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SUMMARY
The Generalized Waring Distribution is the hypergeometric distribution
whose generating function is given by CF(a, k, p+a+k, A), a=0, k=0,
p>0, C = pr/(p+a)r. For certain values of the parameters a, k it has
extremely long tails; indeed all the moments can be infinite. (This need
not be the case; where the first four moments are finite, it has been found
useful in dealing with accident distributions.)

In Part I various cases are distinguished, corresponding to special values
of the three parameters. General formulae for the factorial moments, also
By, Bz, are given as well as the forms these take in special cases. The
continuous analogue of the discrete distribution is defined. In general, it is
Pearson’s Type VI though Types III, IV and V can occur in particular cases.
A table of B;, B, is given and discussed for all combinations of the values
p = 8,16,24,32, 0,9, = a/(a+p), qx = k/(k+p) = %,%, 5,3, 1. The mode
of the distribution is obtained and its properties discussed.

Keywords: GENERALIZED WARING DISTRIBUTION (G.W.D.); LONG TAILS; SPECIAL CASES;
CONTINUOUS ANALOGUE (USUALLY PEARSON’S TYPE VI); MODE

1. INTRODUCTION

IN my presidential address to the Royal Statistical Society (Irwin, 1963) (particularly
in Section 2 of Appendix II), I discussed the use of inverse factorial series as frequency
distributions. The parts of the field which are still unexplored must be very wide.
However, I described rather fully what has come to be called the simple Waring
distribution and gave several examples of its application, as well as extracts from its
tabulation on an electronic computer. I also gave some of the properties of the
Generalized Waring Distribution. I used the form of its generating function which
may be written

(i;“l’ﬂp{a,k,erk,A}, a>0, k>0, x>a, (L.D}
[%]

where F is the hypergeometric series, 4 the generating symbol and xy; denotes
x(x+1)...(x+k—1).
However it is, in general, more convenient to put x—a = p and write (1.1)
T'(p+a)T'(p+k) { akA al@+k(k+1) 42
I'(p)(p+a+k) (p+a+k) (p+a+k)(p+a+k+1)2!

a[r]k[r] £ } 1.2
ol T (1.2)

* Formerly Adviser in Biometric Techniques, M.R.C. Statistical Research Unit.

1 Parts II and III will appear in Parts 2 and 3, respectively, of the Journal, Vol. 138 (1975).

I In a previous paper (Irwin, 1968), I took a>0, k>0, x> a; here (1.1) seems preferable in
view of the discussion in Section 2 below.
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1975] IRWIN — Generalized Waring Distribution 19

When k = 1, (1.2) takes the simple form

p {1+ ad + a(a+1) A2 + ayp A" + }
pta (p+a+1) (p+a+1l)(p+a+2) = (p+a+l)y; )

which is the simple Waring distribution. The particular case of this when a=1 is
called the Yule distribution, because Yule was the first to use a distribution of this
kind in his study of the distribution of genera size, according to the number of species
per genus (Yule, 1924).

Because of the analogy of (1.3) with a geometric progression, it is convenient
to write ¢ = a/(a+ p) in (1.3). In the preparation of the paper to which reference
has been made, the distributions (1.3) were tabulated for g =0-1(0-1)0-9,
(x—a) = p=1(1) 10 and also for p = oo, when the distributions become geometric
progressions. (However, only the values for g = 0-1,0-5,0-9 were published.) All
the distributions proved to be J-shaped. For low values of g, their tails are long when
p=1 and decrease in length with increasing p. The tails also increase in length
with increasing g for fixed p. In general the tails are always long; for example,
when g = 0-5 and p = 1, it takes about 140 terms to reach an individual frequency
of 0-00005 and even the geometric progression takes more than 17. When g = 0-9
and p = 1, it takes 400 terms to reach 0-00005 (with 2-2 per cent of the total frequency
beyond this point) and even the geometric progression needs about 80.

The series in (1.3) is actually summable to n terms. This was not realized when the
paper was published though Yule (1924, p. 38) has noted this for the particular case
when a = 1. In fact, if £, is the sth frequency, so that

(1.3)

J = (x—a) a,_y;| Xy, the tail frequency beyond f, is:

2 o _(x—aay (a+r) (a+n(a+r+1)
s=§+1fs_ Xpp11) {1+(x+r+1)+(x+r+1)(x+r+2) }
_(x—a)am{ 1 + (a+r) (a+r)(a+r+1) }
T Xy x+r G GHr+D) H)rr+Dx+r+2)
= E Dy @ty
X
= %n
X
__ 9%
C@tpy (14
Thus
s§3+1fs = (x—a) frla+p+r)=(p+a+r) fr/p. (1.4 bis)

No such simple expression has been found for the tail of (1.2).

It was encountering frequency distributions with very long tails, actually occurring
in nature, which led to the investigation of the distribution (1.3). Indeed it was found
to give a good fit to the extremely long-tailed distribution of the numbers of filarial
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20 IRWIN — Generalized Waring Distribution [Part 1,

worms on 2600 mites. Arguments of a mathematico-biological nature were put
forward which would lead to this form of distribution as a theoretical model (Irwin,
1963).

However, as has been mentioned, all the distributions (1.3) are J-shaped. It was
the search for a discrete distribution which could have a mode and at the same time a
very long tail, which led to the investigation of the more general form (1.2) in greater
detail. Once this had been undertaken, these Generalized Waring Distributions were
found to have a number of interesting and previously unsuspected properties. Some
of these were discovered by tabulation on an electronic computer, for which I am
indebted to Dr David Hill. In Parts I and II of the paper, the properties of the
distribution are considered in some detail. Part I deals first with special limiting cases
for particular values of the parameters; then with the general properties of the
distribution—moments, shape, existence and position of the mode, etc. Part II
examines these properties in the light of the computer tabulations, and also contains
a detailed discussion of the percentage points and the way in which these vary with
the values of the parameters. Examples of fitting the distribution are also given in
Part II. It will be found that, though the distribution can have very long tails for
certain values of the parameters, this is not the case for all values of the parameters.

In fact, since the distribution has a close relation to the continuous distribution
which has the same ratio of slope to ordinate at the mid-point of each rectangle of
its histogram—and the actual distribution is hypergeometric—the corresponding
continuous distribution will be a Pearson frequency distribution. This analogy is
discussed in Part III; it is shown that the corresponding continuous distribution
(which we term the “continuous analogue™) is Pearson’s Type VI, or one of its limiting
forms Type III, Type V or normal, with certain exceptions, which will be indicated,
where it is of Type IV. However, the corresponding Pearson Type VI will not
necessarily have four finite moments, and we are thus led to consider cases which Karl
Pearson (at the time not unreasonably) would have excluded as heterotypic, but which
might nevertheless arise as theoretical models of natural phenomena.

In another paper (Irwin, 1968) it has been shown that the Generalized Waring
Distribution} can provide a theoretical model for accident distributions, by the use
of which it is possible to allow separately for accident proneness and accident
liability.

2. SPECIAL CASES

The series is always convergent. In certain limiting cases the series is non-uniformly
convergent. This means that every term tends to zero, but the limit of the sum
function is still unity. In this case we shall say that the distribution has an “infinitely
long tail”.

We have already discussed the special case when k=1 (Irwin, 1963). The
distribution then reduces to the simple Waring distribution. The same is of course
true when a=1. If a=1 and k = 1, the distribution is the Yule distribution.

It is convenient to write

a P k p
= —— =————-—-, =_, = mm—— 2.1
©=Grp @y BTGy DT Gp @h

The following limiting cases arise:

T For the sake of brevity, I shall refer to this below as the “G.W. distribution” or “G.W.D.”
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@) If p—0, the distribution has an infinitely long tail for all values of a,k>0.
In this case g,—>1 and g;— 1. The mean and all other moments are infinite.

(ii) If p—~>o0, a0 and ¢, (0<g,<1) is constant, k0 remaining finite, the
limiting form of the distribution is the negative binomial

( 1 4, A)""

a pa

When, also, ko0 and g, 0, kq, remaining finite, we obtain the Poisson distribution.
The same form is reached if k and a are interchanged.

(iii) If p—> oo, first then a—oo, k—0 (which implies g;—0), or p—co first, a0,
k-0 (g,—~>0), or p—oo first, a0 and k-0 (g;,—~0 and g, 0) all the frequency is
concentrated in the first term.}

(iv) If p>0is finite, k>0 is finite and a-> oo (g, — 1), we reach a distribution with
an infinitely long tail. The same is true if @ and k are interchanged. In this case 8,
for p>3, and B, for p>4 have finite limits, depending on p (see Sections 3 and 4).
This point is further discussed below.

(v) If p is finite, a—>oc0 and k—>o0 (q,~> 1, g;,—> 1), we again reach a distribution
with an infinitely long tail. B, for p>3 and B, for p>4 again tend to finite limits
depending on p (see Sections 3 and 4).

i) (@) If a»o0, k>0 (g,~>1, g;,—~1) and then p->o0, we again have a
distribution with an infinitely long tail, but 8,0, B,—3, their normal values (see
Sections 3 and 4).

(b) If p—>oo first and then a—co0, k—>00,q,,q; remaining fixed and <1, we still
have a curve with an infinitely long tail, and it is still true that 8,0 and B,—3 (see
Sections 3 and 4).

3. MOMENTS
The rth factorial moment of the G.W.D. is given by

= ) Ky
= oD (p—2) - (p—1)" 3.1

From (3.1) it follows immediately that all th moments (e.g. ordinary moments
about any origin, central moments as well as factorial moments) are infinite if p<r.

Moments about any origin, including central moments, can be obtained from
(3.1) by the usual transformation formulae. In particular the mean is given by

M=y p>1, (32)
while the variance
ka(p+a—1)(p+k—1)
2 — =
0% =y P—Dp=2) s p>2. 3.3)

+ If a or k — O first, the result still holds good; but if a or k — oo first, every term, including the
first, tends to zero. Since the sum function is unity, the distribution then has an infinitely long tail.
In the former case all cumulants are zero and B,, B, are indeterminate. In the latter case 3; - 0,
Bz >, By—B,—1—>oc0. This shows that numerical cases approximating to these conditions
need very careful consideration.
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22 IRWIN — Generalized Waring Distribution [Part 1,

The coefficient of variation v = o/u, is given by
(@) H(p+a—1)(p+k—D|(p—2}, p>2. 34)
The mean is infinite if p<1 and the variance is infinite if p<2.
The values of B, B, are
B, = (p+2a—1)X(p+2k—1)*(p—2)
1 ak(p+a—1)(p+k—1)(p—3)
(=L \
= , p>4,
b= T DD G- *

p>3, (3.5)

where
(3.6)
L = (p—1)*+{3ak+6(a+k)+ 1} (p— 1)

+{3ak(a+k)+ 6(a*+k?+3ak)} (p—1)?

+{3a2k?+18ak(a+k)} (p— 1)+ 18a2k2. |

4. VALUES OF $;, B,

Values of B;, B, have been calculated over a suitable range and are given in Table 1.
Before discussing the table, the values of 8;, 8, in the limiting cases mentioned above
(Section 2) will be considered.

In case (i), the formulae (3.5) and (3.6) do not hold, and B,, B, have no relevance.
If they can be regarded as existing, they are indeterminate.

In case (iii), the mean is 0 or 1 according as the first frequency is at 0 or 1, and all
other cumulants are zero. Formulae (3.5) and (3.6) give 8,0 and 8,~oc0. If we
let p— oo first and then a or k—0, we can verify that the relation B,—p;—1>0 is
satisfied, as must always be the case (Pearson, 1916).

Case (ii) is the negative binomial. The continuous analogue is Pearson’s Type VI.
Here we have

Bi=(+g)%kq, Bs=pi+3+2/k, 4.1)

which are familiar formulae. We note that if a— oo or g,—1 (a and k may of course
be interchanged),

By =4/k, B,—3=6/k sothat 28,—3B;—6=0.

This is the condition for Pearson’s Type III (the Gamma Distribution). When
q,—> 1, the negative binomial has an “infinitely long tail”, as it has here been defined.
If as is usual in actual physical or biological problems involving discrete distributions,
the variate must take the values 0, 1, 2, 3 etc., then we have the infinitely long tail.
If however the variate values can be 0, A, 2], 3A etc., and A is at our choice, we can
make A->0 in such a way that 32 = X2 0® = X2kg,/p? remains finite = 2k, say. Asis
well known, we have in the limit a continuous frequency distribution of the Pearson
Type III form, which can be written

1 x\*-1dx
—_— /| -
I‘(k)e (c) P O<x<oo. “4.2)
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1975] IRWIN — Generalized Waring Distribution 23

Thus, if we are at liberty to choose the scale, we can reach in this case a continuous
distribution as a limiting form of the G.W.D., in which the tail is not infinitely long
in any acceptable sense of the term.

It can now be seen that for any discrete distribution in which the variate has a
natural metric and a finite variance, there are two quite distinct ways of measuring
length of tail. The first is by the number of terms necessary to reach a given individual
small frequency (say 0-00005) or alternatively some selected percentage point (say
0-01). The second is by the number of multiples of the S.D. required for the same
purposes. Which is preferable will depend upon the aim in view. This point will be
taken up again later.

Case (iv) is analogous to case (ii) with g,—1. Here p is finite and a->oc0, and
k>0 is finite, or vice versa. Thus, either g,— 1, ;>0 or vice versa.

In this case if k— o0, and a, p are both finite

kK2a(p+a—1)

7 12 s R “
B, = 4(p—2)(p+2a—1)
Y alp+a—1)(p—3)° @)

_ 3(p—2)
a(p+a—1)(p—3)(p—

If the scale is at our choice we can take the variate values as r/k (r =0,1,2,...) in
which case we reach (when k—>c0) a continuous distribution with variance X2, where

52 _ a(p+a—1)
(p—1Xp—2)

It will be shown in Part III that the continuous analogue of the G.W. distribution
is in general Pearson’s Type VL.

[We define the continuous analogue to be the distribution obtained by the slope
ordinate method; i.e. by equating (1/y) (dy/dx) to the ratio of slope to ordinate in the
histogram of the discrete distribution, which is in fact a particular type of hypergeometric
distribution. It is argued in Part II that this is the correct method to use. If we do so,
we find that the continuous analogue is always Type VI, for p>(242+ 3); or one of its
limiting cases, Type III, Type V or normal. If changes of scale are permissible, the
limiting forms for special values of a, k, p can also be regarded as limiting forms of the
G. W. distribution itself.

However, the slope-ordinate method does not, in general, give the same Pearson
distribution as equating the 8;, B, of the Pearson distribution to the B,, B, of the hyper-
geometric. These are two reasons why the former method is preferable.

(i) It is applicable to cases where any or all of the first four moments are infinite.
This can be the case with exceptionally long-tailed distributions, which do occasionally
occur in biological material. In Yule’s example—the distribution of size of genera—
even the mean is infinite (Yule, 1924). In my own example of the distribution of filarial
worms per mite (Irwin, 1963) the mean is finite but the variance (since p = 1-85) is infinite.

(ii) The former method, but not the latter, yields a Pearson Type VI distribution in
which g, g,, in Pearson’s notation for the distribution, satisfy the relation p = g, —g,—1.
(The curve can be written y = Cx%(x+a)~%, 0< x<0.)

Thus, in both the Waring distribution and its continuous analogue the successive
moments become infinite for the same values of p.

Ba

7@+ D o1+ ala+6) (o~ D+647

@.5)
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24 IRWIN — Generalized Waring Distribution [Part 1,

Assuming the first method is used, the continuous analogue does not in general have
the same B, B. as the hypergeometric. Since the continuous analogue is Type VI (or
exceptionally Type IV) it must always have 28,—38,—6>0. In the G. W. distribution
however, when p and a are fixed and k increases (here @ and & may be interchanged),
28,— 3B, —6 is positive for low values of k£ and negative for high values, changing sign at
some value of p = py(a, k). When p - 0, k - 00,0<gq; <1 (Case (ii)), the G. W. distribution
becomes a negative binomial. Here 28,—3B8;,—6 = —pi/aq:,, whereas the continuous
analogue, given by the slope ordinate method gives 28, — 3B, —6<0. It follows that if we
fitted by equating 8;, B; of curve and negative binomial, we should obtain Type I and not
Type VI. This seems illogical for a curve which starts at zero and has an unlimited tail
to the right.

In his first Royal Society paper on “Skew Variation in Homogeneous Material”,
Karl Pearson (1895) did at first obtain his first four main types by the slope/ordinate
method. However, in the same paper he then expressed the constants of the curves in
terms .of B; = p3/ui, By = my/pd. (In the earlier part of the paper he put his differential
equation in the form (1/y)(dy/dx) = —x/(B;+ By x+ Bs x?) where By, Bs, Bs are not the
moment ratios; the change of notation might perhaps confuse the unwary reader.) He did
not explicitly state, though he certainly would have recognized, that equating the B, B,
of the curve and hypergeometric did not give the same answer as the slope-to-ordinate
method. Since his main object was to graduate observed data, it was natural at the time
that he should equate the observed f;, B; to their theoretical values.

(For 0< p<(242+3) = 5-828 there are certain exceptions when the continuous
analogue is of Type IV or Type V. These exceptions will be further discussed in

Part II1.)
This distribution, in this case reduces to (see Part III)
Llp+a) 444
e £97Y(1 4 £)~(pta g, 4.6

with variance given by (4.5). Assuming the change of scale to be permissible, it can
be regarded as a limiting form of the G.W. distribution.
Case (v) is similar. We find

. 2k \
Sl e sy
16(0—
By =———fp(f 3)22) , @.7)

6, =2+
N CEOICED R

If the scale is at our disposal, we can suppose the variate values to be
rlak (r=0,1,2,3,...).

When a—o0, k—o0 we reach a continuous distribution in the limit with variance
1/(p—1)(p—2) and B,, B, given by (4.7). On putting { = 1/aX in (4.6) and letting
a->oo, its equation is found to be
1
L'(p)

that is Pearson’s Type V.

e UX X—lptdX, 0< X<, 4.8)
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1975] IRWIN — Generalized Waring Distribution 25

The values of B, B, in (4.7) agree with those found by Karl Pearson (1901) for
Type V, on putting p+1 = p.
On eliminating p we obtain Karl Pearson’s cubic

Bi(Ba+3)?—4(28; — 3B, —6) (4B, — 3B) = 0. 4.9)

In case (vi) (a), by making p—co in (4.8) we find B, 0, B,—> 3, their normal values.
It is well known that Type V tends to the normal form as p—>oco. On the other hand,
in case (vi) (b) we still find 8; >0, B,— 3, but

o?~(pq,qx/ps PY) = % say. (4.10)

If we can change the scale, so that our variate values are r/c (r =0, 1,2,3etc.) and
then make ¢—> oo, we still reach the normal distribution /(27)~1e~#X*dx. Under these
conditions, the normal distribution can be a limiting form of the G.W. distribution.

We are now in a position to discuss Table 1. B, 8, have been calculated for all
combinations of p =8, 16, 24, 32, «, and ¢,,9, =%, 3, %,  and 1. For p=8,a,k
take the values of 1,2, 4, 8,00; for p = 16 they take the values 2, 4, 8, 16, co and so on.
The left-hand side of the table gives B,,B, for all combinations of the four finite
values of p with the values of ¢q,,q;.

The right-hand side gives B;, 3, for the negative binomials of case (ii), in this
case taken as {1/p;,— (g, A/p;)}~° for the same values of g, and a as on the left-hand
side. Here B,, B, are unaltered by the interchange of @ and k.

On the left-hand side it will be noticed that when a#k, the same values of 8, B,
occur twice (since the interchange of a and k does not alter the distribution). They
have deliberately been entered twice. On the right-hand side p—>co in all cases, so
that B;, B, depend only on a and g;,. Here the values when a and k are interchanged
have not been entered twice, but the values for fixed ¢, and a = 2,4, 8, 16,00 are of
course the same, wherever they occur. The repetition is again deliberate. Its purpose
is to enable the reader to have the complete set of values for any row or column; he
can then see clearly the effect of varying any one parameter, when the others are kept
constant. Comparisons of the right-hand side of the table with its left-hand side
show the changes made for fixed a and g;, when p->oc0 as compared with the fixed
value of p in the same row of the table on the left. For instance, whena = 8, ¢;, = 0-3,
the values of B, B, for p = 16 are 226 and 7-11, but when p—oco they are 0-67 and
3:92. Apart from the negative binomial, the other limiting cases may also be examined.
The case when, for all values of p, a =1 (or k = 1) corresponds to the simple Waring
distribution. The continuous analogue of all the distributions on the left is Pearson’s
Type VI. When g, =1, ¢;, = 1, for all values of p, Type V occurs as a special case,
which is also a limiting form of the G.W. distribution. The B;,B, of the hyper-
geometric then satisfy the cubic for Type V. When 0<g, <1, g, =1 and p—>oo the
continuous analogue, which here is also the limiting form, is the normal distribution.
When p—>00, a s finite and g;,— 1 or vice versa, the continuous analogue and limiting
form is Pearson’s Type III.

The values in the last column (except for rounding-off errors) satisfy 28,—3p,—6
exactly. It should be noted that 28,—38,—6>0 for all the values of B;,, on the
left-hand side of the table, and <O for all the negative binomials. For fixed a and
qr (or k and gq,) 2B,—3B;—6 vanishes for some value of p, but the continuous
analogue remains Type VI, as long as p is finite. Other points of interest are
mentioned in (i) and (ii) below, where a and k may as usual be interchanged.
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26 IRWIN - Generalized Waring Distribution [Part 1,

(i) For fixed p and a (which implies fixed p and g,), B;, B, are near their limiting
values when ¢;,>0-5.

(ii) For fixed a and gy, the values of 8;, B, do not approach their limiting negative
binomial values so rapidly. Even when p =32, there is a considerable
difference; but the change between ¢, =% and ¢, =1 is much less than
between g;, = % and g, = }.

Since the G.W. distribution has its first four moments finite for p>4, it seemed
reasonable to take p = 8, as the lowest value of the argument p in Table 1. Perhaps
the fact that p =8 is the largest value of p that Karl Pearson would have called
heterotypic provides a historical reason for the choice. In any case, Table 1 gives,
it seems, an adequate conspectus of f8;, 8, over the whole range of the parameters
p> a, k, when the first four moments are finite.

It has recently been shown (Irwin, 1968) that the G.W. distribution is of particular
interest in the theory of accident distributions, where one would expect the first four
moments to be finite, because the negative binomial distribution so often gives a
satisfactory fit.

However, the original motive for undertaking this research was to examine the
cases where the G.W. distributions have especially long tails. In such cases the mean,
or the mean and variance, or the first three or first four moments may be infinite.
For this reason the distributions were tabulated on an electronic computer for
p=0-5(1-0) 45 and appropriate values of g,,q; = 0-25, 0-5 (0-1) 0-9 (see Part II).
Of these only p =45 gives a finite fourth moment. The values of B;, B, for p = 4-5
and ¢,,q9,=3%,%4,3,3 1 are naturally very large. However, as a connecting link
between this section and Part II, the values of B;, B, have been calculated for p = 4-5,
gr=1and g, =3, 1 % L and 1. The results are:

a da B B:
0-5625 o 41-60 20221
1-125 02 2824 14209
225 03 21-99 11394
45 05 19:29 101-81
© 10 1778 95-00

These are the smallest set of values for p = 4-5 and the same values of ¢, and g, as
in Table 1.

5. THE MoODE

5.1. The values of the variate are here taken to be x =0, 1,2, ..., r and the corre-
sponding frequencies are denoted by f,. By examining the ratio f,/f,_;, it is easily
shown that the value of x corresponding to the greatest frequency is the integer

r=IHa—-1)(k—1D/p+D} .0

where I(z) denotes the greatest integer not greater than z. If r =0, the curve is
J-shaped. We could say that r = 0 gives the mode, but, as we wish to distinguish
distributions with a genuine mode from those which are J-shaped, we here reserve
the term “mode” for the case when r>1. Let us write A =(a—1)(k—1)/(p+1);
then, if A=r>1 exactly, f, = f,_; and both are greater than any other frequency.
In this case we still call x = r the mode. Thus the mode is r where r<A<(r+1).
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TABLE 1
Values of By, B, and the mode for the Generalized Waring Distribution
Values for negative binomial
{A/pe—(qelp)}™°
Values for q, = 0-1, 0-2, 0-3, 0-5, 1-0 p—>o, k>0
p a 4, q, = O 0-2 03 05 1-0 o 0-2 03 05 10
k=1 2 4 8 ©
8 1 oi By 2460 1634 12443 1071 972 1111 720 533 450 4-00
ﬁz 46-61 33-34 2707 2432 2272 1611 1220 10-33 9:50 9-00
Mode 0 0 0 0 o 0 0 0 0 <)
2 02 B, 1634 1085 825 711 645 556 360 267 225 200
/32 3334 2404 1964 1772 1660 9-56 7-60 6-67 625 600
Mode 0 0 0 0 [} 0 0 0 1 ]
4 03 B1 1243 825 6-28 541 491 2-78 1-80 1:33 1-12 1-00
B. 2707 1964 1613 1460 13-70 628 530 483 462 450
Mode 0 0 1 2 [} 0 0 2 3 (<]
8 05 ﬁl 10-71 7-11 541 4-66 4-23 1-39 0-90 0-67 0-56 0-50
Bz 2432 1772 1460 1323 12-44 464 415 392 381 375
Mode O 0 2 5 [ 0 2 5 7 ©
© 10 B 972 645 491 423 384 0 0 0 0o o
,32 2272 1660 1370 1244 11-70 3 3 3 3 3
Mode () () <) ) ) ) ) © ©
16 2 oi Bl 9-34 6-12 4-59 392 352 5-56 3-60 2:67 225 200
/92 16997 12-69 1065 9-75 9-22 9-56 7-60 6:67 6-25 600
Mode O 0 0 0 ) 0 0 - 0 1 )
4 02 ,31 6-12 4-01 3-01 2:57 2:31 2-78 1-80 1-33 1-12  1-00
,82 12-69 9-68 8-25 7-62 7-25 6-28 5-30 4-83 4-62 450
Mode O 0 1 2 © 0 0 2 3 ©
8 03 Bi 459 301 226 193 173 139 090 067 056 050
B. 1065 825 711 661 631 464 415 392 381 375
Mode O 1 2 6 o) 0 2 5 7 )
16 05 ﬁl 3-92 2:57 1-93 1-64 1-48 0-69 0-45 0-33 0-28 0-25
o 9-75 7-62 6-61 6-16 5-90 3-82 3-58 3-46 341 3-38
Mode 0 2 6 13 © 2 4 11 15 (<]
© 10 B, 352 231 173 148 133 0 0 0 0 0
, 922 725 631 590 566 3 3 3 33
Mode o s} © ) © ) © 0 0 0

5.2. If a,k are fixed it follows from (5.1) that the smaller p is, the bigger is the

mode. The same property may also be expressed as follows:

If x = r is the mode and q, k are fixed,

(@a=D&=1
r

=(p+1)>

(a-D&-D
T oeD

5.2

As an example, Table 2 shows the limits for p when (e—1)(k—1) = 1-5, 2, 2-5, 3, 4,
5,10and r=1(1)9.
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28 IRWIN — Generalized Waring Distribution [Part 1,
TABLE 1 (cont.)
Values for negative binomial
{A/p)i—(@rlp)}~®
Values for q,, = 0-1, 0-2, 0-3, 0-5, 1-0 p >, k>
p a 4q, qr = O 02 0-3 05 1-0 0-i 02 03 05 1-0
k=3 6 12 24 ©
24 3 o1 B, 58 379 283 240 215 370 240 178 150 133
B. 11:33 877 755 701 6-69 737 607 544 517 500
Mode O 0 0 1 0 0 0 1 2 ©
6 02 B, 379 247 185 157 140 185 120 08 075 067
B. 877 697 612 574 551 519 453 422 408 400
Mode 0 0 2 4 0 0 1 3 5 ©
12 03 B, 28 185 138 117 105 093 060 044 038 0-33
B 755 612 544 513 495 409 377 361 354 350
Mode O 2 4 10 © 1 3 8 11 ©
24 05 B, 240 157 117 100 0-89 046 030 022 019 0-17
B. 701 574 513 48 470 3-55 338 331 327 325
Mode 1 4 10 21 © 3 7 17 23 0
o 10 B, 215 140 105 089 0-80 0 0 0 0 0
B. 669 551 495 470 456 3 3 3 3 3
Mode o © 5 ) 5 © %) [°) [°o) 0
k=4 8 16 32 ©
32 4 oi By 421 274 205 173 155 278 180 133 112 1-00
B: 894 711 624 585 538 628 530 483 462 450
Mode 0 0 1 2 © 0 0 2 3 ©
8 02 B 274 179 133 113 101 139 090 067 056 050
B. 711 583 522 495 478 464 415 392 381 375
Mode 0 1 3 6 [ 0 2 5 7 o)
16 03 By 205 133 099 084 075 069 045 033 028 025
B, 624 522 473 451 438 382 358 346 341 3-38
Mode 1 3 6 n4 0 2 4 11 15 ©
32 05 B 173 113 084 071 064 035 022 017 014 012
B: 585 495 451 432 421 3-41 329 323 320 319
Mode 2 6 14 29 © 4 9 17 31 ©
o 10 B: 1-55 101 075 064 057 0 0 0 0 0
B. 538 478 438 421 410 3 3 3 3 3
Mode 0 o) 0 ) ) 0 © © ©

Table 2 makes two points quite clear. First, if (a—1)(k—1) is fixed, the mode
cannot be greater than I'{(a—1) (k— 1)}, where I'(z) denotes the greatest integer less

than z.

Secondly, for fixed (a—1)(k—1), the mode is a very low value of the variate,

compared with the effective range of the distribution. Thus, if the mode is at
(@a—1)(k—1)/5 or some larger value which must <I'{(a—1)(k—1)}, p<4. The
fourth moment is infinite and the distribution has a very long tail. The example in
Table 3 illustrates this.
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1975] IRWIN — Generalized Waring Distribution 29

TABLE 2
Limits for p when the mode is given and (a— 1) (k—1) is fixed (L< p< U)

Mode (@a—=1) k-1
®

15 2 25 3 4 5 10

L U L U L U L U L U L U L U
1 0 05 0 1 3+ 13 3 2 1 3 13 4 4 9
2 - — — — 0 % 0 3% 1 £ 13 2% 4
3 - = —— — = ——= 0 3% i 12
4 _—_ - = - — - — — — 0 % 1 13
5 —_—_ - = = = —= - = = = = 1
6 - — — = — = - = — = — = 1%
7 - = — = - = — = — = - — i &
8 _—_ = = = = = = = - = s %
9 —_—_ = = = = = = = - - = o 3

TABLE 3

Certain values of mode, mean and S.D., for fixed (a—1)(k—1)

(@D k-1 P a k Mode Mean S.D.
10 4 6 3 2 6 73
10 25 6 3 2 12 232
10 2 6 3 3 18 ©
100 4 21 6 20 42 389
100 25 21 6 28 84 1375
100 2 21 6 33 126 ©

Distributions which are “heterotypic” in Karl Pearson’s sense have p<8. For
these the mode cannot be less than I{(@— 1) (k — 1)/9} or greater than I'{(a— 1) (k—1)}.
If the mode has its greatest possible value, p<1/{(a—1)(k—1)—1}; for example,
if (a—1)(k—1) = 100, p<3% and the tail is very long indeed.

5.3. The position is quite different if ¢,,q,, are constant. Since

a= an/pa = P/u’ say,
k = pqp/py, = plv, say,

we have
A= (a—1)(k=D)/(p+1) ={(p/v)— 1} {(p/v) - 1}/(p+1) (5.3)
or
(p—u)(p—0v) = (p+1) Auv, where r<A<(r+1), (5.4)
which gives
4uv(A—1
p= %{u+v+uv)\}{1 +A/(1 +@—_’:%(m;—)2)} (5.5)

Since p>0 we must take the positive sign for the square root in (5.5). Here, for fixed
u, v, the mode increases with p.
2
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30 IRWIN — Generalized Waring Distribution [Part 1,

If A = 0, we know the distribution is J-shaped; if A> 0 there is a mode. It follows
that x = r is the mode if

%{u+vr+uvr}{1 +A/(1 +%)}
<p
<%{u+v+uv(r+1)}{1+A/(1+G-_m_%)}. (5.6)

Hence the range within which p lies has a length roughly equal to »v and increases
with uv; that is to say it increases as q,q;/p, Py diminishes.

For example, when p = 8, q, = %, g, = £, a = 4, k = 8; an application of equation
(5.1) gives x = 2 for the mode. Now suppose, keeping g, = %, g, = %, that the mode
is at x = 2. Equation (5.6), putting ¥ = 2, v = 1 gives 7-275< p <9-424. The range is
2:149, while uv =2. When p=8, u=4, v =13, 1.e. g, =g =%, a =k = 72, we find
from equation (5.1) that the mode is at x = 560. If the mode is 560 and g, = g;, = %5,
equation (5.6) gives 7-9986 < p<8-0111. The range is 0-0125 while uv = gt = 0-0123.

5.4. Table 1, Section 4, primarily a table of B, B, also gives the values of the
mode. Here the entry zero means that the distribution is J-shaped. Ifa=1ork =1
(the simple Waring case) the distributions are always J-shaped.

The table shows that if a = 1 or k = 1 (the simple Waring case) or indeed if either
a or k have any constant values, there is not much difference between the positions
of the mode for distributions with a fixed p and for the corresponding negative
binomials (p—>00, k0, q; fixed). The same is true if @ and k are interchanged.
If a>1, k> 1, the following results may be noted:

@) If q,,9; are both fixed there is a mode for sufficiently large p. Table 1 shows
how the mode increases with p. For values up to g, = 0-5, g;, = 0-5, we can see from
the table that this is at a roughly constant rate. That the same is true for all g,,q;
can be seen from equation (5.6) on p. 19; the rate of increase of the mode with p is
roughly equal to 1/uv or q,494/PePs-

(ii) If p and gy, are fixed, there is a mode for sufficiently large g,. Table 1 shows
how the mode increases with g, for fixed g, <0-5.

Table 1 deals with relatively large values of p, distributions in which at least the
first seven moments are finite. Since this study was mainly directed to long-tailed
distributions, which also have a mode, we have to consider the mode of distributions
calculated on the electronic computer. These values of the mode are given in Part IT
and will be considered in relation to the values of the median, mean and the
characteristics of the distributions. Here it is only necessary to say that the table
illustrates the facts that

() If a = pq,/p,<1 or if k = pgy/p; <1, the distributions are certainly J-shaped.
If a>1 and k> 1 the distributions are J-shaped if p>(a—1) (k—1)—1 or, equivalently,
p<{1/(9,q1)—1}. Otherwise there is a mode.

(ii) Where there is a mode, the rule, that the mode increases by approximately
Go9r/Da Pr; DET unit increase in p. rapidly becomes true as p increases; even for such
small values of p as those here tabulated. For example, if g, =05, g5 =09,
90q/Pa P = 9; the actual increases are 7 for p = 1-5—2-5, 8 for p=2:5—3:5 and
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1975] IRWIN — Generalized Waring Distribution 31

3-5—4-5. If q,=08, g5, =09, 9,91/p, Pr, = 36. The actual increases are 23 for
p=05-1-5,30for p=15-2-5, 33 for p =2-5-3-5, 34 for p =3-5—4-5.

[To be continued]
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