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SUMMARY 
The Generalized Waring Distribution is the hypergeometric distribution 
whose generating function is given by CF(a, k, p + a+ k, A), a 0, k > 0, 
p>O, C= pEk/(p +a)[kJ. For certain values of the parameters a, k it has 
extremely long tails; indeed all the moments can be infinite. (This need 
not be the case; where the first four moments are finite, it has been found 
useful in dealing with accident distributions.) 

In Part I various cases are distinguished, corresponding to special values 
of the three parameters. General formulae for the factorial moments, also 
/1, /2, are given as well as the forms these take in special cases. The 
continuous analogue of the discrete distribution is defined. In general, it is 
Pearson's Type VI though Types III, IV and V can occur in particular cases. 
A table of P/, P. is given and discussed for all combinations of the values 
p=8, 16, 24, 32, oo, qa = al(a + p), qk= kl(k + p) = 1, , ,i, 1. The mode 
of the distribution is obtained and its properties discussed. 

Keywords: GENERALIZED WARING DISTRIBUTION (G.W.D.); LONG TAILS; SPECIAL CASES; 
CONTINUOUS ANALOGUE (USUALLY PEARSON'S TYPE VI); MODE 

1. INTRODUCTION 
IN my presidential address to the Royal Statistical Society (Irwin, 1963) (particularly 
in Section 2 of Appendix II), I discussed the use of inverse factorial series as frequency 
distributions. The parts of the field which are still unexplored must be very wide. 
However, I described rather fully what has come to be called the simple Waring 
distribution and gave several examples of its application, as well as extracts from its 
tabulation on an electronic computer. I also gave some of the properties of the 
Generalized Waring Distribution. I used the form of its generating function which 
may be written 

(x-a)lkIF{a,k,x+k,A}, a>O, k>0, x>a, (l.l) 
X[k] 

where F is the hypergeometric series, A the generating symbol and X[k] denotes 
x(x+ 1) ... (x+k-1). 

However it is, in general, more convenient to put x-a = p and write (1.1) 

r(p+a) r(p+ k) I + akA + a(a+l)k(k+l) A2 
r(p)(p+a+k) (p+a+k) (p+a+k)(p+a+k+1) 2! 

a[r]k[r] Ar (1.2) 

* Formerly Adviser in Biometric Techniques, M.R.C. Statistical Research Unit. 
t Parts II and III will appear in Parts 2 and 3, respectively, of the Journal, Vol. 138 (1975). 
t In a previous paper (Irwin, 1968), I took a> 0, k> 0, x> a; here (1.1) seems preferable in 

view of the discussion in Section 2 below. 
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19751 IRWIN - Generalized Waring Distribution 19 

When k = 1, (1.2) takes the simple form 

p I + aA + a+a + 1) A2 a[,]Ar (1.3) 
p+a (+a+l)(p+a+l)(p+a+2) (p+a+1)f71 

which is the simple Waring distribution. The particular case of this when a = 1 is 
called the Yule distribution, because Yule was the first to use a distribution of this 
kind in his study of the distribution of genera size, according to the number of species 
per genus (Yule, 1924). 

Because of the analogy of (1.3) with a geometric progression, it is convenient 
to write q = a/(a + p) in (1.3). In the preparation of the paper to which reference 
has been made, the distributions (1.3) were tabulated for q = 04 (0.1) 09, 
(x-a) = p = 1 (1) 10 and also for p = so, when the distributions become geometric 
progressions. (However, only the values for q = 0 1, 05, 09 were published.) All 
the distributions proved to be J-shaped. For low values of q, their tails are long when 
p = 1 and decrease in length with increasing p. The tails also increase in length 
with increasing q for fixed p. In general the tails are always long; for example, 
when q = 05 and p = 1, it takes about 140 terms to reach an individual frequency 
of 0-00005 and even the geometric progression takes more than 17. When q = 0-9 
and p = 1, it takes 400 terms to reach 0-00005 (with 2-2 per cent of the total frequency 
beyond this point) and even the geometric progression needs about 80. 

The series in (1.3) is actually summable to n terms. This was not realized when the 
paper was published though Yule (1924, p. 38) has noted this for the particular case 
when a = 1. In fact, if f, is the sth frequency, so that 

fr = (x- a) a[r,-] I X[], the tail frequency beyond f7 is: 

f (x-a)aa[r] 1+ (a+r) (a+r)(a+r+ 1) + E fs = rr+l] t (x+r+1) (x+r+l)(x+r+2)+ *- 

(x-a)ar] 1 (a+r) + (a+r)(a+r+1) + 
x[rJ x+r (x+r)(x+r+ 1) (x+r)(x+r+ l)(x+r+2) ' 

- x x 
{(x+ r)-(a+ r)} 

=a~rr] 

a[,] (1.4) 

Thus 
co 

E fs = (x-a)-' fr+1(a + p + r) = (p + a + r) f7+1/p- (1.4 bis) 
s=r+1 

No such simple expression has been found for the tail of (1.2). 
It was encountering frequency distributions with very long tails, actually occurring 

in nature, which led to the investigation of the distribution (1.3). Indeed it was found 
to give a good fit to the extremely long-tailed distribution of the numbers of filarial 
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20 IRWIN - Generalized Waring Distribution [Part 1, 

worms on 2600 mites. Arguments of a mathematico-biological nature were put 
forward which would lead to this form of distribution as a theoretical model (Irwin, 
1963). 

However, as has been mentioned, all the distributions (1.3) are J-shaped. It was 
the search for a discrete distribution which could have a mode and at the same time a 
very long tail, which led to the investigation of the more general form (1.2) in greater 
detail. Once this had been undertaken, these Generalized Waring Distributions were 
found to have a number of interesting and previously unsuspected properties. Some 
of these were discovered by tabulation on an electronic computer, for which I am 
indebted to Dr David Hill. In Parts I and II of the paper, the properties of the 
distribution are considered in some detail. Part I deals first with special limiting cases 
for particular values of the parameters; then with the general properties of the 
distribution-moments, shape, existence and position of the mode, etc. Part II 
examines these properties in the light of the computer tabulations, and also contains 
a detailed discussion of the percentage points and the way in which these vary with 
the values of the parameters. Examples of fitting the distribution are also given in 
Part II. It will be found that, though the distribution can have very long tails for 
certain values of the parameters, this is not the case for all values of the parameters. 

In fact, since the distribution has a close relation to the continuous distribution 
which has the same ratio of slope to ordinate at the mid-point of each rectangle of 
its histogram-and the actual distribution is hypergeometric-the corresponding 
continuous distribution will be a Pearson frequency distribution. This analogy is 
discussed in Part III; it is shown that the corresponding continuous distribution 
(which we term the "continuous analogue") is Pearson's Type VI, or one of its limiting 
forms Type III, Type V or normal, with certain exceptions, which will be indicated, 
where it is of Type IV. However, the corresponding Pearson Type VI will not 
necessarily have four finite moments, and we are thus led to consider cases which Karl 
Pearson (at the time not unreasonably) would have excluded as heterotypic, but which 
might nevertheless arise as theoretical models of natural phenomena. 

In another paper (Irwin, 1968) it has been shown that the Generalized Waring 
Distributiont can provide a theoretical model for accident distributions, by the use 
of which it is possible to allow separately for accident proneness and accident 
liability. 

2. SPECIAL CASES 
The series is always convergent. In certain limiting cases the series is non-uniformly 

convergent. This means that every term tends to zero, but the limit of the sum 
function is still unity. In this case we shall say that the distribution has an "infinitely 
long tail". 

We have already discussed the special case when k = 1 (Irwin, 1963). The 
distribution then reduces to the simple Waring distribution. The same is of course 
true when a = 1. If a = 1 and k = 1, the distribution is the Yule distribution. 

It is convenient to write 

a p k p 

(a+ p Pa (a+ p)' (k+ Pk (k + p) (2.1) 

The following limiting cases arise: 

t For the sake of brevity, I shall refer to this below as the "G.W. distribution" or "G.W.D." 
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19751 IRwIN - Generalized Waring Distribution 21 

(i) If p -+0, the distribution has an infinitely long tail for all values of a, k>0. 
In this case qa - 1 and qk-> 1. The mean and all other moments are infinite. 

(ii) If p ->ooc, a--> oo and qa (O < qa <1) is constant, k # 0 remaining finite, the 
limiting form of the distribution is the negative binomial 

q qAi-k 

PaPa 

When, also, k--> oo and qa -> 0, kqa remaining finite, we obtain the Poisson distribution. 
The same form is reached if k and a are interchanged. 

(iii) If p->so, first then a->oo, k-*O (which implies qko-O), or p->oo first, a->O, 
k -oo (qa->0), or p-soo first, a->0 and k-> 0 (qk ->O and qa-->0) all the frequency is 
concentrated in the first term.t 

(iv) If p >0 is finite, k>0 is finite and a--> oo (qa-> 1), we reach a distribution with 
an infinitely long tail. The same is true if a and k are interchanged. In this case f, 
for p>3, and f2 for p>4 have finite limits, depending on p (see Sections 3 and 4). 
This point is further discussed below. 

(v) If p is finite, a->oo and k -oo (qa -> 1, qk-> 1), we again reach a distribution 
with an infinitely long tail. f,l for p> 3 and P2 for p >4 again tend to finite limits 
depending on p (see Sections 3 and 4). 

(vi) (a) If a->oo, k->oo (qa ->l, qk ->l) and then p->oo, we again have a 
distribution with an infinitely long tail, but f ->0, #2-> 3, their normal values (see 
Sections 3 and 4). 

(b) If p->co first and then a->oo, k-oo,qa,qk remaining fixed and < 1, we still 
have a curve with an infinitely long tail, and it is still true that , -> 0 and 2 -> 3 (see 
Sections 3 and 4). 

3. MOMENTS 
The rth factorial moment of the G.W.D. is given by 

Zrr]~ ~ a,. 
=kp-)p-2r - (3.1) 

From (3.1) it follows immediately that all rth moments (e.g. ordinary moments 
about any origin, central moments as well as factorial moments) are infinite if p < r. 

Moments about any origin, including central moments, can be obtained from 
(3.1) by the usual transformation formulae. In particular the mean is given by 

ak 
p> (3.2) 

while the variance 

ka(p+a- 1)(p+k-) P ) (p -l1)(p -2) ,p2 33 

t If a or k -> 0 first, the result still holds good; but if a or k -> oo first, every term, including the 
first, tends to zero. Since the sum function is unity, the distribution then has an infinitely long tail. 
In the former case all cumulants are zero and #, /2 are indeterminate. In the latter case /3 -? 0, 
/2 -> cc, /2-P1-1 - oo. This shows that numerical cases approximating to these conditions 
need very careful consideration. 
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22 IRwIN - Generalized Waring Distribution [Part 1, 

The coefficient of variation v = c/,ul is given by 

(ak)-4{(p + a-1) (p + k-1) I (p-2)}1, p > 2. (3.4) 

The mean is infinite if p < 1 and the variance is infinite if p < 2. 
The values of I1, I2 are 

(p+2a-1)2(p+2k-l)2(p-2) 
ak(p+a-l)(p+k-l)(p_3)2 p>3, (3.5) 

= ~~~~(p- 2)L >4 
ak(p+a-l)(p+k-l)(p-3)(p-4)' p 

where 

L = (p-1)4+{3ak+6(a+k)+1}(p-1)3 (3.6) 

+ {3ak(a + k) + 6(a2+ k2 + 3ak)} (p-1)2 

+{3a2 k2 + 18ak(a +k)} (p-1) + 18a2 k2. 

4. VALUES OF 1 AB2 
Values of I1, I2 have been calculated over a suitable range and are given in Table 1. 

Before discussing the table, the values of I1, I2 in the limiting cases mentioned above 
(Section 2) will be considered. 

In case (i), the formulae (3.5) and (3.6) do not hold, and 1, A2 have no relevance. 
If they can be regarded as existing, they are indeterminate. 

In case (iii), the mean is 0 or 1 according as the first frequency is at 0 or 1, and all 
other cumulants are zero. Formulae (3.5) and (3.6) give Pf -? cc andf2 -?cc. If we 
let p -so0 first and then a or k-* 0, we can verify that the relation I2-f -1 0 iS 
satisfied, as must always be the case (Pearson, 1916). 

Case (ii) is the negative binomial. The continuous analogue is Pearson's Type VI. 
Here we have 

1 = (1 +qa)2lkqa, P2 = Pf1+3 +2/k, (4.1) 

which are familiar formulae. We note that if a-> oo or qa - 1 (a and k may of course 
be interchanged), 

Pf = 4/k, P2-3 = 6/k so that 2fl2-3fl1-6 = 0. 

This is the condition for Pearson's Type III (the Gamma Distribution). When 
qa 1, the negative binomial has an "infinitely long tail", as it has here been defined. 
If as is usual in actual physical or biological problems involving discrete distributions, 
the variate must take the values 0, 1, 2, 3 etc., then we have the infinitely long tail. 
If however the variate values can be 0, A, 2A, 3A etc., and A is at our choice, we can 
make A- 0 in such a way that J2 = A2 a2 = A2 kqa/p2 remains finite = C2 k, say. As is 
well known, we have in the limit a continuous frequency distribution of the Pearson 
Type III form, which can be written 

P(k) c() Oxc (4.2) 
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1975] IRwIN - Generalized Waring Distribution 23 

Thus, if we are at liberty to choose the scale, we can reach in this case a continuous 
distribution as a limiting form of the G.W.D., in which the tail is not infinitely long 
in any acceptable sense of the term. 

It can now be seen that for any discrete distribution in which the variate has a 
natural metric and a finite variance, there are two quite distinct ways of measuring 
length of tail. The first is by the number of terms necessary to reach a given individual 
small frequency (say 0.00005) or alternatively some selected percentage point (say 
0.01). The second is by the number of multiples of the S.D. required for the same 
purposes. Which is preferable will depend upon the aim in view. This point will be 
taken up again later. 

Case (iv) is analogous to case (ii) with Ja> 1. Here p is finite and a-? oo, and 
k 0 is finite, or vice versa. Thus, either qa 1, qk > 0 or vice versa. 

In this case if k-> oo, and a, p are both finite 

a2 k2a(p+a-1) ->00 (4.3) 
(p- l)2(p-2) 

4(p-2)(p+2a-1)2 
a(p+a-1)(p-3)2l 

} (4.4) 

2 = ap+a_3()p -3 
2 

p_) {(a + 2) (p-_1)2 +a(a + 6) (p -1) + 6a2}. a 3+-1(p-3)(p4 

If the scale is at our choice we can take the variate values as rlk (r = O, 1, 2, ...) in 
which case we reach (when k-* oo) a continuous distribution with variance Z2, where 

2= a(p+a-1) (4.5) 
(p - 1)2(p -2)' 

It will be shown in Part III that the continuous analogue of the G.W. distribution 
is in general Pearson's Type VI. 

[We define the continuous analogue to be the distribution obtained by the slope 
ordinate method; i.e. by equating (l/y)(dy/dx) to the ratio of slope to ordinate in the 
histogram of the discrete distribution, which is in fact a particular type of hypergeometric 
distribution. It is argued in Part II that this is the correct method to use. If we do so, 
we find that the continuous analogue is always Type VI, for p> (2 42 + 3); or one of its 
limiting cases, Type III, Type V or normal. If changes of scale are permissible, the 
limiting forms for special values of a, k, p can also be regarded as limiting forms of the 
G. W. distribution itself. 

However, the slope-ordinate method does not, in general, give the same Pearson 
distribution as equating the /l, P2 of the Pearson distribution to the P3L, /2 of the hyper- 
geometric. These are two reasons why the former method is preferable. 

(i) It is applicable to cases where any or all of the first four moments are infinite. 
This can be the case with exceptionally long-tailed distributions, which do occasionally 
occur in biological material. In Yule's example-the distribution of size of genera- 
even the mean is infinite (Yule, 1924). In my own example of the distribution of filarial 
worms per mite (Irwin, 1963) the mean is finite but the variance (since p = 1-85) is infinite. 

(ii) The former method, but not the latter, yields a Pearson Type VI distribution in 
which ql, q2, in Pearson's notation for the distribution, satisfy the relation p = q1 -q2 - 1. 
(The curve can be written y = Cxqa(x + a)-"-, 0 S x < oo.) 

Thus, in both the Waring distribution and its continuous analogue the successive 
moments become infinite for the same values of p. 
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24 IRWIN - Generalized Waring Distribution [Part 1, 

Assuming the first method is used, the continuous analogue does not in general have 
the same /3k, /2 as the hypergeometric. Since the continuous analogue is Type VI (or 
exceptionally Type IV) it must always have 2/32 - 3/3 --6>0. In the G. W. distribution 
however, when p and a are fixed and k increases (here a and k may be interchanged), 
2/32- 3,k-6 is positive for low values of k and negative for high values, changing sign at 
some value of p = po(a, k). When p -* oo, k -> oo, 0 <qk <1 (Case (ii)), the G. W. distribution 
becomes a negative binomial. Here 2/2- 33k-6 = -p2/aq1,, whereas the continuous 
analogue, given by the slope ordinate method gives 232-31 - 6 -6< 0. It follows that if we 
fitted by equating 31, f/2 of curve and negative binomial, we should obtain Type I and not 
Type VI. This seems illogical for a curve which starts at zero and has an unlimited tail 
to the right. 

In his first Royal Society paper on "Skew Variation in Homogeneous Material", 
Karl Pearson (1895) did at first obtain his first four main types by the slope/ordinate 
method. However, in the same paper he then expressed the constants of the curves in 
terms of /3 = 3iHIi 2 = 4/IL2. (In the earlier part of the paper he put his differential 
equation in the form (l/y) (dy/dx) = - x/(/,8 +P2 X+?3 X2) where 31, /2, /33 are not the 
moment ratios; the change of notation might perhaps confuse the unwary reader.) He did 
not explicitly state, though he certainly would have recognized, that equating the /3', /32 

of the curve and hypergeometric did not give the same answer as the slope-to-ordinate 
method. Since his main object was to graduate observed data, it was natural at the time 
that he should equate the observed /3, /2 to their theoretical values. 

(For 0< p <(212 + 3) = 5 828 there are certain exceptions when the continuous 
analogue is of Type IV or Type V. These exceptions will be further discussed in 
Part III.) 

This distribution, in this case reduces to (see Part III) 

F((p + a) ea-l(1 + I-(p+a) de (4.6) 
F(p) F(a) 

with variance given by (4.5). Assuming the change of scale to be permissible, it can 
be regarded as a limiting form of the G.W. distribution. 

Case (v) is similar. We find 

(y2 ~ a2k2 0 

(p - )2(p -2) l 

p1= 1(6(p- 32) (4.7) 

3(p-2)(p+5) 
2 (p-_3)(p -4) 

If the scale is at our disposal, we can suppose the variate values to be 

r/ak (r = 0,1,2,3,...). 

When a-*oo, k- 0oo we reach a continuous distribution in the limit with variance 
l/(p - 1)2(p - 2) and P1/P32 given by (4.7). On putting I= 1/aX in (4.6) and letting 
a->oo, its equation is found to be 

F() e-l/ X-(P+) dx, 0 < X< oo, (4.8) 

that is Pearson's Type V. 
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The values of Pl, P2 in (4.7) agree with those found by Karl Pearson (1901) for 
Type V, on putting p+ 1 = p. 

On eliminating p we obtain Karl Pearson's cubic 

P1G2 + 3)2- 4(2P2 - 3p/ -6) (42 - 3l) =0. (4.9) 

In case (vi) (a), by making p->oo in (4.8) we find P3-> 0, P2-3, their normal values. 
It is well known that Type V tends to the normal form as p ooo. On the other hand, 
in case (vi) (b) we still find P/3 ->0, /2 -> 3, but 

2 (pq/q/p2 p2) = C2, say. (4.10) 

If we can change the scale, so that our variate values are rlc (r = 0, 1, 2,3 etc.) and 
then make c - oo, we still reach the normal distribution (21)-1e-iXx'dx. Under these 
conditions, the normal distribution can be a limiting form of the G.W. distribution. 

We are now in a position to discuss Table 1. Pl, /2 have been calculated for all 
combinations of p = 8, 16, 24, 32, oo, and ,q = , , j, i and 1. For p = 8,a,k 
take the values of 1, 2,4, 8, oo; for p = 16 they take the values 2, 4, 8, 16, cx and so on. 
The left-hand side of the table gives P1, /32 for all combinations of the four finite 
values of p with the values of qa, qk. 

The right-hand side gives , /32 for the negative binomials of case (ii), in this 
case taken as {l/Pk - (qk A/pk)}-a for the same values of qk and a as on the left-hand 
side. Here Pl, /2 are unaltered by the interchange of a and k. 

On the left-hand side it will be noticed that when a# k, the same values Of , /2 
occur twice (since the interchange of a and k does not alter the distribution). They 
have deliberately been entered twice. On the right-hand side p -o> o in all cases, so 
that Pl, /2 depend only on a and qk. Here the values when a and k are interchanged 
have not been entered twice, but the values for fixed qk and a = 2, 4, 8, 16, oo are of 
course the same, wherever they occur. The repetition is again deliberate. Its purpose 
is to enable the reader to have the complete set of values for any row or column; he 
can then see clearly the effect of varying any one parameter, when the others are kept 
constant. Comparisons of the right-hand side of the table with its left-hand side 
show the changes made for fixed a and qk when p->oo as compared with the fixed 
value of p in the same row of the table on the left. For instance, when a = 8, qk = 0 3, 
the values of Pl3 /2 for p 16 are 2'26 and 7 11, but when p -> cc they are 0-67 and 
3 92. Apart from the negative binomial, the other limiting cases may also be examined. 
The case when, for all values of p, a = 1 (or k = 1) corresponds to the simple Waring 
distribution. The continuous analogue of all the distributions on the left is Pearson's 
Type VI. When qa = 1, qk = 1, for aLl values of p, Type V occurs as a special case, 
which is also a limiting form of the G.W. distribution. The 3P /32 of the hyper- 
geometric then satisfy the cubic for Type V. When 0 < q,k < 1, qa 1 and p -> oo the 
continuous analogue, which here is also the limiting form, is the normal distribution. 
When p-> oo, a is finite and qk ->1 or vice versa, the continuous analogue and limiting 
form is Pearson's Type III. 

The values in the last column (except for rounding-off errors) satisfy 2/2 - 3, -6 
exactly. It should be noted that 2P2 - 3/ --6 > 0 for all the values of /31, /32 on the 
left-hand side of the table, and <0 for all the negative binomials. For fixed a and 
qk (or k and qa) 2P/2- 3p/ -6 vanishes for some value of p, but the continuous 
analogue remains Type VI, as long as p is finite. Other points of interest are 
mentioned in (i) and (ii) below, where a and k may as usual be interchanged. 
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26 IRWIN - Generalized Waring Distribution [Part 1, 

(i) For fixed p and a (which implies fixed p and qa), l, A2 are near their limiting 
values when qk> 0 5. 

(ii) For fixed a and qk, the values, of 61, 2 do not approach their limiting negative 
binomial values so rapidly. Even when p = 32, there is a considerable 
difference; but the change between qk= 

1 and qk = 1 is much less than 
between qk = 9 and q- = 

Since the G.W. distribution has its first four moments finite for p >4, it seemed 
reasonable to take p = 8, as the lowest value of the argument p in Table 1. Perhaps 
the fact that p = 8 is the largest value of p that Karl Pearson would have called 
heterotypic provides a historical reason for the choice. In any case, Table 1 gives, 
it seems, an adequate conspectus Of 91, 2 over the whole range of the parameters 
p, a, k, when the first four moments are finite. 

It has recently been shown (Irwin, 1968) that the G.W. distribution is of particular 
interest in the theory of accident distributions, where one would expect the first four 
moments to be finite, because the negative binomial distribution so often gives a 
satisfactory fit. 

However, the original motive for undertaking this research was to examine the 
cases where the G.W. distributions have especially long tails. In such cases the mean, 
or the mean and variance, or the first three or first four moments may be infinite. 
For this reason the distributions were tabulated on an electronic computer for 
p = 0 5 (1P0) 4-5 and appropriate values of qa, qk = 025, 0 5 (0 1) 0 9 (see Part II). 
Of these only p = 4-5 gives a finite fourth moment. The values of /31, /2 for p = 4-5 
and qa,qk = 1, l, , , 1 are naturally very large. However, as a connecting link 
between this section and Part II, the values of Pl, P2 have been calculated for p = 4 5, 
qk= 1 and q =- , 5 312 and 1. The results are: 

qa p1 f2 

0.5625 0o 41V60 202-21 
1P125 0.2 28-24 142-09 
2*25 0K3 21V99 113-94 
4.5 0 5 19-29 101-81 
00 10 17-78 95 00 

These are the smallest set of values for p = 4-5 and the same values of qa and qk as 
in Table 1. 

5. THE MODE 
5.1. The values of the variate are here taken to be x = 0, 1, 2, ..., r and the corre- 

sponding frequencies are denoted by f. By examining the ratio f,jfx- it is easily 
shown that the value of x corresponding to the greatest frequency is the integer 

r = I(a- 1) (k- l)/(p + 1)}, (5.1) 

where I(z) denotes the greatest integer not greater than z. If r = 0, the curve is 
J-shaped. We could say that r = 0 gives the mode, but, as we wish to distinguish 
distributions with a genuine mode from those which are J-shaped, we here reserve 
the term "mode" for the case when r> 1. Let us write A = (a- 1)(k- l)/(p+ 1); 
then, if A = r> 1 exactly, f, = f,_- and both are greater than any other frequency. 
In this case we still call x = r the mode. Thus the mode is r where r < A < (r + 1). 
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TABLE 1 

Values of /1, P2 and the mode for the Generalized Waring Distribution 

Values for negative binomial 
{(l/Pk-(qklPk)} 

Values forqk = 0o, 02,03,0.5, 10 p-oo,k -oo 

p a qa qk = 04i 0.2 03 0 5 10 o0i 02 03 0'5 1.0 

k = 1 2 4 8 oo 
8 1 04 1 24-60 16-34 12-43 10'71 9'72 11.11 7'20 533 4'50 4-00 

f2 46'61 33 34 27T07 24-32 22-72 16-11 12'20 10'33 9'50 9 00 
Mode 0 0 0 0 cc 0 0 0 0 c? 

2 0'2 1 16-34 10-85 8-25 7-11 6'45 5'56 3'60 2'67 2-25 2.00 
f2 33'34 2404 19'64 17'72 16'60 9-56 7'60 6'67 6'25 6.00 

Mode 0 0 0 0 co 0 0 0 1 cc 
4 0o3 f1 12-43 8-25 6'28 5'41 4'91 2'78 1'80 1'33 1'12 1 00 

P2 27 07 19 64 16 13 14'60 13'70 6'28 5'30 4'83 4'62 4 50 
Mode 0 0 1 2 oo 0 0 2 3 cc 

8 0 5 P1 10-71 7K11 5-41 4 66 4*23 1'39 0 90 0'67 0-56 0 50 
P2 24-32 17-72 14-60 13'23 12-44 4'64 4'15 3'92 3'81 3 75 

Mode 0 0 2 5 cc 0 2 5 7 cc 
oo 1'0 90 9 72 6-45 4-91 4-23 3.84 0 0 0 0 0 

P2 22-72 16-60 13-70 12-44 11'70 3 3 3 3 3 
Mode co co cc cc cc cc cc cc cc cc 

k= 2 4 8 16 cc 
16 2 04 i 1 934 6 12 4 59 3'92 3'52 5'56 3'60 2'67 2'25 2-00 

/P2 16-97 12-69 10-65 9 75 9'22 9-56 7'60 6'67 6'25 6'00 
Mode 0 0 0 0 cc 0 0 ' 0 1 cc 

4 0'2 ,B1 6 12 4 01 3-01 2-57 2'31 2'78 1'80 1'33 1-12 1.00 
/P2 12-69 9-68 8-25 7-62 7'25 6-28 5'30 4'83 4-62 4 50 

Mode 0 0 1 2 cc 0 0 2 3 cc 
8 0K- 3 1 4-59 3-01 2'26 1.93 1'73 1-39 0'90 0'67 0.56 0.50 

P2 10-65 8-25 7-11 6'61 6'31 4'64 4'15 3'92 3'81 3-75 
Mode 0 1 2 6 cc 0 2 5 7 cc 

16 05 /1 3-92 2'57 1'93 1'64 1'48 0'69 0'45 0'33 0-28 0'25 
2 9-75 7-62 6-61 6-16 5'90 3-82 3'58 3'46 3'41 3-38 

Mode 0 2 6 13 cc 2 4 11 15 cc 
oo 1-0 93 3'52 2-31 1'73 1'48 1-33 0 0 0 0 0 

2 9'22 7'25 6-31 5'90 5*66 3 3 3 3 3 
Mode oc cc cc o cc cc cc cc cc cc 

5.2. If a, k are fixed it follows from (5.1) that the smaller p is, the bigger is the 
mode. The same property may also be expressed as follows: 

If x = r is the mode and a, k are fixed, 

r- >(p+1)> (r+1) (5.2) 

As an example, Table 2 shows the limits for p when (a-1) (k-1) = 1-5, 2, 2-5, 3, 4, 
5, 10 and r = 1 (1) 9. 
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TABLE 1 (cont.) 

Values for negative binomial 
{(11P)k-(qklPk)l} 

Values forqk = 0-1, 0-2, 0-3, 0-5, 1-0 p oo,k -oo 

p a qa qk = Oi 0-2 0-3 0-5 1-0 o0i 0-2 0-3 0-5 1-0 

k =3 6 12 24 00 

24 3 0-i /1 5-80 3 79 2-83 2-40 2-15 3-70 2-40 1-78 1-50 1-33 
P2 11-33 8-77 7T55 7-01 6-69 7-37 6-07 5-44 5-17 5-00 

Mode 0 0 0 1 oo 0 0 1 2 oo 
6 0-2 f3 3 79 2-47 1-85 1-57 1-40 1-85 1-20 0-89 0-75 0-67 

/2 8-77 6-97 6-12 5-74 5-51 5-19 4 53 4-22 4-08 4-00 
Mode 0 0 2 4 oo 0 1 3 5 0o 

12 0-3 /1 2-83 1-85 1-38 1-17 1-05 0-93 0-60 0-44 0-38 0-33 
/2 7 55 6-12 5-44 5-13 4-95 4-09 3-77 3-61 3-54 3-50 

Mode 0 2 4 10 00 1 3 8 11 oo 
24 0-5 /31 2-40 1-57 1-17 1P00 0-89 0-46 0-30 0-22 0-19 0-17 

/2 7-01 5.74 5-13 4-86 4-70 3*55 3-38 3-31 3-27 3-25 
Mode 1 4 10 21 oo 3 7 17 23 00 

oo 1-0 913 2-15 1-40 1-05 0-89 0-80 0 0 0 0 0 
/2 6-69 5-51 4.95 4-70 4-56 3 3 3 3 3 

Mode co cc oo cc cc cc cc cc cc cc 

k =4 8 16 32 cc 
32 4 01i /31 4-21 2-74 2-05 1-73 1-55 2-78 1-80 1-33 1-12 1-00 

/32 8-94 7-11 6-24 5-85 5-38 6-28 5-30 4-83 4-62 4-50 
Mode 0 0 1 2 oo 0 0 2 3 co 

8 0-2 /Pi 2-74 1-79 1-33 1-13 1-01 1-39 0-90 0-67 0-56 0-50 
/2 7-11 5-83 5-22 4 95 4-78 4-64 4-15 3-92 3-81 3-75 

Mode 0 1 3 6 cc 0 2 5 7 cc 

16 0-~ 3 1 2-05 1-33 0-99 0-84 0-75 0-69 0-45 0-33 0-28 0-25 
/2 6-24 5-22 4-73 4-51 4-38 3-82 3-58 3-46 3-41 3-38 

Mode 1 3 6 n4 cc 2 4 11 15 cc 

32 0-5 /1 1-73 1-13 0-84 0-71 0-64 0-35 0-22 0-17 0-14 0-12 
/32 5-85 4-95 4-51 4-32 4-21 3-41 3-29 3-23 3-20 3-19 

Mode 2 6 14 29 cc 4 9 17 31 cc 
oo 1-0 /31 1-55 1-01 0-75 0-64 0-57 0 0 0 0 0 

/2 5-38 4-78 4-38 4-21 4-10 3 3 3 3 3 
Mode oo cc cc cc cc cc cc cc cc co 

Table 2 makes two points quite clear. First, if (a-i) (k-1) is fixed, the mode 
cannot be greater than I'{(a- 1) (k- 1)}, where I'(z) denotes the greatest integer less 
than z. 

Secondly, for fixed (a-i) (k- 1), the mode is a very low value of the variate, 
compared with the effective range of the distribution. Thus, if the mode is at 
(a-1)(k-1)/5 or some larger value which must <I'{(a-1)(k-1)}, p<4. The 
fourth moment is infinite and the distribution has a very long tail. The example in 
Table 3 illustrates this. 
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TABLE 2 

Limits for p when the mode is given and (a-1) (k-1) is fixed (L < p < U) 

Mode (a-1) (k-1) 
(r) 

1.5 2 2-5 3 4 5 10 

L U L U L U L U L U L U L U 

1 0 0.5 0 1 1 1 2 1 3 1j 4 4 9 

3 ~ ~ ~ ~~~ ~ ~~~~~~~ - - -o 121i 2-1 
4 

4 -0- - 0 0 i 1 12 
5 0 1 2 1 

6 - A 
7 4 7 

8?4 
9?0 9 

TABLE 3 

Certain values of mode, mean and S.D., for fixed (a-1) (k-1) 

(a-1) (k-1) p a k Mode Mean S.D. 

10 4 6 3 2 6 7*3 
10 2*5 6 3 2 12 23-2 
10 2 6 3 3 18 00 

100 4 21 6 20 42 38-9 
100 2*5 21 6 28 84 137-5 
100 2 21 6 33 126 00 

Distributions which are "heterotypic" in Karl Pearson's sense have p<8. For 
these the mode cannot be less than I{(a- 1) (k- 1)/9} or greater than I'{(a- 1) (k- 1)}. 
If the mode has its greatest possible value, p I1/{(a- 1) (k- 1)- 1}; for example, 
if (a- 1) (k- 1) = 100, p < ? and the tail is very long indeed. 

5.3. The position is quite different if qa, qk are constant. Since 

a = PqaIPa = p/u, say, 

k = pqklPk = pIv, say, 

we have 

A = (a- 1)(k- 1)/(p+ 1) = {(p/u)- 1}{(p/v)- 1}/(p+ 1) (5.3) 
or 

(p-u)(p-v) = (p+ 1)Auv, where r< A<(r+ 1), (5.4) 
which gives 

p= {u+v+uvA} (1+ (1 +(u+v + )2)} (5.5) 

Since p > O we must take the positive sign for the square root in (5.5). Here, for fixed 
u, v, the mode increases with p. 

2 
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If A = 0, we know the distribution is J-shaped; if A> 0 there is a mode. It follows 
that x = r is the mode if 

{u + v+ur} (1 +( +(v+ ur)2)} 

<1p 

< 2{u+v+uv(r+l)} 1+ (1+(+ uvr+ ))2)(5.6) 

Hence the range within which p lies has a length roughly equal to uv and increases 
with uv; that is to say it increases as qa, qk/Pa Pk diminishes. 

For example, when p = 8, qa = , qk = , a = 4, k = 8; an application of equation 
(5.1) gives x = 2 for the mode. Now suppose, keeping qa = , qk = 1, that the mode 
is at x = 2. Equation (5.6), putting u = 2, v = 1 gives 7-275 < p < 9-424. The range is 
2-149,whileuv=2. When p=8, u=, v=9 ,i.e.qa=qk=1o,a=k=72,wefind 
from equation (5.1) that the mode is at x = 560. If the mode is 560 and qa = qk = 10 

equation (5.6) gives 7-9986 < p < 80111. The range is 0-0125 while uv = 1= 0-0123. 
5.4. Table 1, Section 4, primarily a table of Pl, 2, also gives the values of the 

mode. Here the entry zero means that the distribution is J-shaped. If a = 1 or k = 1 
(the simple Waring case) the distributions are always J-shaped. 

The table shows that if a = 1 or k = 1 (the simple Waring case) or indeed if either 
a or k have any constant values, there is not much difference between the positions 
of the mode for distributions with a fixed p and for the corresponding negative 
binomials (p -> oo, k -* oo, qk fixed). The same is true if a and k are interchanged. 
If a > 1, k > 1, the following results may be noted: 

(i) If qa, qk are both fixed there is a mode for sufficiently large p. Table 1 shows 
how the mode increases with p. For values up to qa = 0-5, qk = 0-5, we can see from 
the table that this is at a roughly constant rate. That the same is true for all qa, qk 
can be seen from equation (5.6) on p. 19; the rate of increase of the mode with p is 
roughly equal to l/uv or qaqklPaPk. 

(ii) If p and qk are fixed, there is a mode for sufficiently large qa. Table 1 shows 
how the mode increases with qa for fixed qk < 0 5. 

Table 1 deals with relatively large values of p, distributions in which at least the 
first seven moments are finite. Since this study was mainly directed to long-tailed 
distributions, which also have a mode, we have to consider the mode of distributions 
calculated on the electronic computer. These values of the mode are given in Part II 
and will be considered in relation to the values of the median, mean and the 
characteristics of the distributions. Here it is only necessary to say that the table 
illustrates the facts that 

(i) If a = PqaIPa < 1 or if k = PqkIPk < 1, the distributions are certainly J-shaped. 
If a > 1 and k > 1 the distributions are J-shaped if p > (a-1) (k-1)- 1 or, equivalently, 
p <{1/(qa qk) - 1}. Otherwise there is a mode. 

(ii) Where there is a mode, the rule, that the mode increases by approximately 
qa qk/Pa Pk per unit increase in p. rapidly becomes true as p increases; even for such 
small values of p as those here tabulated. For example, if qa = 0 5, qk = 0-9, 
qaqklPaPk = 9; the actual increases are 7 for p = 1 5-2 5, 8 for p = 2 5-3-5 and 
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3-5-45. If qa = 0 8, qk= 0 9, qaqklPaPk = 36. The actual increases are 23 for 
p = 0 5- 15, 30 for p = 1P5-2-5, 33 for p = 2-5-3 5, 34 for p = 3-5-45. 

[To be continued] 
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