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Abstract

Overdispersion models for discrete data are considered and placed in a general framework. A distinc-
tion is made between completely specified models and those with only a mean-variance specification.
Different formulations for the overdispersion mechanism can lead to different variance functions which
can be placed within a general family. In addition, many different estimation methods have been pro-
posed, including maximum likelihood, moment methods, extended quasi-likelihood, pseudo-likelihood
and non-parametric maximum likelihood. We explore the relationships between these methods and ex-
amine their application to a number of standard examples for count and proportion data. A simple
graphical method using half-normal plots is used to examine different overdispersion models. © 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

In applying standard generalized linear models it is often found that the data
exhibit greater variability than is predicted by the implicit mean-variance relationship.
This phenomenon of overdispersion has been widely considered in the literature,
particularly in relation to the binomial and Poisson distributions. Failure to take
account of this overdispersion can lead to serious underestimation of standard errors
and misleading inference for the regression parameters. Consequently, a number of
models and associated estimation methods have been proposed for handling such data.
For binomial data, Collett (1991) gives a good practical introduction to some of these
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methods, following the work of Williams (1982, 1996). Overdispersed Poisson data
are discussed, for example, in Breslow (1984) and Lawless (1987). More general
discussions of overdispersion are also to be found in McCullagh and Nelder (1989)
and Lindsey (1995).

There are many different specific models for overdispersion, which arise from al-
ternative possible mechanisms for the underlying process. We can broadly categorise
the approaches into the following two groups:

(i) Assume some more general form for the variance function, possibly including
additional parameters.

(ii) Assume a two-stage model for the response. That is, assume that the basic
response model parameter itself has some distribution.

Models of type (i) may not correspond to any specific probability distribution
for the response but may be viewed as useful extensions of the basic model. The
regression parameters can be estimated using quasi-likelihood methods with some ad
hoc procedure for estimating any additional parameters in the variance function. An
example of this is the use of a heterogeneity factor in overdispersed binomial data.

Type (ii) models lead to a compound probability model for the response and, in
principle, all of the parameters can be estimated using full maximum likelihood. A
standard example is the use of the negative binomial distribution for overdispersed
count data. However, in general, the resulting compound distribution takes no simple
form and approximate methods of estimation are often used. A variant of the second
approach, that removes the need to make any specific assumptions about the second
stage distribution, is to use non-parametric maximum likelihood (NPML) estimation
of the compounding distribution, as advocated by Aitkin (1995, 1996).

In Section 2 we consider models for overdispersed binary data and introduce the
various methods of estimation. The use of these is illustrated on two standard exam-
ples. In Section 3 we introduce models for overdispersed count data. More complex
models for overdispersion are discussed in Section 4. Finally, in Section 5 we use a
simple graphical procedure for diagnostic assessment of overdispersed models.

2. Binary data
2.1. Models and estimation

In studying a binary response suppose that the random variables Y; represent counts
of successes out of samples of size m;, i = 1,...,n. If we write E[Y;] = p; = mim;,
then a generalized linear model allows us to model the expected proportions 7; in
terms of explanatory variables x; through

g(m;) = I‘,xi,

where g is some suitable link function and § is a vector of p unknown parameters.
The usual error specification is ¥; ~ Bin(m,, w;) with variance function

Var(Y;) = mym(1 — 7). (1)
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However, when overdispersion is present the variance will be greater than this. In
the following sections we will consider various generalizations of this basic variance
function in terms of the two approaches outlined in Section 1.

2.1.1. Constant overdispersion
The standard quasi-likelihood approach, which requires only the specification of
the first two moments, replaces (1) by

Var (1)) = ¢pmmi(1 — 7). (2)

The constant overdispersion factor ¢ is estimated by equating the Pearson X? statistic
from a binomial fit to its degrees of freedom (McCullagh and Nelder, 1989). The
estimates for the linear predictor parameters are the same as those for the binomial,
although the standard errors will be inflated by the overdispersion factor. This is the
heterogeneity factor model, see Finney (1971).

2.1.2. Beta-binomial variance function (Williams type II)

Adopting a two-stage model, if we assume that ¥; ~ Bin(m;, P;), where the P;’s
are now taken as random variables with E(P;) = n; and Var(P;) = ¢n,(1 — 7;) then,
unconditionally, we have

E(Y;) = mim;
and
Var(Y;) = mm(1 — m;)[1 + ¢(m; — 1)]. (3)

A special case of this is the beta-binomial distribution, which is obtained by
assuming that the P;’s have Beta(w;, f;) distributions with a; + f; constant. For
the beta-binomial distribution full maximum likelihood estimation is possible, see
Crowder (1978). Instead of using the full form of the beta-binomial likelihood it is
also possible to use estimation methods based on just the first two moments. This
removes the problem of specifying a particular distribution for the P;’s.

Nelder and Pregibon (1987) consider an extension of the quasi-likelihood model
in which the variance is now specified as Var(Y;) = ¢,V (1), where both ¢; and
the variance function ¥(-) may depend upon additional parameters. For observed re-
sponses y;, i = 1,...,n, to estimate the unknown parameters in the mean and variance
models they propose maximising the extended quasi-likelihood (EQL) function

Z {D SLINE (2n¢,~V(y,-))} ,

where D is the deviance function

#(y—t)
V(1)

¥y

For the beta-binomial model we can take the variance function V' (y;) as w;(1—p;/m;),
the usual binomial variance function, and ¢; = 1 + ¢(m; — 1) giving a deviance
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function, D, identical to that for the binomial model. Maximizing Q% over the regres-
sion parameters B gives a set of weighted binomial estimating equations with weights
1/¢; = 1/[1+ ¢(m; — 1)]. These are the quasi-likelihood equations for a known value
of the overdispersion parameter ¢. For the estimation of ¢ we need to solve

The second form of this equation shows that we can obtain an estimate for ¢ by
fitting a gamma model using the deviance components as the y-variable, an iden-
tity link and taking the linear model to have a fixed intercept (offset) of 1 and
m; — 1 as the explanatory variable. An approximate standard error is obtained for
¢ by setting the scale to 2, corresponding to modelling x? responses (McCullagh
and Nelder, 1989). We iterate between these two sets of estimating equations for f
and ¢ until convergence, giving parameter estimates and standard errors, which are
correct because of the asymptotic independence of E and ;j;

Brooks (1984) suggests a mixed strategy in which quasi-likelihood estimation for
B is combined with maximum likelihood estimation for ¢. This involves replacing the
above estimating equation for ¢ by the beta-binomial likelihood score equation, with
B set equal to its current estimate. This equation is easily solved using a Newton—
Raphson-type iteration, although it may be necessary to reduce the step length to
avoid divergence or values outside of the feasible region for ¢. In practice, this
approach seems to give estimates for (f, ¢) which are very close to the full maximum
likelihood estimates. They will not be exact maximum likelihood estimates, as for
fixed ¢ the beta-binomial distribution is not in the exponential family and so the
quasi-likelihood estimates for § with the beta-binomial variance function do not
exactly maximize the beta-binomial likelihood.

An alternative to extended quasi-likelihood is the pseudo-likelihood (PL) approach
of Carroll and Ruppert (1988). Here estimates of B arc obtained by generalized
least squares, which if iterated is equivalent to quasi-likelihood estimation for given
values of ¢;. The estimation of additional parameters in the variance is based on the
maximization of

i=1

n

- IOy o
i 22:1:{ M) +1°g(2”¢xV(u,))}.

This is of the same form as Q" but with the deviance increments replaced by the
squared Pearson residuals and V(y;) by V(u); it corresponds to a normal likelihood
function for the residuals. For the beta-binomial distribution the estimating equation
for ¢ is

- (yi_ﬂi)z_ d108(¢i)_ “ ri2_¢i %_
E{«biV(m 1} d¢ ‘Z{ & }d¢”°’

i=1 i=1

where r; = (y; — t:)/v/V (), the unscaled generalized Pearson residuals. This equa-
tion can be solved in the same way as the EQL estimating equation by fitting a
gamma model to the squared Pearson residuals.
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Another possibility, discussed by Moore (1986), is to use a simple moment method,
replacing the pseudo-likelihood estimating equation for ¢ by the following unbiased
estimating equation

n 2

Z{(yi_ﬂi) ~ 1} o

= | &V (w)
This moment method corresponds to solving X2 = n, where X? is the generalized
Pearson y2-statistic. A variant of this is to solve X2 = n — p, where p = dim(B),
which amounts to a degrees of freedom correction for the parameters in the regression
model for the mean. This equation can be solved iteratively using either Newton—
Raphson or fixed-point type methods. In an early paper on overdispersed binomial
models, Williams (1982) proposes estimating ¢ by solving X2 = E[X?], which gives
simple one-step update for ¢. On iterating this with quasi-likelihood estimation for
we obtain the same estimates as the degrees of freedom corrected moment method,
since on convergence E[X?] =n — p.

For the case in which all of the sample sizes are equal to m, the beta-binomial
variance function (3) reduces to constant overdispersion, as in (2). The weights in
the quasi-likelihood estimating equations for B are all constant and so these equations
reduce to those for the standard binomial model. The estimation of ¢ is also greatly
simplified as dlog(¢;)/d¢ = (m — 1)/[1 + ¢(m — 1)] is now constant. Thus, EQL
reduces to equating the binomial model scaled deviance to n, while PL uses the Pear-
son X? as in Moore’s method. In the case of unequal sample sizes it can be seen that
the moment method is essentially a weighted version of the PL estimating equation.
This suggests that a similar approach may also be taken in EQL, equating the scaled
deviance to n, although the resulting equation is not unbiased as E[D(y;, i;)] # ¢.
To take account of the estimation of B it is possible to apply a degrees of freedom
correction to EQL and PL by including the factor (n — p)/n before the second term
in the expression for Q" or P, see McCullagh and Nelder (1989, p. 362).

A conceptually different model for overdispersion is to assume that the individual
binary responses are not independent. Assuming a constant correlation p leads to a
model for the Y; with

E[Y]=mm and Var(Y;)=mm(l — )1+ p(m; — 1)],

which is of exactly the same form as (3). However, it is now possible for p to
be negative (—1/(mu) — 1) < p < 1) corresponding to underdispersion. Using the
mean-variance specification this model is fitted precisely as above. It is also possible
to extend the beta-binomial distribution to handle underdispersion (Prentice, 1986).

2.1.3. Logistic-normal ( Williams type III) and related models

The beta-binomial model assumes that the P; have a beta distribution. Another
possibility is to assume that the linear predictor, #;, has some continuous distribution.
If this distribution is taken to be in the location-scale family then this corresponds
to including an additive random effect in the linear predictor and we can write

n: = B'x; + oz,
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where z; is assumed to be from the standardized form of the distribution. Most
commonly z is taken to be normally distributed leading to the logistic-normal and
probit-normal models. The probit-normal has a particularly simple form as the indi-
vidual binary responses can be considered as arising from a threshold model for a
normally distributed latent variable, see McCulloch (1994). A general approach to the
estimation of models of this type is to use the EM-algorithm with Gaussian quadra-
ture to integrate over the normal distribution, following the same approach given by
Hinde (1982) for the Poisson distribution. Williams (1982) shows that, for small
values of g, the logistic-normal model can be approximated by a quasi-likelihood
model with a variance function of the form

Var(Y;) = mm(1 = m)[1 + *(m; — Dm(1 — m)], (4)

which he refers to as type IIIl. EQL, PL and moment methods can be used for the
estimation of ¢? taking ¢; = 1 + o?*(m; — 1)m,(1 — m;).

Aitkin (1995, 1996) replaces the assumed distributional form for z by a discrete
mixing distribution. The computation again involves an EM-type algorithm in which
the mixing distribution is assumed to be a discrete distribution on a specified number
of points and the weights and points for the quadrature become additional parameters
in the model. This results in a non-parametric maximum likelihood (NPML) estimate
of this distribution together with the regression parameter estimates.

2.1.4. A general variance function
The various variance functions considered above can be seen to be special cases
of the following general form

Var (1)) = ma(1 — ) [1+ $0m; — 1) {m(1 — m)}*]. (5)
The standard binomial model corresponds to ¢ = 0; ; = 6, = 0 gives the constant
overdispersion model; 6, = 1, 4, = 0, the beta-binomial variance function, and

01 = 8, = 1, the Williams type III model. A set of GLIM4 macros (Hinde, 1996)
allows the fitting of overdispersed binomial data with a variance function Var(Y;) =
m;m,(1 —m)[1+ ¢ f(m;, m;)], where f is a function specified by the user. Hence, the
above general form can be used for specified values of 4, and J,.

2.2. Examples

Here we will consider the application of the various methods described above to
several standard examples from the overdispersion literature. This extends the com-
parison by Liang and McCullagh (1993), who only consider constant overdispersion
and the beta-binomial-type variance function.

2.2.1. Orobanche germination data

Crowder (1978) presents data from a study of the germination of two species of
Orobanche seeds grown on 1/125 dilutions of two different root extract media (cu-
cumber or bean) in a 2 x 2 factorial layout with replicates, see also Collett (1991).
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Table 1
Orobanche data: deviances with overdispersion estimated from maximal model
Binomial Constant Beta-binomial
Source d.f. ML QL ML EQL PL
Extract | Species 1 56.49 30.34 32.69 31.68 31.37
Species | Extract 1 3.06 1.64 2.88 2.84 2.85
Species.Extract 1 6.41 3.44 4.45 4.40 4.62
é 1.862 0.012 0.013 0.013
Beta-binomial Logistic-normal
Source d.f. Moment? EQL® PL? Moment? ML
Extract | Species 1 22.95 24.67 24.76 21.49 31.33
Species | Extract 1 2.64 2.69 2.72 2.54 2.85
Species.Extract 1 3.54 3.72 3.98 3.52 4.44
é 0.025 0.022 0.021 — —
¢ — — — 0.108 0.056

(df corrected).

The data consist of the number of seeds and the number germinating for each repli-
cate. Interest focusses on the possible differences in germination rates for the two
types of seed and root extract and whether there is any interaction. Table 1 presents
results for different models and estimation methods with the overdispersion parame-
ter estimated from the interaction model and fixed for all sub-models. An alternative
strategy is to re-estimate the dispersion parameter for each model; this is considered
later. Note that the overdispersion parameter estimates are not all comparable as they
relate to different overdispersion models.

The residual deviance for the interaction model using the standard binomial fit is
33.28 on 17 df, giving strong evidence of overdispersion. Using a constant overdis-
persion model and quasi-likelihood gives a non-significant interaction term (deviance
= 3.44), with extract as the only important factor (deviance = 30.34). The conclu-
sions are less clear cut for the other overdispersion models with the interaction being
marginally significant. For the beta-binomial variance function the only real differ-
ences between the estimation methods are whether we use the degrees of freedom
correction or not; without any correction the EQL and PL results are very simi-
lar to the maximum likelihood fit (ML) and, indeed, using an uncorrected moment
method also leads to very similar estimates. The slight difference between the de-
grees of freedom corrected moment and PL methods is due to the different forms
of weighting in the estimating equation for ¢. The sample sizes here vary from 4
to 81 giving weights which vary by a factor of 10 for a typical value of ¢, al-
though the impact on the final estimate is slight. Interestingly, if we parameterize
the constant overdispersion model as 1 + y(7 — 1), where the mean sample size
is m = 39.6, we obtain 7 = 0.022, which is very close to the degrees of freedom
corrected estimates for the beta-binomial variance function. The differences between
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the maximum likelihood and moment method fits for the logistic-normal can also be
attributed to the degrees of freedom correction. Notice that, as the fitted proportions
for the Species*Extract model are not extreme (from 0.36 to 0.68 with overall
proportion 0.51) the results from using a logistic-normal variance function (4) are
very similar to those using a beta-binomial form (3) — for all fitted proportions 7#;,
the logistic-normal moment estimates give 6°7,(1 — #;) &~ 0.025, the estimate of ¢
under the beta-binomial model.

Comparing the beta-binomial and binomial models the change in deviance for the
additional parameter is 2.34 on 1 degree of freedom giving no evidence for the
beta-binomial overdispersion function. Nelder and Pregibon (1987) make a similar
observation in considering the EQL fit. Liang and McCullagh (1993) conduct a
formal test between the constant overdispersion and beta-binomial overdispersion
models and are unable to choose between them. The same conclusion results from
using the general form of the variance function introduced above and looking at the
profile likelihood for é; with §, = 0.

There is considerable confusion about residual deviances for overdispersion mod-
els. In general, these provide no information about the fit of the model, because of
the estimation of the overdispersion parameters. Deviances for the beta-binomial and
logistic-normal models are often given with respect to a binomial saturated model
and, while this is a useful device for comparisons with the standard binomial model,
it does not provide a goodness of fit measure. For the beta-binomial family it is pos-
sible to calculate a true deviance for a fixed value of the overdispersion parameter,
but when the parameter is estimated, not surprisingly, this always seems to result in
values close to the degrees of freedom.

Using the NPML approach the mixing distribution is considered as a nuisance
parameter and estimated for each model. Table 2 compares the deviance differences
from this model with results from other overdispersion modelling methods when
the overdispersion parameter is re-estimated for each submodel. The results are all
similar. For the interaction model the NPML fit gives a two-point mixing distribution
with a variance of 0.08, comparable to the variance estimate of 0.056 for the logistic-
normal fit. A plot of the component probabilities against the binomial model residuals
shows a strong monotonic relationship, indicating that the mixing distribution is
picking up overdispersion.

It is interesting to note that the results from Tables 1 and 2, for using a fixed
overdispersion parameter or re-estimating it in each model, are fairly similar. Al-
though, as would be expected, all of the deviance contributions are reduced in Table 2

gjg:arfche data: deviances with overdispersion re-estimated for each model

Logistic Beta-binomial
Source NPML normal ML EQL PL
Extract | Species 12.92 15.26 15.44 15.08 15.78
Species | Extract 1.98 2.70 2.73 2.70 2.73

Species.Extract 422 4.15 4.13 4.10 434
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Table 3

Trout egg data

Location Survival period (weeks)

in stream 4 7 8 11

1 89/94 94/98 77/86 141/155
2 106/108 91/106 87/96 104/122
3 119/123 100/130 88/119 91/125
4 104/104 80/97 67/99 111/132
5 49/93 11/113 18/88 0/138

Table 4
Trout egg data: deviances with overdispersion estimated from maximal model
Binomial Constant Beta-binomial

Source d.f. Logit CLL CLL Logit CLL
Loc | Time 4 849.1 853.8 184.1 158.6 178.6
Time | Loc 3 164.1 168.8 36.4 314 35.9
Residual 12 64.5 59.8

é 4.64 0.038 0.033

as the overdispersion parameter estimate increases to account for the extra-variation
of the omitted term. The fixed strategy seems more sensible and is analogous with
the usual procedure for the normal model. Our primary interest will usually be in
the fixed effects model and if possible we would like to obtain an estimate of pure
overdispersion - this is available from the maximal model.

2.2.2. Trout egg data

Manly (1978) considers the analysis of data on the survival of trout eggs. Boxes
of eggs were buried at five different locations in a stream and at four different times a
box from each location was sampled and the number of surviving eggs were counted.
The data are presented in Table 3 as proportions s/n, where s denotes the number
of survivors and » the number of eggs in the box.

In his original analysis of this data, Manly used a log—log link function for the
probability of surviving, which we reproduce here by using a complementary log—log
link (CLL) for the probability of death. In Table 4 we present deviance contributions
for the two factors in several models. The residual deviance for the binomial logit
model is 64.5 on 12 df, while that for the CLL model is 59.8 indicating a slight
preference for this link. The results for the beta-binomial variance function are based
on moment estimation.

The large amount of overdispersion present here has a clear impact on the effect
deviances, although both effects remain significant in all of the models. For the
beta-binomial variance function with complementary log—log link we have a slightly
smaller estimate of the overdispersion parameter and correspondingly larger deviance
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differences for the effects. We will return to the comparison of these models in
Section 5. The other point to note here is the great similarity for the complementary
log-log link of the constant overdispersion and beta-binomial deviances. This is
because the sample sizes here are relatively large and not too different (ranging from
86 to 155 with mean 111). If we parameterize the constant overdispersion model as
1+9y(m— 1), where m is the mean sample size, we obtain $=0.033, exactly the same
as in the beta-binomial model. Because of the large and relatively similar sample
sizes the other estimation approaches for the beta-binomial variance function give
similar results.

The NPML approach gives a less satisfactory answer here with components picking
off the observations with extreme observed proportions.

3. Overdispersion models for count data
3.1. Models and estimation

We now assume that the random variables Y;, i = 1,...,n, represent counts with
means ;. The standard Poisson model assumes that Y; ~ Pois(y;) with variance
function

Var(Y;) = p;. (6)

When there is overdispersion we need to consider variance functions which predict
greater variability. A simple constant overdispersion model replaces (6) by

Var (¥;) = du; (7)

and estimation proceeds by quasi-likelihood as for the binomial.

3.1.1. Negative binomial type variance

A two-stage model assumes that Y; ~ Pois(6;) where the 0;’s are random vari-
ables with E(8;) = u; and Var(6;) = ¢2. Unconditionally, we have E(Y;) = y; and
Var(Y;) = p; + 6?2 giving an overdispersed model. Further, if the 6,’s are assumed to
have a constant coefficient of variation, g2, we have Var(Y;) = p;+02u?2, a particular
form of quadratic variance function. For a fully specified model, a common assump-
tion is that the 8; follow a I'(k, A;) distribution which leads to a negative binomial
distribution for the Y; with E(Y;) = k/A; = y; and

Var(Y,) = p + p/k. (®)

Maximum likelihood estimation for the negative binomial distribution is relatively
straightforward as for fixed values of & the distribution is in the linear exponential
family and estimates for regression parameters B can be obtained using the standard
iteratively re-weighted least-squares (IRLS) algorithm for generalized linear models.
To estimate k we can use Newton—Raphson for the score equation and cycling
between the estimation of § and & we obtain the joint maximum likelihood estimates.



J. Hinde, C.G.B. Demétrio! Computational Statistics & Data Analysis 27 (1998) 151-170 161

The asymptotic independence of ﬁ and k means that the standard errors for B from
the IRLS fit are correct, see Lawless (1987) for details.

Using EQL for the negative binomial variance function presents some ambigu-
ity due to different factorizations of Var(Y;) = ¢;¥(u;). Three obvious possibilities
are

() =1, V() = i + B /k;
(i) ¢ =1+ w/k, V() = ws;
(i) ¢ = m + pi/k, V() = 1.

In principle, all of these lead to different estimating equations for B, defining
different iterative schemes. On convergence these all give the same estimates and
the sensible approach is to use quasi-likelihood with the negative binomial variance
function. For the estimation of k things are not so simple and the different formu-
lations will lead to different estimates. Using (i) leads to an estimating equation for
k similar in form to the negative binomial score equation. In cases (ii) and (iii)
the parameter k appears in the scale parameter and gamma estimating equations are
obtained. In (ii) Poisson deviances are used as the y-variable, while in (iii) we use
Poisson Pearson residuals and this corresponds to pseudo-likelihood with estimating
equation

= w) dlog(1+ w/k)
g{ui(lwi/k)_l} T

Here the simple moment method gives the unbiased estimating equation

n 2

Z (i — ) _ l} —0.

= | w1+ wi/k)
This is the form used by Breslow (1984) although he incorporated a degrees of
freedom correction. This equation is easily solved for k£ using a fixed-point method
or Newton—Raphson. Breslow uses this together with weighted Poisson regression
for the estimation of B with weights 1/(1 + ﬁi/lz), where ji; and k are obtained from
the previous iteration. Use of the correct negative binomial variance function is more
efficient. Note again the link between the pseudo-likelihood and moment methods;
if the weights in the pseudo likelihood, dlog(1 + w;/k)/dk = —(w;/k®)/(1 + pi/k),
are approximately constant the estimating equations will be the same. This will be
true if k£ is small, corresponding to a large degree of overdispersion, or if all of the
means y; are large.

Note that by assuming a different form for the gamma mixing distribution we
can obtain different overdispersed Poisson models. For example, taking a I'(r;, A)
distribution leads to Var(Y;) = w; + t:/A = ¢u;, the constant overdispersion model.
However, the resulting distribution for ¥; is not in the exponential family and so the
quasi-likelihood estimates are not maximum likelihood for this distribution (Nelder
and Lee (1992) give details of maximum likelihood estimation). In the same way, for
the binomial distribution, by assuming that different functions of the beta distribution
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parameters, o; and f;, are fixed, we obtain different compound distributions with
different variance functions.

3.1.2. Poisson-normal and related models

Proceeding as for the binomial model we can also consider including a random
effect in the linear predictor. Using a Poisson log-linear model and a normally dis-
tributed random effect leads to the Poisson-normal model, see Hinde (1982) for
details of maximum likelihood estimation. The variance function for this model is
of the form Var(Y;) = w + k’u?, that is, the same as for the negative binomial
distribution. In fact, with a log-link function and an additive random effect in the
linear predictor, we always obtain a variance function of approximately this form for
a random effect in the linear predictor, see Nelder (1985). Hence, approximate quasi-
likelihood estimates are those for the negative binomial distribution. Alternatively,
by using Aitkin’s NPML method we can avoid any specific distributional assumption
for the random effect.

3.1.3. A general variance function
A general variance function which encompasses the various models considered
here is

Var(£) = u {1+ ¢}, ©)

although other natural extensions would be to consider a general quadratic variance
function or a simple power function. This general formulation can be used to provide
profile likelihoods for the additional parameters ¢ and ¢ which, in principle, provide
some means of comparing the different variance functions.

3.2. Examples

3.2.1. Pump failure data

Gaver and O’Muircheartaigh (1987) present data on the numbers of failures and
the period of operation, #; (measured in 1000s of hours) for 10 pumps from a
nuclear plant. The pumps were operated in two different modes; four being run
continuously and the others kept on standby and only run intermittently. To model
the failure rates we need to allow for the different periods of operation. Using a
log-linear model for the numbers of failures we include log# as an offset in the
linear predictor. The Poisson model allowing for the two modes of operation has
residual deviance of 71.4 on 8 df, showing a very large degree of overdispersion.
Table 5 shows the results for a constant overdispersion model and a negative bino-
mial variance function estimated by maximum likelihood (ML), EQL (using form
(ii)) and PL. For the negative binomial variance function all three estimation meth-
ods give similar results. A likelihood ratio test for overdispersion comparing the
negative binomial and Poisson likelihoods (k = oc) has a value of 45.25 on 1
df. Since the null hypothesis of a Poisson model corresponds to a parameter value
on the boundary of the parameter space, the appropriate asymptotic distribution for
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Table 5
Pump data: deviances and parameter estimates
Poisson Constant Negative binomial
Source df. ML QL ML EQL PL
Deviances
Mode 1 53.1 48 6.1 7.3 9.4
Parameter estimates
mode 1.88 1.88 1.67 1.68 1.68
S.E. 0.23 0.77 0.63 0.60 0.61
¢ 0.0 11.2 — — —
k —_ — 1.30 1.46 1.39
S.E. 0.63 0.56 0.56

this statistic under the null hypothesis has a probability mass of ; at 0 and a x{,,
distribution above 0, see Lawless (1987). Here there is clearly overwhelming ev-
idence against the Poisson assumption. A comparison of the two overdispersion
models gives no clear preference, but with such a small data set that is hardly

surprising.

3.2.2. Fabric fault data

These data, listed in Hinde (1982), are counts of the number of faults in rolls of
fabric of different lengths. Fig. 1 shows the raw data and indicates that the mean
and variance of the number of faults increase with the length of the roll. This
suggests a Poisson log-linear model with log of the roll length (log /) as explanatory
variable. However, this model has a residual deviance of 64.5 on 30 df, indicating
overdispersion. Table 6 shows the results of fitting several overdispersion models to
these data; here the overdispersion parameter is estimated in each model to allow a
comparison with the NPML approach, although the estimates given in the table are
just for the full model. The NPML models have estimates for the mixing distribution
on just two points and again there is a strong relationship between the component
probabilities and the residuals from the ordinary Poisson fit, indicating that the mixing
distribution is picking up overdispersion.

The parameter estimates for the explanatory varniable log / are all very similar. This
is also true of the standard errors for the overdispersion models, which, as would
be expected, are larger than those for the Poisson model. The deviance differences
for log / are also all very similar for the overdispersion models. Some clarification
is needed with regard to the residual deviances. The quasi-likelihood deviance is
close to the residual degrees of freedom (30) as it must be since ¢ is estimated
from the residual Pearson X?. The residual deviance for the negative binomial fit
is for a specified value of %; it indicates an adequate model, but again k& has been
estimated. The compound Poisson model residual deviances are to a Poisson baseline;

this allows a direct test with the Poisson model, but does not provide a measure
of fit.
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Fig. 1. Fabric fault data. x — data; — Poisson fit.
Table 6
Fabric fault data: deviances and parameter estimates
Poisson Constant Negative Poisson Poisson
Source ML QL binomial normal NPML
Deviances

log / 39.2 17.3 15.7 14.9 15.8
Residual 64.5 28.5 30.7 51.7 494

Parameter estimates
log / 0.997 0.997 0.938 0.922 0.800
s.e. 0.176 0.265 0.228 0.221 0.201
¢ 0.0 227 — _— —
k — — 8.67 — —
G — — — 0.34 031
s.e. 0.63 0.07

4. Extended overdispersion models

In many applications the overdispersion mechanism is assumed to be the same for
all of the observations. However, in some applications it is quite conceivable that the
overdispersion may be different in different subgroups of the data. Explicit models
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for the variance, and hence overdispersion, are easily handled by an additional model
for the scale parameter of the form

h(¢i) = 'YIZi

for some suitable link function 4, usually the identity or the log. The vector of
explanatory variables z; may include covariates in the mean model giving great flex-
ibility for joint modelling of the mean and dispersion. Estimation can proceed by
either EQL or PL using a gamma estimating equation for y as in Section 2.1.2;
see McCullagh and Nelder (1989, Ch. 12), for a detailed discussion of this. A re-
lated approach is the double exponential family of Efron (1986), in which standard
one-parameter exponential family distributions are extended by the inclusion of an
additional parameter 6, which varies the dispersion of the family by altering the
effective sample size. The dispersion parameters §; can again be modelled by ex-
planatory variables and the estimation procedure is very similar to that for EQL or
PL. For a simple example of modelling within this family see Fitzmaurice (1997).
A very general framework for these extended models is given by the exponential
dispersion models of Jorgensen (1987, 1997).

This approach to dispersion modelling is in the spirit of the our first category for
handling overdispersion in Section 1. A natural way to extend the second category
of models is through the addition of more complex random effects structures in the
linear predictor, taking

n = Bx; + 7z,

where B is a vector of fixed effects, y is a vector of random effects and x; and z; are
corresponding vectors of explanatory variables. Assuming that these random effects
are normally distributed gives a direct generalization of the standard linear mixed
model for normally distributed responses to what is commonly called the generalized
linear mixed model (GLMM). Estimation within this family is non-trivial and a num-
ber of different approaches have been proposed, including penalised quasi-likelihood
(Breslow and Clayton, 1993), restricted maximum likelihood (Engel and Keen, 1994)
and Bayesian methods using Markov chain Monte Carlo (Clayton, 1996). In some
simple models with nested random effects, maximum likelihood estimation is pos-
sible (Anderson and Hinde, 1988) and Aitkin and Francis (1995) describe GLIM4
macros for fitting such models. In many situations the assumption of normality for
the random effects is neither natural nor computationally convenient and Lee and
Nelder (1996) propose an extension of GLMMs to hierarchical generalized linear
models. Here, the random components can come from an arbitrary distribution, al-
though they particularly favour the use of a distribution conjugate to that of the
response. Estimation is based on A-likelihood, a generalization of the restricted max-
imum likelihood method used for standard normal linear mixed model. Such models
are also easily handled within the Bayesian paradigm using Markov chain Monte-
Carlo methods (Clayton, 1996). The non-parametric maximum likelihood approach
can also be extended to these more complex models, see Aitkin (1996) and Aitkin
and Francis (1995).
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Table 7

Rat survival data: models with common and distinct overdispersion parameters — deviances and
parameter estimates.

Common overdispersion

Binomial Constant Beta-binomial Logistic-normal Beta-binomial

Source d.f. ML QL moment moment ML
Treatment 1 9.02 335 3.86 5.68 577

é 0.0 2.69 0.20 — 0.02, 0.31
¢ — — — 1.29 —

4.1. Examples

4.1.1. Rat survival data

Weil (1970) presents data on a toxicological study with a treatment and control
group each comprising of 16 litters. The mothers in the treatment group received a
diet containing the chemical of interest and the response is the number of rat pups in
the litters surviving after 21 days as a fraction of the number alive at 4 days. Fitting
a binomial logit model with a treatment effect results in a residual deviance of 86.2
on 30 degrees of freedom with clear evidence of overdispersion. The deviance for
the treatment effect is shown in Table 7 for several overdispersion models. With both
constant overdispersion and a beta-binomial variance function the treatment effect is
not significant.

Examination of the data shows that there are different degrees of overdispersion
in the two groups and fitting a beta-binomial model with different parameters for the
two groups shows that the overdispersion parameters (0.02 and 0.31 for the control
and treatment groups, respectively) differ by more than a factor of 10, however, the
standard errors are very large. Allowing for this difference in variability, the treatment
effect becomes significant. A similar conclusion is obtained using a logistic-normal
variance function (4), where the overdispersion factor models the variance in the
two groups. Liang and McCullagh (1993) note that, allowing the overdispersion
to be different for the two groups, it is again not possible to choose between the
constant and beta-binomial type of overdispersion. In terms of our general form of
overdispersed variance function (5) it seems not to matter what value is taken for
01, however, taking d, = 1 provides a simple method of allowing for the different
overdispersions in the two groups.

4.1.2. Orobanche germination data

Using EQL or PL we can fit the full interaction model Species*Extract with
different overdispersion parameters for each of the four species/extract combinations.
The results from both estimation methods are very similar and while the estimates
for the ¢-parameters range from 0.002 to 0.018 the standard errors are very large.
The change in extended quasi-deviance is only 0.2, showing no evidence against the
common overdispersion parameter model.
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Fig. 2. Orobanche data. Half-normal plots: x — data; — simulated envelope.

5. Diagnostics

We have already mentioned problems with assessing the fit of overdispersed mod-
els, in that when an overdispersion parameter is estimated, the residual deviance or
Pearson X? are typically close to the degrees of freedom. Similarly, residuals based
on either of these quantities will be scaled and not particularly large. However, this
does not mean that the residuals are no longer useful for model diagnostics, it is just
that any useful information is contained in their pattern and not their absolute value.
Standard residual plots can be used to explore the adequacy of the linear predictor
and link function and identify outliers. A plot against the fitted values will provide
an informal check of the specification of the variance function V' (u), however, this
may not be helpful in choosing between overdispersion models involving the scale
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Fig. 3. Manly data. Half-normal plots: x — data; — simulated envelope.

parameter ¢. For example, the constant overdispersion and beta-binomial variance
function models differ only in the dependence of ¢ on the binomial sample size.
Liang and McCullagh (1993) use plots of binomial residuals against sample size to
suggest an appropriate model, however, it seems that such plots are rarely definitive.
Ganio and Schafer (1992) also consider diagnostics for overdispersion models using
a form of added variable plot to compare variance functions.

A useful omnibus technique for examining the residuals is to use a half-normal
plot with a simulation envelope (Atkinson, 1985) which takes account of the overdis-
persion in the model. Demétrio and Hinde (1997) give a simple GLIM4 macro for
such half-normal plots which is easily extended to a wide range of overdispersed
models. Fig. 2 shows half-normal plots for some of the models considered in Table 1
for the orobanche data. In all cases the residuals are for the full Species*Extract
model with a logit link function. This clearly shows the failure of the basic binomial
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model and also suggests that the constant overdispersion (quasi-likelihood) model
is inadequate. There is no clear evidence to choose between the other two variance
functions, although the beta-binomial form seems most appropriate.

These plots can also indicate the failure of various other model aspects. For ex-
ample, with the trout egg data, discussed in Section 2.2.2, Fig. 3 very clearly shows
the failure of both ordinary binomial models and, more interestingly, the inadequacy
of the overdispersed model with a logit link, while the complementary log-log link
model has residuals inside of the envelope. The technique is also useful for detecting
the presence of outliers which can have a large impact on overdispersion estimates.
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