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The Generalized Waring Distribution applied to Accident Theory 

By J. 0. IRWIN 

The Galton Laboratory 

SUMMARY 
The generalized Waring distribution provides a model for accident 
distributions in which the variance can be split into three components. 
The first of these is the usual random component of classical accident 
theory and the other two will often be identifiable as the separate variances 
due to proneness and liability. The sum of the last two components is the 
single component which in the classical theory is identified with variation 
in susceptibility.t This new model is illustrated by an example taken from 
Newbold's original work. 

The negative binomial is a limiting case of the generalized Waring 
distribution; so that the classical theory of those particular compound 
Poisson distributions which are of negative binomial form is a particular 
case of that presented here. Just as a compound Poisson distribution need 
not be of negative binomial form (it will only be so when "susceptibility" 
has a gamma distribution) so the "three component distribution" is not 
necessarily a generalized Waring distribution, but will only be so under the 
conditions explained in the paper. This more general case, while alluded to 
in a paragraph on p. 223, is not dealt with in this paper. 

The generalized Waring distribution (of the number A of accidents) 
depends on three parameters, p, a, k and is symmetrical in a, k. In Part II 
it is shown how these parameters may be expressed in terms of three 
parameters directly relevant to a real accident situation. These are A the 
mean number of accidents in the exposure period, w = (rA2 A)/A2 which is 
the square of the coefficient of variation of "susceptibility", and a para- 
meter d which is the percentage difference between the two components 
into which the variance of "susceptibility" is divisible. a, k, p are single 
valued functions of A, c and d, and vice versa. Table 4 gives values of 
a, k p for given A, w, d. Interchanging a and k does not alter the Waring 
distribution; thus A and p remain the same but d is replaced by a value d'. 
Over a large range of values of a and k, d and d' do not differ greatly. 
They are equal with opposite sign, when A = 1, and with the same sign when 
a = k which implies A = A1, a value which is a function of d and c. 

Table 4 gives a, k, p, d' for given values of A, w and d. In addition to 
giving a conspectus of the whole situation over the possible range of values 
of the parameters, it should be useful to analysts of accident data, as is 
explained in a note accompanying the table. 

It is realized that this is only a first study of a new technique. It is hoped 
that younger statisticians, with greater computing facilities than the author, 
will be stimulated to explore it. 

t I have retained Newbold's term "susceptibility" for a person's tendency to accident due 
to all non-random factors, "liability" to mean his tendency to accident due to external factors, 
and "proneness" that due to internal factors. I use "proneness" in the same sense as Farmer 
and Chambers (1939); they used "liability" as synonymous with Newbold's "susceptibility". 
I think this can be confusing. For some further discussion of this question see Irwin (1964). 
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206 IRWIN - Generalized Waring Distribution applied to Accident Theory [Part 2, 

PART I-GENERAL THEORY AND AN EXAMPLE 
1. IN A PAPER read to the Royal Statistical Society (Irwin, 1963), I drew attention to 
the generalized Waring distribution. Its generating function can be written in the form 

(x-a)uk1 F(a, k, x + k, 0) (1) 
X[k] 

where F is the hypergeometric series, 0 the generating symbol and X[k] denotes 
x(x+ 1) ... (x + k - 1). However, it is in general more convenient to put x - a = p and 
write (1) in the form 

F(p+a)F(p +k) 1+ akO + a(a+1)k(k+1)02 a[rIk[r,or A (2) 
F(p) F(p+a+k) t p+a+k (p+a+k)(p+a+k+ 1)2! + (p?a+k)[r]r!J 

Here p >0, a >0, k>0 and k need not be an integer, in fact the distribution is 
symmetrical in a and k. 

Originally I was interested in the distribution because, for certain values of the 
parameters, it can have both a mode and a very long tail, whereas the simple Waring 
distribution (which has k = 1), while possessing the latter property, is always 
J-shaped. This in turn has been suggested by coming across actual biological dis- 
tributions which had exceptionally long tails. Theoretical distributions (with one 
exception) so far discussed in the literature, were totally inadequate to deal with this 
situation. The exception was the Yule distribution (Yule, 1924); this is in fact the 
particular case of (2) when a = 1, k = 1. 

However, the tail is not exceptionally long for all values of the parameters; in fact 
the continuous analogue of the distribution is Pearson's Type VI, with some relatively 
rare exceptions when it is Type IV.t In the application of it which we shall make to 
accident theory the tails will not usually be especially long. 

The expression in (2) can be written 

F(p + a) F(p?+k) Ffa, k, p + a + k, 0} 
IF(p?+a?+k) F(p)F{~~??~6 

r(p) r(k) foua (1 u)k1 (- (!- 1)}adu. (3) 

The integral in (3) is a well-known representation of the hypergeometric function 
(Forsyth, 1914; Whittaker and Watson, 1935). 
2. The negative binomial distribution often fits observed accident distributions. The 
classical theory (Greenwood and Yule, 1920; Newbold, 1925, 1927) supposes that we 
have a population of individuals all subject to the same external risk of accident, but 
with unequal proneness to accident. An individual's proneness is represented by A 
the mean number of accidents incurred under the given exposure conditions by 
individuals with the same proneness as he has. A is assumed to have the continuous 
distribution 

I( e-cA(cA)a-1 d(cA) (4) 

t Since 1964 I have studied the general properties of the distribution, moments, shape, 
existence and position of mode, etc., and the way in which these vary with the parameters; and 
extensive calculations have been made on an electronic computer. I hope to publish these results 
shortly. 
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1968] IRWIN - Generalized Waring Distribution applied to Accident Theory 207 

while the distribution of accidents among individuals with the same proneness is the 
Poisson distribution exp {A(6 - 1)}. Writing 0 = 1+ ao we find that the factorial 
moment generating function of (5) is eA3. Thus the f.m.g.f. of the resulting accident 
distribution is 

I(a f e-(c-O)A(cA)a-1 d(cA) = (i c (5) 

Now putting a = 6-1 we find for the g.f. of the final accident distribution 

(c+ 1 _ (6) 

a negative binomial distribution with mean a/c. Apart from the fact that this com- 
bination of different Poisson distributions is not the only interpretation of a negative 
binomial distribution, there is another difficulty in applying the theory. We cannot 
know that all individuals are exposed to exactly the same external risk of accident. 
Differences in exposure to external risk of accident from person to person are known 
as differences in accident liability as distinguished from constitutional or internal 
differences which are known as differences in proneness. In practice, effects of proneness 
and liability are confounded, that is inseparable, when the negative binomial is fitted. 
The combination may be called susceptibility, the term originally used by Newbold. 
This is true whatever the distribution of A. The original choice (4) for the A distri- 
bution of susceptibility, was largely a matter of convenience. It provided a simple form 
of distribution which worked; and led to a simple distribution of accidents-the 
negative binomial. Certain results are true, whatever the distribution of A, as long as 
the distribution for fixed A is a Poisson with mean A. In particular, 

(i) The following results are true: 

A=A 

urA=ua-A (7 

rAA = (UA/UA) = {1 - 0/9 
2 

where A and UA are the (theoretical) mean and S.D. of the final accident distribution. 
(ii) The factorial moment generating function of the accident distribution is the 

ordinary moment generating function of the A distribution. For the f.m.g.f. of the 
Poisson distribution with mean A is eAa, whence the f.m.g.f. of the accident dis- 
tribution is 

lfp(A) eAa dA 

which is the m.g.f. of the A distribution. If A has the distribution (4), then 

A = A = a/c AA = a/C2 rAA = {1/(C+ 1)}i. 

3. The generalized Waring distribution may be used to allow for proneness and 
liability separately. In the negative binomial 
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208 IRWIN - Generalized Waring Distribution applied to Accident Theory [Part 2, 

can be regarded as a parameter fixed for individuals with the same proneness. The 
negative binomial, which may be written 

a a 

can be regarded as the distribution for individuals with proneness v arising from a 
Poisson distribution exp {(A Iv) 6- 1} for individuals with liability (A Iv) and fixed 
proneness v, where (AI v), that is A for given v, has the usual Pearson Type III (or 
gamma) distribution 

e(a)A (v ) (vd (8) 

If now u has the Pearson Type I (or Beta) distribution 

P(p + k) uP-l(l-u)k-l dU (9) 
r(p) F(k) 

it follows from (3) that the generalized Waring distribution will give the final dis- 
tribution of accidents. 

In terms of v, (9) becomes 

r7(p +k) (i~k4 1/ -(p+k)~J (10 
r(p) r(k) (a! ( a) a 

which has the Pearson Type VI form. 
The original choice of (8) for the A distribution of proneness or liability, as has 

been already noted, was largely a matter of convenience. 
A beta distribution for u or v (Type VI is of course also closely related to a beta- 

distribution) is more general but equally plausible as an assumption; (8) is in fact one 
limiting form of Type I or Type VI. 

The variance of the Waring distribution is 

2 ak(p+k-1)(p+a- 1) 1 it (p I)' (p 2) *(1 

The variance of the Poisson distribution corresponding to (Al v) is v, thus the variance 
of the random component in the final distribution is v = ak/p-1. The variance of v is 
a2 k(p + k- l)/(p- 1)2(p-2), thus if 

AA V= Ev{ V(A I v)} 

A= E (v2/a) = ak(k+ l)/(p-l)(p-2) (12) 

Thus finally we have the situation shown in Table 1 and the first two columns of 
Table 2. 

If the generalized Waring distribution is found to fit the data, we have a means of 
estimating separately accident proneness and accident liability (but see p. 222). 
There is nothing in the above mathematical analysis, however, to tell us whether A is 
liability and v proneness or vice versa. If, however, we know that external exposure 
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1968] IRWIN - Generalized Waring Distribution applied to Accident Theory 209 

was approximately constant for the individuals for whom we have data and if one of 
the variance components (say r2) is very much larger than the other (say A2.-), we 
shall be justified in attributing the larger component to proneness. 

TABLE 1 

The component distributions and their resultantt 

Persons with 

(1) Same proneness and liability (Poisson) exp {(A I v) (6- 1)} 

(2) Distribution of (A I v), i.e., A for fixed v exp - (-a)'() d(-) 

(3) Resulting negative binomial {1+Y- -) 

(4) Proneness distribution of v (p () (+ a)a dv 

(5) Final resulting distribution (a + p) F(k+ p) F{a, k, a + k + p, 0} 
F(a + k + p) F(k) 

t The generating function is given for discrete distributions, and the probability density for 
continuous distributions. 

akc a(a +1) k(k +1) 0 
F is the hypergeometric series 1+ (+k+) 6+ (a+k+)(+ k+ )+1)2+ ) 

TABLE 2 

The variance of the generalized Waring distribution and its components 
with estimates made from the observed distribution 

Component Theoretical Variance 
Estimated from the observed 

accident distribution 
(given in Table 3) 

(1) a = 6-0480 (2) k = 6-0480 
k = 1 0595 a = 1P0595 

(1) Random Ev(A I v) = i = A 
ak 0 9776 (37.9 %) 0 9776 (37 9 %) 

(2) Liability component ak(k + 1)0365141 125 81%) 
Ev{V(A I v)} - a2. = O2 (p-k 1) 03625 (141 %) 12405(481%) 

(3) Proneness component 
a2 k(p +k- 1) 1P2366 (480%) 0 3586 (139 Y.) 

Pronenessacompo t ak(p - 1)2 (p - 2) 

Total ak(p +k- 1)(p +a- 1) 25767 (1 00 2.5767 (1 00%Y) (p-I )2 (p -2) 
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210 IRWIN - Generalized Waring Distribution applied to Accident Theory [Part 2, 

4. An example, given by Newbold in her original papers (1925, 1927), may be used 
here. Table 3 gives the observed frequencies of accidents among men in a soap 
factory. The period of exposure was 5 months. Miss Newbold fitted a negative 

TABLE 3 
Accidents to men in a soap factory (5 months' exposure) 

Observed Expected 
Negative binomial Generalized 

(Newbold) (Waring) 

0 239 251 240 
1 98 93 105 
2 57 46 49 
3 33 25 24 
4 9 14 12 
5 2 8 7 
6 2 4 4 
7 I' 
8 
9 4 

10 11 7 6 6 
11 
12 - 
13 1 

Total 447 447 447 
25= 13-7 24= 10-6 
P = 0-018 P = 0-030 

binomial distribution, by equating the observed values of the mean and variance to 
their theoretical values. Observed and expected frequencies for seven or more 
accidents were combined into one group, after fitting. Thus there were eight fre- 
quency groups giving five degrees of freedom for which x2 = 13-7, P = 0-018 (Miss 
Newbold, as was not unusual at the time, used seven degrees of freedom which gave 
p(X2) = 0 058). I have fitted the generalized Waring distribution, using three factorial 
moments and find p = 7 55446, ak = 6-40784, a+k = 7-10748, whence a = 6-04798, 
k = 1-05950, or vice versa. The Generalized Waring Distribution is symmetrical in a 
and k, so we obtain two solutions. I have chosen a to be the bigger value, because 
this makes the variance component for proneness u2 much bigger than that for 
liability AA. This gives x% = 10-6, P = 0-030. 

The distribution fitted by this method, as well as Newbold's original negative 
binomial are both given in Table 3. The generalized Waring distribution fits rather 
better than the negative binomial, but this is not very important. The advantage of 
the former lies in the possibility of dividing the total variance into three additive 
components as in Table 2, where column (3) gives the results for a = 6-0480, 
k = 1-0895, and the last column shows the effect of interchanging a and k. Two 
features of these results are noteworthy. The sum of the second and third components 
is the same in columns (3) and (4); this must be so because their sum is u2 - A, both 
of which are symmetrical in a and k. Furthermore, the effect of interchanging a and k 
is almost the same as interchanging the roles of A and v, as far as the variance 
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1968] IRWIN - Generalized Waring Distribution applied to Accident Theory 211 

components are concerned. It is easy to see from column (1) that this would be 
exactly true if p = ak+ 1 in which case A -1. In fact the estimated values are 
p -755446, ak+ 1- 704784, A = 0-9776. This is further discussed in Section 5. 

Column (3) of Table 2 also shows that accident liability accounts for about 14 per 
cent of the total variance. Newbold remarked that there was some heterogeneity 
between different departments in the factory; the correlation ratio, 71A*x' where A is 
the number of accidents and x the department, being 0-36. The proportion of the 
total variance due to departmental differences, in terms of -q, depends on the number 
of departments but is not very different from -2 or 13 per cent. For five departments 
it is about 16 per cent and for 10 departments about 12 per cent. Thus the observed 
14 per cent is just about what we should expect, if there were variation in liability 
between but not within departments. 
5. The assumptions made above can be stated a little more explicitly. Let A be the 
number of accidents incurred under the given exposure conditions. Let v be the 
expected number of accidents for a person with a given fixed degree of proneness and 
average liability, relative to the given exposure conditions. Let AI v be the expected 
number of accidents incurred by an individual of proneness v and liability A. 

It is assumed that whatever the distributions of A and v may be, 

A = v+(AIv)-(AIv)+E (13) 

where E is a Poisson variable with mean A i v. Thus 

A =AIv+E (14) 

A ~~~~~~~~~~~~(14) zd= u + E,,{V(AI |v)} + v) (15) 
= (2 +ofAr +V ) 

and clearly, 
rAv = (OUIUA) rAA = (CA-v!CA) = (uAjA) (16) 

while the multiple correlation coefficient is 

RA.Av = {1 - (A/a)} (17) 
It is shown in Section (6) that a.v = CA. These are the properties analogous to those 
expressed by (i), p. 207 (equation (7)) in the classical accident theory. 

Further, the f.m.g.f. of the Poisson with fixed A and v is e(A01)1 and the f.m.g.f. of 
the accident distribution is 

p (v)p(I v) e(A v) l. (18) 
But this is the m.g.f. of the distribution of (Al v). This is completely analogous to (ii), 
p. 207. 

It is interesting to verify (18) for the particular distributions used here. The 
m.g.f. of A v for the distribution (8) is (1 - oi/a)-a whence 

/x4(A I v) = a(a + 1) ... (a+ r-1) (-) (19) 

while for the distribution (10), 
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212 IRWIN - Generalized Waring Distribution applied to Accident Theory [Part 2, 

Hence the factorial moment tz[,](A) is given by 

EvJpr'(A I v)} = ar.] k[r] (1 r (p -1) (p -2) _... (p -r) (1 

which is known to be the rth factorial moment of the generalized Waring distribution. 
6. It is important to notice that the average over v of the conditional distribution of 
A - v, is the same as the unconditional distribution of A - A for if x = A - v, x has 
means zero and conditional distribution 

p(x I v)dx = 
I 

e-a{l+x/v}[a{l + X/v}a-l] (a/v) dx (22) 

The average unconditional distribution of A - v is therefore 

p(v)p(xI v) dx = () fp(v) e-aAlv(?) d(-) (23) 

but this is the unconditional distribution of A, with unconditional mean A. It follows 
that O2 = a , where a2A.v is defined as Ev{V(AJ v)} and uA is the unconditional variance 
of A. 

In view of this and the other results so far obtained, it might be tempting to 
suppose that interchanging a and k is equivalent to interchanging the roles of A and v. 
That is if A(a, k) denotes liability and v(a, k) proneness; v(k, a) denotes liability and 
A(k, a) nroneness. This is exactly true, as far as variance components are concerned, 
when p = ak+ 1 which implies A - 1. However, it is not true in general. For if we 
carry out these interchanges we find for the probability density of v for fixed A 

I(k) e-(cl/A)(kv/A)k1- d(kv/A) (24) 
and for that of A 

P(p +a) JA a-' A ~-(p+a) dA 
r(p) '(a) k-) 1 +k) d (25) 

Now either (8) and (10) or (24) and (25) can be true; and either pair leads to the same 
generalized Waring distribution of accidents. But both pairs cannot be true simul- 
taneously, even if p = ak+ 1,A = 1. For consistency the four probability densities 
should satisfy 

p(A I v)p(v) = p(v I A)p(A) 
and they clearly do not. If one assumes (8) and (10) to be true, one finds a series of 
confluent hypergeometric type for the unconditional density of A. The two pairs of 
assumptions might be approximately true for the sort of values of p, a, k which occur 
in practice, or for some range of these values. To verify this, one method would be to 
show that (25) does not differ much from the unconditional distribution of A given by 
(8) and (10), and that (10) does not differ very much from the unconditional dis- 
tribution of v given by (24) and (25). If one pair of assumptions is not even approxi- 
mately true, the other pair may still provide a solution and knowledge of the data 
would usually tell us whether crA was proneness and U2 liability or vice versa. 

Alternatively, the matter can be examined by comparing the two solutions over a 
suitable range of values of the parameters. This is what has been done. The object 
of Part II, which follows, is to examine critically the degree of agreement or disagree- 
ment between the two pairs of solutions. 

This content downloaded from 195.251.235.181 on Wed, 8 Oct 2014 07:55:45 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1968] IRWIN - Generalized Waring Distribution applied to Accident Theory 213 

P.ART II.-CRITIQUE OF THE THEORY 
1. The best way of examining the relation between the two sets of solutions obtained 
by interchanging a and k, is to choose three parameters which are clearly descriptive of 
the actual accident situation and to express a, k, p in terms of these; then to select a 
series of values for these parameters such as might occur in practice (or are otherwise 
interesting) and (i) find the corresponding values of a, k, p (ii) interchange a and k and 
find the new set of parameters. We shall then be able to compare the values of A, aA, a 
before and after the interchange; A and p will remain the same. 
2. (i) One obvious parameter to choose is the mean A of the whole accident distribu- 
tion. Other conditions, external and internal, remaining the same A will increase 
directly as exposure time. Large values of A, which would never occur in practice, can 
tell us much about what would happen to our accident phenomena if exposure time 
were greatly prolonged. 

(ii) The early workers on the subject used the "r Ax" of (i) (p. 207) to measure the 
importance of "susceptibility". This is the same as our R_A.AV = {1r-(A/u.)}i. 
Though Newbold did not do so, they often tended to identify "proneness" with 
"susceptibility", assuming that variation in the external conditions, under which 
individual subjects worked, was negligible. "rAx" was not a very good measure to 
use, for when exposure time increases A/CA, that is the relative size of the random 
component of the variance, tends to fall and "rAA" to increase. 

A better measure to use is w = (ur -A)/A2 as was implicitly suggested by Chambers 
and Yule (1941). For this is the square of the coefficient of variation of the distribution 
of total susceptibility, and should be independent of exposure time per se. We then 
have a = A+wA2 where A is the random component. Although "rAA" is not a good 
measure to use, there is much experience of accident data to suggest that values of 
"rA" below 05 are of little use in discriminating individual variation and that values 
above 0 95 are seldom obtained. Now 

rAA= A 

Thus values of co= 1, 1,2,3,4 will be more than sufficient to cover the practical 
range; for we then have, for example, for A =04,1, 1 0 and c = 2, 1,2, 4, the following 
values of Newbold's rAx or our RA.AP. 

A 

0-1 1 10 

=i 0-218 0-577 0-913 
1 0-302 0-707 0-953 
2 0-409 0-816 0-976 
4 0-535 0-894 0-988 

(iii) The third parameter should express the magnitude of the differences between 
ur2 and r2. We take for this d = (u2 -u2)/I2 where ar2 = 0r2+ J2 = w,A2. 
3. We must now express p, a, k in terms of A, c and d. Clearly cr2/r2 = '(1 + d), 
g2/r2 ='2(1- d); so d can vary from -1 to + 1. Interchanging a and k, will give 
a new set of Waring parameters, p, k, a (p remaining the same). We proceed as 
follows. 
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214 IRWIN - Generalized Waring Distribution applied to Accident Theory [Part 2, 

From the results in Table 2 we have: 

2(+a) e2 A(k + 1) (1) 
V p-2 A p-2 

d = 
- 

(A-1)+(a-k) (2) d- 
A2 - 2(-2 

Now c = (CA -A)/crA. Substituting the values from Table 2, and from (2) above 
we find: 

a+k = wA(p-2)-(A+ 1) (3 
a-k= dwi(p-2)-(A-1)j 

Whence 
a = A{1(1 + d) c(p-2)-1} (4) 
k = A{'(1-d) c(p-2)}-1 J 

Thus 
4ak = (a + k)2-(a-k)2 

= w2A2(1 -d)2(p-2)2-2A{A(1 -d)t+ +d}(p-2)+4A (5) 
But 

4ak = 4A(p + 1) = 4A(p -2) + 4A 

and thus either p = 2, leading to a distribution with infinite variance but finite mean, 
not applicable to accident data,t or 

4 = w2A(1-d2)(p-2)-2wA(1 +d)-2w(1-d) (6) 
giving 

(p- 2) = {4+ 2wA(1 + d) +2w(1 - d)}/w2A(1 - d2) (7) 

2 2 4 
+ - 8 cu(l +d) 2A(1-d) w2A(1-d2) (8) 

and 

(P-1)= (1+d+2)( 1-d+ 2~ )(1- d2) (9) 

Thus 

a = A{2(l+ d)co9(p-2)-1} = (1+ d+2 (Io /(-d) (10) 

and 

k= {A(1-d)+-/(1?+d) (11) 

Equations 9, 10 and 11 enable us to express p, a, k as simple, single valued functions of 
A, d and co, or conversely. 

t The solution is given by Part I, equation (2), with a = (1 + d)/(1 - d), k =-(1 -d)/(1 + d) 
and o -> co, A-> oo. It is of interest as a limiting case. It is easily shown that, in this case, 
d- 0, d'-> -1 or vice versa. 
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We can now choose any value of d, for example d = i, for which or/2/2 = 0-75 and 
crA/u2-025 (where a2 = wA2) and calculate p, a, k. The result of interchanging a 
and k will yield a new value d', for which oru2(d')/a2 = '(I + d') and ur(d ')/2 ='(1-d') 
and 

2 ~ 2 
k-I-- A+--a 

di ~ co = co 2 d'=- k+1 A+a (12) 

The two forms of d' provide a check on the accuracy of the calculations. Thus we can 
compare the two solutions obtained by interchanging a and k, keeping p the same. 

This has been done for 
d= 0 1, 0 3, 0 5, 0 7, 0 9, 
co=4, 1, 2, 3, 4 

and 
A=0 1, 0-2, 05, 1, 2, 5, 10. 

It would be rare to find accident data for which A was as large as 10, but Newbold's 
1927 paper quotes a value 6-4 for A. However, consideration of the form of the 
distribution for large values of A is of interest, as showing what would happen if 
exposure time were greatly increased. 

The results are shown in Table 4. It will be observed that as A increases from 0 to 
so, d' increases from (21wa-1) to 1; that is from - (wd+ co - 2)/(wd+ co + 2) to 1. 
The lower limit is necessarily > -1. If d is positive the lower limit for d' is negative. 
Thus for some A = A0, d' = 0 and g,2(d') = U2(d') = 1U2. For A > A, d' is positive 
and both solutions give r2, > c2. The value of A0 is easily found by putting d' =0 
in (12). 

This gives 

Ao = a--= {1+d (1+-)/(1-d) (13) 

e.g. for d= i we have for co = -, 1, 2, 3, 4; Ao = 7, 5, 4, 323, 3 . The values of AO are 
also included in the tables. 

In general, the reciprocal property that interchange of a and k gives much the 
same result as the interchange of ua and uc holds approximately for a certain range of 
A in the neighbourhood of A = 1. 

It is also clear that when d' is large enough, there will be a value A1, for which 
d = d, and there is a unique solution. This happens when a = k, which gives 

A1 ((I +d)2 +}/(1-d)2 (14) 

For instance, when d-01, Cl) = 1, 1, 2, 3, 4: 

A1 = A(201, 161, 141, 1341, 130) or 2-481, 1-988, 1P740, 1-658, 1P605 

and when d-, CO=j, 1, 2, 3, 4: 

A1 = 25, 17, 13, 112k, 11. 

Thus in the neighbourhood of A1, the two solutions for o%2, oA agree without transposal. 
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Thus we have two regions in which for different reasons, there is approximately a 
unique solution. Sometimes these two regions overlap forming one region. 

Changes in the value of c for constant d and A result in relatively little change in 
the ratio uc2(d')/or(d'). This is particularly noticeable between co = 3 and co = 4. 
The regions in which the two solutions are almost the same for one reason or the 
other (allowing a difference of about 10 per cent of a2 in r2, or c2u) are: 

d 

0.1 0-3 0.5 0-7 0-9 

X 05 < 0- 1 J<5 <01 <J<10+ < 0-16AS 4 <0-1 <J<4 <0.1 -<A,<8 
and around and around and around 

A= 25 = = 22.i A = 253 

X=1 0 2 A<4 0-36A610+ 0-16A6J3 <O1 A3 <Ol1 A<6 
and around and around and around 

A= 17 A = 19- A = 217 

w=2 0-56A-64 04 zf69 0-26A62 <0O16k63 <0 1?A-<5 
8 s-A - 13 + and around and around 

A = 18-1 A = 199 

w=3 0-6s<A-4 0-56A68 0 46Ak2 0.16A,-2 <0-16A<4 
76A611 6+ and around and around 

A = 178592 A = 195 

C)4 0 6<A<3 0-66A67 0-46<A-62 0-1 <As2 <0-1 sA64 
6 6 A 6 11 + and around and around 

A = 17- AX= 189 

For low values of d, (e.g. 0 I and 0 3) the two regions overlap, forming one continuous 
region. When d = 0 5 and w = 2,3,4 the second region in which the two solutions 
are approximately the same, have a lower limit < 10 for A. When d = 0-7 and d = 0 9 
the second region lies far beyond A- = 10. In these cases the exact value of A-1 (when 
d = d') has been given above. These values of A are too high to be of much practical 
importance. What is regarded as approximate agreement is of course a subjective 
matter. The reader can form his own opinion by looking at the Tables. He will also 
notice from the tables that, when A is small, the total systematic component forms a 
very small percentage of the total variance. 
4. Thus there are considerable ranges of A-, co and d in which two solutions are in 
approximate agreement. Nevertheless, it must be admitted that, in general, for given 
a, k, p there are two distinct solutions, obtained by interchanging a and k. 

NOTE TO ACCOMPANY TABLE 4. The analyst of actual accident statistics will be able to get an 
estimate of Ai and co = (a: -A)/A-2 without difficulty. If he knows his subject matter reasonably 
well, he should sometimes be able to make at least a rough estimate of d = (r2 -o2)/(2 + 2). 
Let him assign v and A to proneness and liability, so that d is positive. Then interpolation in the 
table will give him rough estimates of a, k, p and d'. 

For complete information the values of a, k and d' for OA 00, co 00 and OdS 1 are 
sufficient. Corresponding values of d and d' lie on the part of the rectangular hyperbola 

(A--1) (1 +dd')-{A+ 1 +(2/w)} (d+d') = 0 
which lies between the points (1, -1) and (-1, 1). The hyperbola becomes a straight line 
if A = 1. It is clear from this expression that for given A and w >0, there is only one pair of 
corresponding values of d, d'. One member of the pair can be taken as positive; suppose this is d. 
Then (subject to interpolation) the table gives d', which has an overall range of -1 to 1. There 
is no need to give the table for negative as well as positive values of d. 
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1968] IRWIN - Generalized Waring Distribution applied to Accident Theory 217 

TABLE 4 

The two solutions for given A, d, co 

d = 0.1 100au/(2 - 55 100a2/a2 = 45 

C=O,a=5 6 A=o01 0 2 0 5 1 1-6 2 5 10 
2 = wA2 0-005 0 02 0-125 0 5 1-38 2 12-5 50 

ai 0-105 0 22 0 625 1P5 3 05 4 17.5 60 
2/au % 4-76 909 20 33.3 45 45 50 71P43 83-33 

k 3-718 3 800 4 045 4 455 5 5 273 7-727 11P818 
p 211-69 108-67 46843 26 245 17 15 940 9 757 7*697 
dl --0-272 -0 250 -0-189 -0-100 0 0 044 0 312 0 532 

av(d')/u % 36-42 37-50 40-54 45 50 52-18 65-62 76-60 
aA(d')/ 2 63 58 62 50 59 46 55 50 47-82 34-38 23-40 

w= 1,a=3 4 A=o-i 0-2 0 5 1 1P4 2 5 10 
-2 = A2 0.01 0 04 0-25 1 1 96 4 25 100 

sA2 011 0 24 0 75 2 3-36 6 30 110 
IaA % 909 16*67 33-33 50 58e33 66-67 8333 90 91 

k 1P900 1.982 2-227 2-636 2-964 3.455 5909 10 
p 66-444 35-134 16-342 10A080 8A292 6950 5-071 4-444 
d' -0 379 -0-342 -0-239 -0 100 0 0-102 0-421 0.636 

au(d')/u2 % 31-04 32-92 38-03 45 50 55 10 71-06 81-82 
UP(a 0% 68-96 67 08 61-97 55 50 4490 28-94 18-18 

c = 2, a = 2-3 A = 0-1 0 2 0 5 1 1-3 2 5 10 
2 = wA2 0-02 0 08 0 50 2 3*5 8 50 200 

ai 0-12 0.28 1 3 4-8 10 55 210 
2/Cj O .16*67 28 57 50 66-67 72-73 80 90 91 95 24 

k 0-991 1-073 1-318 1-727 2 2.545 5 9-091 
p 24123 13-518 7-151 5 030 4 500 3'969 3.333 3 121 
dl' -0-507 -0 447 -0-294 -0.100 0 0-154 0 500 0 703 

va2(d')a2 % 24-66 27 63 35-30 45 50 57 69 75 85-135 
2A(d')/a2 % 75.34 7237 64 70 55 50 4231 25 14 865 

c = 3, a = 1 963 A= 01 0.2 0 5 1 1 296 2 5 10 
a2 = Wj2 0-03 0-12 0-75 3 5.041 12 75 300 

al 0013 0.32 1-25 4 6-337 14 80 310 
a2/u % 23-08 3750 60 75 79.55 85S71 93.75 96S77 

k 0.688 0 770 1P015 1-424 1-667 2.242 4-697 8 788 
p 14 505 8-558 4 985 3.795 3-524 3-201 2-844 2 725 
dl --0-580 -0 507 -0-323 -0100 0 0 216 0 532 0 728 

au(d')/u2 % 21 24 66 33-84 45 50 6080 76-60 8638 
u2(d')/a2 % 79 7534 66-16 55 50 39-20 23-40 13-62 

c = 4, a = 1-7 A = 0 1 0.2 0 5 1 1.27 2 5 10 
a2 = COj2 0 04 0.16 1 4 6-53 16 100 400 

ai 0 14 0 36 1P50 5 7 81 18 105 410 
u2/au % 2857 44.44 66-67 80 83-63 88-89 95-24 97 56 

k 0 536 0-618 0-864 1-273 1P500 2-091 4-545 8-636 
p 10-529 6.493 4-072 3 263 3.087 2 859 2-616 2-535 
dl - 0-627 -0 545 -0-342 -0 100 0 0 191 0-549 0 741 

2(d')/u2 % 18 64 22 76 3292 45 50 59 56 77-46 87-03 
uX(d')/a2 % 81-36 77-24 67 08 55 50 40 44 22 54 12-97 
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TABLE 4-continued 

d = 0-03 100ur2/u2 = 65 1OOuA/u2 = 35 

=, a = 7-571 A = 041 0-2 0-5 1 2 3-571 5 10 
o2 = -A2 0-005 0.02 0-125 0-5 2 4-592 12-5 50 

orl 0-105 0-22 0 625 1-5 4 84163 17-5 60 
orI2/A2 % 4-76 9-09 20 33-33 50 56-25 71P43 83-33 
k 34131 34185 3-346 3-615 4-154 5 5-769 8.462 
p 238 05 121P56 51-671 28-374 16-725 11P600 9-736 7.407 

d'/ -0-452 -0 434 -0 380 -0-300 -0-164 0 04114 0-366 
o2(d')/u2 %? 27-38 28-31 30-98 35 41P79 50 55-68 68 30 
or2(d')/2 % 72 62 71P69 69 02 65 58-21 50 44-32 31P70 

c = 1, a = 4 714 A = 0-1 0.2 0-5 1 2 2 714 5 10 
o2 = -A2 0 01 0.04 0-25 1 4 7.367 25 100 

191 0011 0 24 0-75 2 6 10 081 30 110 
o2/,g % 9.09 16-67 33-33 50 66-67 73-08 83-33 9091 

k 1*592 1P646 1P808 2 077 2 615 3 4.231 6923 
p 76066 39-799 18-047 10-792 7-164 6*211 4.989 4-264 
dl - 0-543 -0-512 -0-425 -0300 -0106 0 0.235 0 495 

o2(d')/u2 % 2285 2442 28-76 35 44-68 50 61P76 74-76 
r2(d')/u2 % 77-15 75-58 71P24 65 55-32 50 38-24 25 24 

c = 2, a = 3-286 A = 0o1 0 2 0 5 1 2 2.286 5 10 
o2 = CA2 0.02 0-08 0-50 2 8 10-45 50 200 

orl 0012 0 28 1 00 3 10 12-73 55 210 
o2/ag l% 16-67 28-57 50 66-67 80 82-05 90-91 95-24 

k 0-823 0 877 1.038 1.308 1P846 2 3.462 64154 
p 28-041 15-408 7-821 5-298 4 033 3.875 3-275 3.022 
d ' -0-646 -0*598 -0 472 -0-300 -0-054 0 6-328 0 581 

a2(d')/a2 % 17-72 20-08 2642 35 47-30 50 66-38 79 03 
ao(d')/a2 %/ 82-28 79-92 73-58 65 52-70 50 33-62 2097 

c = 3, a = 2 810 A = 01 0.2 0 5 1 2 24143 5 10 
o2 = CA2 0 03 012 0-75 3 12 13-775 75 300 

orl 0-13 032 1P25 4 14 15-918 80 310 
o2/al % 23 08 37-50 60 75 85-71 86-54 93-75 96 77 

k 0-567 0 621 0-782 1-051 1P590 1P667 3-205 5-897 
p 33 921 9-724 5 394 3-953 3-234 3.185 2-801 2 657 
d ' -0 702 -0-646 -0-496 -0-300 -0 030 0 0-366 0-613 

a2(d')/a2 %? 1490 17-72 25418 35 48-52 50 68-30 80 67 
or2(d ')/r2% 8510 82-28 74 82 65 51-48 50 31P70 19-33 

c = 4, a = 2 571 A = 01 0-2 0 5 1 2 2-071 5 10 
o2 = wOJ2 0 04 0416 1 4 16 174163 100 400 

191 0-14 0-36 1P50 5 18 19 234 105 410 
o2/aS % 28-57 44.44 66-67 80 88-89 89-23 95-24 97 56 

k 0438 0 492 0-654 0-923 1.462 1-500 3-077 5-769 
p 12-263 7-326 4-363 3.373 2-880 2-862 2.582 2 483 
d ' -0-738 -0-675 -0-512 -0-300 -0 016 0 0-387 0 631 

a2(d')/a2 % 13-10 16-24 24-42 35 49-22 50 69-34 81-54 
ao(d')/a2 % 86-90 83-76 75-58 65 50 78 50 30 66 18-46 
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TABLE 4-continued 

d = 0 5 1OOU2/a2 - 75 100U2/a2 = 25 

=o,a=11 A=0 1 0-2 0 5 1 2 5 7 10 
U2 = OA2 0 005 0-02 0-125 0 5 2 12-5 24 5 50 

orl 0 105 0-22 0 625 15 4 17-5 31-5 60 
u2/g % 4-76 9 09 20 33-33 50 71P43 77-78 83-33 

k 2-700 2-733 2-833 3 3-333 4*333 5 6 
p 298 151-33 63-333 34 19-333 10-533 8 857 7.600 
d' - 0-622 -0-607 -0 565 -0 500 -0 385 -0-125 0 0-143 

or2(d')/r2% 18-90 19-65 21-75 25 30 75 43 75 50 57-15 
Or2 /)/r2 % 81410 80 35 78-26 75 69-30 56 25 50 42 85 

c=1,a=7 A=O01 0-2 0 5 1 2 5 10 
a2 = CA2 0-01 0 04 0 25 1 4 25 100 

orl 0 11 0-24 0 75 2 6 30 110 
u2/r %j 9.09 16-67 33-33 50 66-67 83-33 90 91 

k 1-367 1P400 1.500 1-667 2 3 4.667 
p 96-667 50 22 12-667 8 5 200 3.267 
d ' - 0-690 -0-667 -0-600 -0.500 -0 333 0 0-294 

r2(d')/u2 % 15-50 16-67 20 25 00 33-33 50 64-70 
u2(d')/u2 % 84 50 83-33 80 75-00 66-67 50 35 30 

=2,a=5 A=o i 0-2 0 5 1 2 4 5 10 
a2 = wA2 0.02 0-08 0 50 2 8 32 50 200 

orl 0-12 0-28 1P00 3 10 36 55 210 
a2/ug % 16-67 28 57 50 66-67 80 88-89 90 91 95 24 

k 0 700 0 733 0-833 1 1P333 2 2.333 4 
p 36 19-333 9*333 6 4*333 3 500 3-333 3 
d ' -0 765 -0-731 -0-636 -0.500 -0-286 0 0 100 0 400 

r2(d')/u2 % 11P76 13-46 18418 25 35 72 50 55 70 
ul(d')/u2 % 88-24 86 54 81-82 75 64-28 50 45 30 

C = 3, a = 4K3 A = 0 1 0-2 0 5 1 2 3-667 5 10 

a2 = CO-2 0-03 0-12 0 75 3 12 40 333 75 300 
aA2 0-13 0.32 1P25 4 14 44 80 310 

a2a % 23-08 37 50 60 75 8571 91P67 93 75 96-77 
k 0.478 0 511 0-611 0-778 1.111 1P667 2.111 3-778 
p 21-704 11-074 6-296 4 370 3 407 2-978 2-830 2-637 
dl --0-804 -0 765 -0 655 -0 500 -0-263 0 0.143 0-442 

a2(d')/a2 % 9-78 11-76 17-24 25 36-84 50 57-14 72-10 
a4(d')/a2 % 90f22 88f24 82f76 75 63f16 50 42-86 27-90 

c=4,a=4 A=0o1 0-2 0 5 1 2 3 5 5 10 
a2 = w/P2 0 04 0416 1 4 16 49 100 400 

al 0-14 0-36 1 50 5 18 52 5 105 410 
a2/ul % 

k 0-367 0 400 0 500 0-667 1 1 500 2 3-667 
p 15S667 9 5 3-667 3 2-714 2-600 2-467 
dl' -0-829 -0-786 -0-667 -0.500 -0 250 0 0-167 0-464 

a2(d')/a2 % 8 54 10-72 16-67 25 37 50 50 58-33 73-22 
Or2 d')Ia2 O% 91-46 89-28 83-33 75 62 50 50 41-67 26-78 
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TABLE 4-continued 

d = 0 7 lO0a2/a2 = 85 100I/cra2 = 15 

= ,a= 19 A=01 0 2 0-5 1 2 5 10 15 
2 = wA-2 0 005 0-02 04125 0 5 2 12-5 50 112-5 

191 0-105 0.22 0 625 1P5 4 17i5 60 127T5 
a2/a % 4-76 9 09 20 33-33 50 71-43 83-33 88-24 

k 2-371 2-388 2.441 2 529 2-706 3-235 4-118 5 
p 451-49 227-86 93 758 49-051 26-707 13-293 8-824 7-333 
dl --0-780 -0-771 -0 744 -0 700 -0 619 -0-417 -04172 0 

a2(d')Ia2 % 11 11P46 12-82 15 19-05 29 17 41P38 50 
aA(d')/u2 % 89 8854 87418 85 80 95 70-83 58-62 50 

C = 1, a = 12K3 A=01 0.2 0-5 1 2 5 10 10-3 
a2 = w142 0.01 0 04 0.25 1 4 25 100 106-778 

2A 0.11 0-24 0 75 2 6 30 110 1174111 
a2/a % 9.09 16&67 33-33 50 66-67 83-33 9091 91418 

k 14194 1P212 1-265 1.353 1-529 2 059 2-941 3 
p 148-26 75 740 32-203 17T687 10-429 3-612 4-627 3-581 
dl' - 0-823 -0-808 -0-766 -0 700 -0-581 -0-308 -0 015 0 

a2(d')/a2 % 8&84 9 58 11P69 15 20-93 34-62 49-26 50 
a2c(d')/a2 % 91416 90-42 88-31 85 79 07 65'38 50 74 50 

w=2,a=9 A =01 0.2 05 1 2 5 8 10 
a2 = WA2 0-02 0.08 050 2 8 50 128 200 

ai 0.12 0.28 1 3 10 55 136 210 
2/aI % 16-67 2857 50 66&67 80 90 91 9412 95 24 

k 0-606 0-624 0.676 0 765 0.941 1-471 2 2 353 
p 55 540 29-080 13-168 7 885 5 234 3-648 2-250 3-118 
dl - 0-868 -0-848 -0 790 -0*700 -0 546 -0-214 0 0 105 

a^2(d')la2 6660 7T61 10-52 15 22-72 39-28 50 55'26 
a2(d')/or2 93'40 92-39 89-48 85 77-28 60-72 50 44-74 

c=3,a = 78 A=0o 0-2 0 5 1 2 5 7T222 10 
-2 = A2 0-03 0412 0-78 3 12 75 156-48 300 

ai 0-13 0-32 1-25 4 14 80 163-70 310 
I2/rA % 23-08 37T50 60 75 85-71 93 75 95-59 96-77 

k 0-410 0-427 0-480 0-569 0 745 1-275 1-667 2-157 
p 33-344 17T843 8-573 5 489 3 939 3.012 2-821 2-702 
d' - 0-892 -0-868 -0-801 -0 700 -0-528 -0-172 0 04155 

al(d')/a2 5-42 6&60 9 94 15 23-60 41-38 50 57T76 
aA(d')2 % 94 58 93 40 90-06 85 76-40 58 62 50 42-24 

c=4,a=7K3 A=01 0-2 0 5 1 2 5 6 833 10 
a2 = wA2 0 04 0416 1 4 16 100 186-778 400 

aA2 0-14 0-36 i 50 5 18 105 193-611 410 
a2IA r% 28-57 44-44 66&67 80 88&89 95-24 96-47 9756 

k 0-312 0-329 0-382 0-471 0-647 1-176 1-500 2 059 
p 23-880 13-063 6-603 4.454 3-372 2 725 2-610 2-510 
d' - 0-906 -0-880 -0-808 -0 700 -0-518 -0-149 0 0-183 

a2(d')/r2 % 4-71 5-98 9 58 15 24410 42-57 50 59-14 
a2(d')/g2 % 95-29 94-02 90-42 85 7590 57.43 50 40-86 
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TABLE 4-continued 

d = 0 9 100a2/u2 = 95 1002/u2 = 5 

w =ji, a = 59 A=0o- 0.2 05 1 2 5 10 55 

o2 = CA2 0-005 0-02 0-125 0 5 2 12.5 50 1512'5 
al 0-105 0-22 0 625 1P5 4 17-5 60 1567.5 

a2/a2 % 4-76 9 09 20 33-33 50 71P43 83-33 9650 
k 2-111 2*116 2*132 2.158 2-211 2-368 2-632 5 
p 1246*49 625*22 252*58 128-32 66*225 28-942 16-529 6.364 
d' --0*929 -0-926 -0-916 -0*900 -0-869 -0-781 -0 652 0 

a2(d')/u2 % 3 56 3.72 4 20 5 656 10-94 17-39 50 
A2(d')/a2 % 96f44 96f28 95 80 95 93 44 89-06 82f61 50 

C = 1, a = 39 A = 01 0.2 0 5 1 2 5 10 37 
o2 = WJ2 0.01 004 0 25 1 4 25 100 1369 

ar 0411 0-24 0 75 1 6 30 110 1406 
or 2/a % 9.09 16 67 33-33 50 66-67 83-33 9091 9737 

k 1*058 1*063 1*079 1*105 1-158 1P316 1P579 3 
p 413*62 208*28 85-162 44 095 23-581 11P265 74158 44162 
dl --0 944 -0939 -0-924 -O0900 -0 854 -0-727 -0*551 0 

o2(d')/a2 % 2-82 3-06 3.80 5 7.32 13-64 2245 50 
a2(d')/g2 % 97-18 96-94 96-20 95 92-68 86-36 77 55 50 

w=2, a = 29 A= 01 0.2 0 5 1 2 5 10 28 
a2 - CA2 0.02 0-08 0*50 2 8 50 200 1568 

orl 0.12 0.28 1 3 10 55 210 1596 
a2/la % 16-67 28 57 50 66-67 80 90 91 95 24 98-25 

k 0*532 0*537 0*553 0*579 0.632 0 790 1P053 2 
p 155416 78-836 33-051 17-788 10-158 5 579 4 053 3.071 
d ' --0-959 -0 952 -0*932 -0 900 -0-839 -0-676 -0-462 0 

o2(d')/a2 % 2-06 2.40 3 39 5 8.06 16-18 26-92 50 
u2(d')/u2 % 97.94 97T60 96-61 95 91-94 83-82 73-08 50 

w = 3, a = 25 6 A = 01 0.2 0 5 1 2 5 10 25 
a2 = wA2 0-03 0412 0.75 3 12 75 300 1875 

191 0-13 0.32 1-25 4 14 80 310 1900 
( 2/,gl % 23-08 37T50 60 75 85-71 93-78 96-77 98&68 

k 0356 0-361 0377 0*404 0*456 0*614 0.877 1-667 
p 92-399 47T380 20*363 11*357 6*853 4*152 3-251 2.711 
dl' - 0-966 -0 959 -0-936 -0-900 -0-831 -0 652 -0-421 0 

a2(d')Ia % 1P68 2-06 3-18 5 8A44 17T39 28-97 50 
A(d')/o- % 98-32 97-94 9682 95 91P56 82-61 71P03 50 

w=4,a=24 Af=01 0-2 0 5 1 2 5 10 23 5 
a2 = WJ2 0 04 0.16 1 4 16 100 400 2209 

2A 0-14 0.36 1P50 5 18 105 410 2232 5 
a2lal% 28&57 44-44 66-67 80 88&89 95 24 97T56 98&95 

k 0.268 0.274 0-290 0.316 0-368 0 526 0 790 1P500 
p 65-416 33-844 14-896 8*579 5.421 3*526 2 895 2 532 
d' --0-971 -0-963 -0939 -0-900 -0-827 -0-638 -0397 0 

a2(d')/a2 % 1P45 1.86 3.06 5 8&66 18-10 30-14 50 
a2(d')/a2 % 98&55 98414 96-94 95 91-34 81-90 69-86 50 
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The statistician will usually know from studying the data in various ways whether 
the proneness or the liability component should be the greater, and in certain ranges 
of A particularly in the neighbourhood of A = 1, it will not matter greatly which 
solution he chooses. However, if the model is valid (which of course involves the 
assumption that one or other of the components does represent accident proneness 
or liability), the following method should, given good enough data, enable him to decide 
which solution is the correct one. He can divide up the exposure period into several 
sub-periods and fit the Waring distribution separately to the first sub-period, the 
first two sub-periods and so on, cumulatively. As these cumulative sub-periods 
increase A will increase. This process will give him for each cumulative sub-period 
and the whole period the values of d and d'. For one of the two choices of a and k, 
d will be positive. Take U2(d) = 2(1 +d), uA(d) = F(1 - d) for this choice; and then 
find the corresponding values of d'. If d is the correct solution, d should, apart 
from sampling errors, remain constant while d' should increase-and vice versa. 

The problems of estimation will not be considered here, but a few remarks may 
not be out of place. The sampling errors of this method, for some of the studies 
made in the past, might well be considerable. It is conjectured that it would be better 
to make estimates of A, and c from the estimates of a, k, p by using the formulae 
given in Part I, Table 2, rather than from the observed A and U2, where the two sets 
differ. d can be estimated from equation (10) or (11) (and the results will agree) and 
d' from equation (11). Judging from experience of accident data in the past, it should 
be reasonably efficient to estimate a, k, p from the first three factorial moments. This 
will be computationally more convenient than using ordinary central moments, but 
will give the same answer. The maximum likelihood solution could, if necessary, be 
examined. 
5. Certain limiting forms of the Waring distribution are of interest in connection with 
the model considered. 

If k-> oo and p -> oo so that qk = k/(k + p) remains constant the generalized Waring 
tends to the negative binomial 

IPtk Pk) 
In the case considered here 

a+k wA(p-2)-(A+1), 

ak-A(p-1), (16) 

a-k- dwA(p-1)-(Ai-1).) 

If p->oo, A remaining finite 
then 

(a+k) - wAp (i), 

(a-k) -dwjAp (ii), (17) 

(ak) -ip (iii).J 

Thus either a->oo or k-+oo. Suppose k-> oo then from (i) and (iii) a = lco and 

k WA 1 
qk e%'rCOJ+ and Pk ~ J+ 1 (18) 

This content downloaded from 195.251.235.181 on Wed, 8 Oct 2014 07:55:45 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1968] IRWIN - Generalized Waring Distribution applied to Accident Theory 223 

So for large p the Waring distribution takes the negative binomial form 

(wcA + 1 -A )i (19) 
In this case, from (ii), k -dcdA p; so we must have d-> -1. Conversely if d-> -1, from 
(ii) k -> oo. Similarly if and only if d-> + 1, a -> oo and the Waring distribution becomes 
the negative binomial. 

If A -> oo we have 
k-oo 

1 + d + (2/wo) 
1-d 

12 + d+ (2/co) (20) 

So the distribution becomes, formally, C(1 - )-a where ultimately C is an infinite 
constant. We may write this (K+ 1- KO)-a where K-> oo and all terms in this dis- 
tribution -> 0. So the distribution has an infinitely long tail. 

Since aK = A, the limiting form of the distribution for very large A is 

(1 +4_4w 
aa 

with variance 
A2 

a 
where 

a= (1+d+ 2)/(1 +d). 

There are certain limiting forms as A ->0, but as no accidents can give no informa- 
tion on susceptibility, these are not discussed here. 
6. Even if the Waring distribution fitted the data, the model might under certain 
circumstances fail. Every frequency in the Waring distribution is a function of (a + k) 
and ak. So any reasonable method of estimation must in fact estimate (a + k) and ak; 
a and k are then obtained from a quadratic equation. Conceivably the estimate of a 
or k or both might turn out to be real and negative. We may dismiss this case, 
because with one exception, even it could possibly occur, some of the fitted frequencies 
would be infinite or negative and the distribution could not be said to fit the data. 
The exception is when a = k = - y where y > 0. In this case the series converges, (for 
p = {1 + A/ak} > 0) but on our model we should have 

d d' = (2/) 0 
a+1 

which gives a = (1 +2/wo) > 0, a contradiction. So here too the model would fail. 
But the estimates of a and k might turn out to be complex conjugates a = o+ ip 

and k = ax - i. In this case every frequency in the Waring distribution is real and 
positive and the series still converges, for p is still real and > 0. 

The properties of this generalization of the Waring distribution have not so far 
been studied. Its continuous analogue is presumably Pearson Type IV; but if it fitted 
the data, the model would fail because d, d', U2, uJ2 would be complex quantities. 

This content downloaded from 195.251.235.181 on Wed, 8 Oct 2014 07:55:45 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


224 IRWIN - Generalized Waring Distribution applied to Accident Theory [Part 2, 

I do not know whether, for the Generalized Waring Distribution, the sub-division 
which I have given of a2 into two independent components is unique. One margin of 
the (v, A) distribution is assumed to be Type VI and the arrays Type III. Suppose, for 
definiteness, that this is the v margin; the other margin is then of more complex form. 
Other sub-divisions might be possible but then the distribution of A v? e would not, 
I think, be negative binomial. 

Again, the v distribution might have any form and so might the A v distribution, 
the other margin (A distribution) would then be determined. The resulting distribution 
of accidents would not (in general) then have the Waring distribution form and the 
distribution of A v+ E would not in general be negative binomial. 
7. It may be emphasized once more that accident proneness means the sum total of 
the internal factors in the individual, predisposing towards accidents, liability on the 
other hand means the sum total of external factors. It does not by any means follow 
that an individual's proneness remains the same for the whole of his lifetime. This is 
a matter for research and analysis of accident records. Some writers have supposed 
that the term proneness implies constancy throughout life and criticized it accordingly. 
This seems to me like trying to knock down a skittle which they have erected them- 
selves. I have said elsewhere (Irwin, 1964) that I believe that proneness does play a 
small but important part in the causation of accidents. 

Anyone who believes in the classical accident theory at all will admit that ar + ay 
represents susceptibility but the mathematics alone cannot tell us that AA represents 
proneness and uv2 liability (or vice versa). By his knowledge of the survey and by 
methods of analysis involving sub-division of his subjects into sub-groups with 
different exposure conditions (e.g. exposure time, heating, lighting, ventilation, kind 
of task performed, danger of the machinery used etc.) the analyst may be able to get 
an independent estimate of the liability component. No doubt it would be harder to 
get an independent estimate of the proneness component but maybe this could some- 
times be done by using aesthetokinetic tests (dotting, reaction times etc.) such as 
Farmer and Chambers (1939) used. If one component can be independently estimated, 
the other follows by subtraction. 

In this paper a new method has been suggested which envisages the possibility of 
estimating the importance of accident proneness and liability separately, in the study 
of individual accidents. It is little more than a survey of the field. However, it is a 
field which seems to me worth exploration by young and energetic researchers. In 
particular the method should be tried out with bodies of data as extensive as possible- 
for which I regret I have not the time or facilities. It is with these hopes that I am 
publishing this study. 
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