1). Most of them have been of limited use in the applied statistical literature, mainly due to
the complexity of their form. Numerical techniques are in some cases necessary for the evaluation
of their probability (density) functions combined with some recursive scheme facilitated greatly by
Willmot’s (1993) fundamental method. Obtaining moment estimates for their parameters however,
presents no difficulty due to the property of Poisson mixtures linking the moments of the mixing and
mixed distributions discussed in section 3.2. (For more information about the distributions in Table
1, see Karlis (1998)).

Some other miscellaneous mixed Poisson distributions, not included in Table 1, have also been
considered in the literature, such as the distributions proposed by Burrel & Cane (1982), Willmot
(1986, 1993), Ghitany & Al-Awadhi (2001) and Gupta & Ong (2004). Albrecht (1984) described
several mixed Poisson distributions based on the Mellin and Laplace transforms of their mixing
distributions. Devroye (1993) described some mixed Poisson distributions related to the stable law.
Gerber (1991) and Wahlin & Paris (1999) described a mixing density that has the gamma and the
inverse Gaussian as special cases. Finally, Ong (1996) described a mixing density which is based on
the modified Bessel function. The polylogarithmic distribution described by Kemp (1995) can also
be considered as a mixed Poisson distribution. Discrete mixing distributions have also been used
(see Johnsonet al., 1992).

5 Multivariate Mixed Poisson Distributions

This section aims at providing a brief description of multivariate mixed Poisson distributions. To
simplify the presentation, most of the results are given for the bivariate case, but their generalization
to more dimensions is obvious.

Definition 8. Thebivariate Poisson (hereafterBP) distribution is defined as the bivariate discrete
distribution with joint probability function given by

P�x� y� ��� ��� ��� �
e����x

�

x�

e����y
�

y�
e���

��	�x	y��
i��

�
x

i

��
y

i

�
i �

�
��

����

�i

� x� y � �� �� � � � � (14)

We will denote the BP distribution with parameters��� ��� �� asBP���� ��� ���.
If �� � �, the joint probability function given in (14) reduces to the product of two univariate

Poisson probability functions, thus implying independence of the associated variables. The joint
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Table 1

Some mixed Poisson distributions.

Mixed Poisson Distribution Mixing Distribution A Key Reference

Negative Binomial Gamma Greenwood & Yule (1920)
Geometric Exponential Johnsonet al. (1992)

Poisson-Linear Exponential Family Linear Exponential Family Sankaran (1969)
Poisson–Lindley Lindley Sankaran (1970)

Poisson-Linear Exponential Linear Exponential Kling & Goovaerts (1993)
Poisson-Lognormal Lognormal Bulmer (1974)

Poisson-Confluent Hypergeometric Series Confluent Hypergeometric Series Bhattacharya (1966)
Poisson-Generalized Inverse Gaussian Generalized Inverse Gaussian Sichel (1974)

Sichel Inverse Gaussian Sichel (1975)
Poisson-Inverse Gamma Inverse Gamma Willmot (1993)

Poisson-Truncated Normal Truncated Normal Patil (1964)
Generalized Waring Gamma Product Ratio Irwin (1975)

Simple Waring Exponential� Beta Pielou (1962)
Yule Beta with Specific Parameter Values Simon (1955)

Poisson-Generalized Pareto Generalized Pareto Kempton (1975)
Poisson-Beta I Beta Type I Holla & Bhattacharya (1965)
Poisson-Beta II Beta Type II Gurland (1958)

Poisson-Truncated Beta II Truncated Beta Type II Willmot (1986)
Poisson-Uniform Uniform Bhattacharya (1966)

Poisson-Truncated Gamma Truncated Gamma Willmot (1993)
Poisson-Generalized Gamma Generalized Gamma Albrecht (1984)

Dellaporte Shifted Gamma Ruohonen (1988)
Poisson-Modified Bessel of the 3rd Kind Modified Bessel of the 3rd Kind Ong & Muthaloo (1995)

Poisson–Pareto Pareto Willmot (1993)
Poisson-Shifted Pareto Shifted Pareto Willmot (1993)

Poisson–Pearson Family Pearson’s Family of Distributions Albrecht (1982)
Poisson-Log-Student Log-Student Gaver & O’Muircheartaigh (1987)

Poisson-Power Function Power Function Distribution Rai (1971)
Poisson–Lomax Lomax Al-Awadhi & Ghitany (2001)

Poisson-Power Variance Power Variance Family Hougaardet al. (1997)
Neyman Poisson Douglas (1980)

Other Discrete Distributions Johnsonet al. (1992)

probability function given in (14) is quite complicated and an iterative scheme is necessary for
efficient calculation of the probabilities (see Kocherlakota & Kocherlakota, 1992). The marginal dis-
tributions of the BP distribution are simple Poisson distributions, while the conditional distributions
are convolutions of a Poisson distribution and a binomial distribution. For more details on the BP
distribution, the interested reader may be referred to Kocherlakota & Kocherlakota (1992). The mul-
tivariate Poisson distribution can be defined analogously. A thorough treatment of this distribution
can be found in Johnsonet al. (1997).

In the literature, the termbivariate (multivariate) mixed Poisson distributions has been used
for distributions derived from Poisson distributions by several very different ways of mixing. The
majority of mixed BP distributions can be placed in two main categories.

Definition 9. A distribution is said to be amixed BP distribution of the first kind (MBP1(g)) if
it arises by assuming that the parameters of theBP distribution are proportional to some random
variablea with densityg�a�.

More formally, anMBP��g� distribution arises as

BP�a�� a��� a���� �
a

g�a��

The joint probability function of anMBP��g� distribution is given by

Pg�x� y� �
�

a
P�x� y� a��� a��� a���g�a�da� (15)
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whereg is the density of the mixing distribution. Ifg is discrete or finite, the integral in (15) is
replaced by a sum. Generalization to more variables is obvious.

Definition 10. A distribution is termedmixed BP distribution of the second kind (MBP2(g)) if
it arises by assuming that the parameters of theBP distribution are themselves random variables
having a joint distribution with density functiong�� �� ��� ���. The joint probability function of an
MBP	�g� distribution is given by

Pg�x� y� �
�
��

�
��

�
��

P�x� y�g���� ��� ���d��d��d��� (16)

Note that, in (16), the joint distribution of�’ may give positive mass only to a finite number of points.
In this case, the integral may be substituted by a finite sum, thus leading to a finiteBP mixture of the
second kind. Variants of these models can be obtained if some of the parameters are considered as
fixed.

5.1 Mixed Bivariate Poisson Distributions of the 1st Kind

Properties ofMBP��g� distributions are given by Kocherlakota (1988), including expressions for
their probability function and moment relationships.

The covariance of theMBP��g� distribution is

Cov�X� Y � � ��� � ������ � ����
� � ����

where� and� � are the mean and the variance of respectively. It is worth noting that, in case of a
simpleBP distribution, the covariance would be��. Hence, the covariance can be decomposed into
two factors, one due to the mixing distribution and one due to the assumedBP distribution. Note also
that, if� � � � (as in the case of a degenerate mixing distribution), theMBP1 distribution reduces to
theBP distribution. The correlation of anMBP��g� distribution is always positive.

Another interesting result refers to the generalized variance ratio between anMBP1 distribution
and aBP distribution with fixed marginal means. It can be seen that

GVR �
�VM B P��

�VB P �
� ��

� ���� � ���

�
 ��
��������������

� ��
� ���� � ���

�
 �I
� ��

So, provided that the mixing distribution is not degenerate, mixing increases the generalized variance.
This is in analogy to the increase of the variance in the univariate case. Note also that the generalized
variance increases as the variance of the mixing distribution increases.

One can see that the marginal distributions are mixed Poisson distributions and, in particular,
of the form P�a��� � ���� �

a
g�a�. The conditional distributions are of a much more complicated

form. They are convolutions of a binomial distribution and some other form of distribution. It has
been proved that the conditional expectation is linear only when the mixing distribution is a Gamma
distribution or a degenerate distribution (Johnson, 1967).

Members of this family are the bivariate negative binomial distribution studied by Edwards &
Gurland (1961) and Subrahmaniam (1966) in its general form, and a reduced form of it examined by
Bates & Neyman (1952a,b) and Mellingeret al. (1965). Ashford & Hunt (1974) used a multivariate
extension of this model to describe the patient-doctor contacts in a hospital. Bivariate Neyman type
A distributions have been considered by Kocherlakota & Kocherlakota (1992), while the bivariate
Poisson-generalized inverse Gaussian distribution has been used by Steinet al. (1987), Stein &
Juritz (1987), Kocherlakota (1988) and Kocherlakota & Kocherlakota (1992). Some other miscella-
neous members have been proposed by Bhattacharya (1966). Munkin & Trivedi (1999) described
multivariate mixed Poisson regression models based on this type of mixing and a gamma mixing
distribution. Gurmu & Elder (2000) used an extended gamma density as a mixing distribution.



52 D. KARLIS & E. XEKALAKI

5.2 Mixed Bivariate Poisson Distributions of the 2nd kind

This type of mixture modeling imposes a multivariate mixing distribution on the parameter vector
���� ��� ��� of theBP distribution, with some probability density functiong�� �� ��� ���. Mixtures of
this type are often very complicated. In practice, the majority of the models that have been proposed
are in two dimensional contexts assuming�� � � (see e.g. Xekalaki, 1984a,b). Xekalaki (1986)
defined and studied the multivariate generalized Waring distribution, a multivariate mixed Poisson
model of this type. The literature is sparse in mixtures of this type in their more general form (i.e. with
�� not a constant). Stein & Juritz (1987) described briefly bivariate models giving a few properties
of them.

The form of the joint probability function of a multivariate mixed Poisson distribution is usually
complicated and no general recurrence relationships are available in then-dimensional case. In the
bivariate case, denoting bygi j� i� j � �� 	� � the joint bivariate marginal distribution of the mixing
density for any pair of the parameters of the bivariate Poisson distribution, one can see that the
marginal distributions of anMBP2 distribution are of the form:

X �

�
Poisson��� � ��� �

�
g������ ���

�
�

whereg������ ��� denotes the joint density of�� and��. The marginal distribution ofY can be
derived similarly. Obviously, the marginal distributions are also mixed Poisson distributions.

For the case of constant��, the covariance can be written in the form

Cov�X� Y � � �� � Cov���� ���

and can, therefore, be decomposed into two parts, one due to the covariance imposed by theBP
distribution for each individual and one due to the mixing distribution. An important consequence
of the above formula is that if Cov���� ��� � � then, the covariance ofX andY can be negative as
well. Recall that, for type I mixtures, we can have only positive covariance.

Stein & Juritz (1987) derived the correlation coefficient in the case where� � � �, i.e., when two
independent Poisson distributions have been considered. They termed such a processthe conceal
process.

If �� is fixed, one can show that the Generalized Variance is again always greater than the
Generalized Variance of a simpleBP distribution. In particular,

GVR�
�VM B P��

�VB P �
�

��
�� �V� � V� 
 	Cov���� ����� V�V� 
 �Cov���� ����� � V�c� � V�c�

�c� � c�� �� � c�c�
� ��

whereE���� � c�� E���� � c� andVi � Var��i�� i � �� 	.
The exact form of the conditional distribution is not obtainable in general. The same is true for

the conditional expectation.
Mixtures of BP distributions of type II are rather complicated and it is not surprising that their

use in practice has been limited. The case where�� � � has been given attention mainly because
it can induce negative correlation between counts, an interesting fact not possible under other
simpler standard bivariate discrete distributions. Steyn (1976) proposed the use of a bivariate normal
distribution as the mixing distribution. Some years later, Aitchinson & Ho (1989) proposed the
use of the bivariate lognormal distribution instead of the simple bivariate normal distribution. For
a recent application of this distribution, see Chib & Winkelmann (2001). Stein & Juritz (1987)
proposed the use of the bivariate inverse Gaussian distribution as the mixing distribution. Their
model assumes two independent Poisson distributions with parameters jointly distributed according
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to the bivariate inverse Gaussian distribution. Barndorff-Nielsenet al. (1992) extended this model
to the case of multivariate Poisson-multivariate generalized inverse Gaussian distributions. Xekalaki
(1984b) demonstrated various models leading to the bivariate generalized Waring distribution. The
model has the form

BP���� ��� �� �
��	��

�Gamma��� r��Gamma��� k�� �



Beta�a� b��

In the context of anMBP model, Goutis & Galbraith (1996) assumed that the vector of parameters
���� ��� ��� follows a Wishart distribution. They derived the resultingMBP2 distribution as well as
some properties of this distribution. Stein & Juritz (1987) considered the derivation of a mixedBP
distribution via a trivariate reduction. Nelson (1985) derived a mixedBP model which makes use of
both of the mixing procedures described above. His model was of the form:

BP�p��� p��� �� �
�

Gamma�a� b� �
�p�	p��

Dirichlet�

Tables 2 and 3 present several bivariate and multivariate mixed Poisson models considered in the
literature.

6 Discussion

Several results related to mixed Poisson distributions were brought together in this paper with the
aim of highlighting their application potential and the theoretical as well as practical value of the
relationships among the members of this vast family of discrete distributions.

An aspect common to several of the members of the family of mixed Poisson models worth
drawing one’s attention is the latency of the genesis of the mixing distribution. The study of this
latency reveals interesting properties of the mixed Poisson distributions and leads to models giving
rise to them. The Poisson parameter� can be regarded as a random variable linked to�� �—random
variables themselves with respective densitiesg�� g�—either multiplicatively�� � ��� or additively
�� � � � ��. The generalized Waring distribution is a typical example of the multiplicative model
examined by Xekalaki (1983a). In the case of mixtures under the additive model, the mixing density
is the convolution ofg� andg�. The Delaporte distribution may arise from the additive model. Other
interesting examples of this kind are given in Barndorff-Nielsenet al. (1992), where the convolution
of a Gamma with a generalized inverse Gaussian distribution leads to another generalized inverse
Gaussian distribution. It should be noted that, in the multiplicative model, the distributions of�

and� are not identifiable in general. This difficulty however, can be overcome in the case of the
generalized Waring distribution (Xekalaki, 1984a,b).

Another interesting point is the connection of mixed Poisson models to Bayesian methods. From
the Bayesian perspective, the mixing distribution corresponds to theprior distribution, while the
resulting mixed distribution is termed as thepredictive distribution. Classical Bayesian analysis for
Poisson models is confined to the conjugate case of a gamma prior distribution, leading to a negative
binomial predictive distribution. Hierarchical Bayes models allow for imposing hyperparameters to
the parameters of the gamma density so as to remove subjectivity (Georgeet al., 1993). The form
of the resulting predictive distributions is more complicated. Markov Chain Monte Carlo (MCMC)
methodologies have enhanced the plausibility of different models using different priors. For example,
Maiti (1998) used a log-normal prior distribution, while the posterior distribution was derived
via sampling based methods. From the empirical Bayes perspective, Gaver & O’Muircheartaigh
(1987) considered gamma and log-Student types of prior distributions. Interestingly, as shown in
section 3.8, the posterior moments of the parameter can be derived easily for a wide range of
prior distributions. Moreover, the generalized inverse Gaussian distribution is also conjugate for the
parameter of the Poisson distribution (Willmot & Sundt, 1989). Note that, the differences between
various mixed Poisson distributions do not seem to have been examined. From the Bayesian point
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Table 2.
Some bivariate and multivariate mixed Poisson distributions of the first kind.

Mixing Density Resulting Distribution A Key Reference Comments

Gamma Bivariate Negative Binomial Edwards & Gurland (1961) �� � �

Subrahmaniam (1966) �� �� �

Munkin & Trivedi (1999) �� � �, includes covariates
Multivariate Negative Binomial Ashford & Hunt (1974) �� � �

Generalized Inverse Gaussian Steinet al. (1987) �� �� �

Confluent Hypergeometric Bhattacharya (1966) �� � �

Extended Gamma Gurmu & Elder (2000) �� � �, includes covariates

Table 3.
Some bivariate and multivariate mixed Poisson distributions of the second kind.

Mixing Density Resulting Distribution A Key Reference Comments

Bivariate Normal Steyn (1976) �� � �, lacks physical interpretation

Bivariate Lognormal Munkin & Trivedi (1999) �� � �, includes covariates

Aitchison & Ho (1989) �� � �

Multivariate Lognormal
Chin & Winkelmann (2001) �� � �, includes covariates

Gamma Mixed by a Beta II Bivariate Generalized Waring Distribution Xekalaki (1984a) �� � �

Multivariate Gamma with Multivariate Generalized Xekalaki (1986) �� � �

Independent Components Mixed Waring Distribution
by a Univariate Beta II

Wishart Goutis & Galbraith (1996) This is the only case where��

is treated as random variable
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of view, examining the effect of using different prior distributions can be considered as equivalent to
examining the robustness of the prior distributions.
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Résumé

Les distributions Poissoniennes mixées ont́et́e utiliśees dans plusieurs regions scientifiques pour modeler des populations
inhomog̀enes. Cet article surveille la literature existante sur ces modèles en presentant un grand nombre de proprietés et
en donnant d’information tangentiale sur formes des distributions mixées plus geńeraux. Quelques bien connus modèles
Poissoniens mix́es sont presentés.

[Received July 2003, accepted August 2004]


