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Abstract 

Overdispersion models for discrete data are considered and placed in a general framework. A distinc- 
tion is made between completely specified models and those with only a mean-variance specification. 
Different formulations for the overdispersion mechanism can lead to different variance functions which 
can be placed within a general family. In addition, many different estimation methods have been pro- 
posed, including maximum likelihood, moment methods, extended quasi-likelihood, pseudo-likelihood 
and non-parametric maximum likelihood. We explore the relationships between these methods and ex- 
amine their application to a number of standard examples for count and proportion data. A simple 
graphical method using half-normal plots is used to examine different overdispersion models. (~) 1998 
Elsevier Science B.V. All fights reserved. 
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1. Introduction 

In applying standard generalized linear models it is often found that the data 
exhibit greater variability than is predicted by  the implicit mean-variance relationship. 
This phenomenon o f  overdispersion has been widely considered in the literature, 
particularly in relation to the binomial and Poisson distributions. Failure to take 
account o f  this overdispersion can lead to serious underestimation o f  standard errors 
and misleading inference for the regression parameters. Consequently,  a number  o f  
models and associated estimation methods have been proposed for handling such data. 
For  binomial data, CoUett (1991 ) gives a good practical introduction to some o f  these 
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methods, following the work of  Williams (1982, 1996). Overdispersed Poisson data 
are discussed, for example, in Breslow (1984) and Lawless (1987). More general 
discussions of  overdispersion are also to be found in McCullagh and Nelder (1989) 
and Lindsey (1995). 

There are many different specific models for overdispersion, which arise from al- 
ternative possible mechanisms for the underlying process. We can broadly categorise 
the approaches into the following two groups: 

(i) Assume some more general form for the variance function, possibly including 
additional parameters. 

(ii) Assume a two-stage model for the response. That is, assume that the basic 
response model parameter itself has some distribution. 

Models of  type (i) may not correspond to any specific probability distribution 
for the response but may be viewed as useful extensions of  the basic model. The 
regression parameters can be estimated using quasi-likelihood methods with some ad 
hoc procedure for estimating any additional parameters in the variance function. An 
example of  this is the use of  a heterogeneity factor in overdispersed binomial data. 

Type (ii) models lead to a compound probability model for the response and, in 
principle, all of  the parameters can be estimated using full maximum likelihood. A 
standard example is the use of  the negative binomial distribution for overdispersed 
count data. However, in general, the resulting compound distribution takes no simple 
form and approximate methods of  estimation are often used. A variant of  the second 
approach, that removes the need to make any specific assumptions about the second 
stage distribution, is to use non-parametric maximum likelihood (NPML) estimation 
of  the compounding distribution, as advocated by Aitkin (1995, 1996). 

In Section 2 we consider models for overdispersed binary data and introduce the 
various methods of  estimation. The use of  these is illustrated on two standard exam- 
pies. In Section 3 we introduce models for overdispersed count data. More complex 
models for overdispersion are discussed in Section 4. Finally, in Section 5 we use a 
simple graphical procedure for diagnostic assessment of  overdispersed models. 

2. Binary data 

2.1. M o d e l s  a n d  e s t i m a t i o n  

In studying a binary response suppose that the random variables Y,- represent counts 
of  successes out of  samples of  size mi, i = 1 , . . . ,  n. If we write E[Y~] --- #; = mirc~, 
then a generalized linear model allows us to model the expected proportions ~zi in 
terms of  explanatory variables xi through 

g(zri)  = p ' x i ,  

where g is some suitable link function and p is a vector of p unknown parameters. 
The usual error specification is Y~ ,-Bin(mi, zri) with variance function 

Vat (Y,-) ---- m;~z~(1 - hi). (1) 
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However, when overdispersion is present the variance will be greater than this. In 
the following sections we will consider various generalizations of  this basic variance 
function in terms of  the two approaches outlined in Section 1. 

2.1.1. Constant  overdispersion 
The standard quasi-likelihood approach, which requires only the specification of 

the first two moments, replaces (1) by 

Var (Y/) = ~pmiTzi(1 - 7zi). (2) 

The constant overdispersion factor ~b is estimated by equating the Pearson X 2 statistic 
from a binomial fit to its degrees of  freedom (McCullagh and Nelder, 1989). The 
estimates for the linear predictor parameters are the same as those for the binomial, 
although the standard errors will be inflated by the overdispersion factor. This is the 
heterogeneity factor model, see Finney (1971 ). 

2.1.2. Beta-binomial  variance funct ion  (Wi l l iams  type I I )  
Adopting a two-stage model, if we assume that Y~ ~ Bin(m;,P~), where the Pi 's 

are now taken as random variables with E(Pi)  = rri and Var(Pi)  = ~brci(1 -rr~) then, 
unconditionally, we have 

and 

E(Yi) = miTZi 

Var(Y/) = miTzi(1 - 7zi)[1 + dp(mi - 1)]. (3) 

A special case of  this is the beta-binomial distribution, which is obtained by 
assuming that the Pi's  have Beta(~i, fli) distributions with ~i + fli constant. For 
the beta-binomial distribution full maximum likelihood estimation is possible, see 
Crowder (1978). Instead of using the full form of  the beta-binomial likelihood it is 
also possible to use estimation methods based on just the first two moments. This 
removes the problem of  specifying a particular distribution for the Pi's. 

Nelder and Pregibon (1987) consider an extension of the quasi-likelihood model 
in which the variance is now specified as Var(Y~) = q~iV(#i), where both ~bi and 
the variance function V(.) may depend upon additional parameters. For observed re- 
sponses Yi, i -- 1 , . . . ,  n, to estimate the unknown parameters in the mean and variance 
models they propose maximising the extended quasi-likelihood (EQL) function 

Q + _  1 ~ fD(yi ,# i )  } 
-- - -2  .= [ ~ + log(2rcdpiV(yi)) , 

where D is the deviance function 
# 

( y  - t)  
- 2  dt. 

y 

For the beta-binomial model we can take the variance function V(#;) as #i( 1 -  #i/mi), 
the usual binomial variance function, and ~bi -- 1 + ~b(mi - 1) giving a deviance 
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function, D, identical to that for the binomial model. Maximizing Q+ over the regres- 
sion parameters/~ gives a set of weighted binomial estimating equations with weights 
1/c~i = 1/[1 + ~b(mi- 1 )]. These are the quasi-likelihood equations for a known value 
of the overdispersion parameter ~b. For the estimation of ~b we need to solve 

~-~(D(yi,~i)i=l (J~i 1} dlog(dpi)~--~:D(yi, l t i ) - d P i } d ~ b  i=1 [ ~ -~-dq~i : O. 

The second form of this equation shows that we can obtain an estimate for ~b by 
fitting a gamma model using the deviance components as the y-variable, an iden- 
tity link and taking the linear model to have a fixed intercept (offset) of 1 and 
m ; -  1 as the explanatory variable. An approximate standard error is obtained for 
~b by setting the scale to 2, corresponding to modelling Z 2 responses (McCullagh 
and Nelder, 1989). We iterate between these two sets of estimating equations for fl 
and q~ until convergence, giving parameter estimates and standard errors, which are 
correct because of the asymptotic independence of fl and 3. 

Brooks (1984) suggests a mixed strategy in which quasi-likelihood estimation for 
fl is combined with maximum likelihood estimation for 4). This involves replacing the 
above estimating equation for ~b by the beta-binomial likelihood score equation, with 
fl set equal to its current estimate. This equation is easily solved using a Newton- 
Raphson-type iteration, although it may be necessary to reduce the step length to 
avoid divergence or values outside of the feasible region for ~b. In practice, this 
approach seems to give estimates for (fl, q~) which are very close to the full maximum 
likelihood estimates. They will not be exact maximum likelihood estimates, as for 
fixed ~b the beta-binomial distribution is not in the exponential family and so the 
quasi-likelihood estimates for fl with the beta-binomial variance function do not 
exactly maximize the beta-binomial likelihood. 

An alternative to extended quasi-likelihood is the pseudo-likelihood (PL) approach 
of Carroll and Ruppert (1988). Here estimates of / J  are obtained by generalized 
least squares, which if iterated is equivalent to quasi-likelihood estimation for given 
values of ~b~. The estimation of additional parameters in the variance is based on the 
maximization of 

1~-~ : (yi - I'ti)2 } 
P : - 2  i=1 [ ~,.V(~/) +log(EndpiV(l~i)) . 

This is of the same form as Q+ but with the deviance increments replaced by the 
squared Pearson residuals and V(yi) by V(#~); it corresponds to a normal likelihood 
function for the residuals. For the beta-binomial distribution the estimating equation 
for q~ is 

i=1 ~/V-(~) 1 d~b i=1 (~2 ~ : 0, 

where ri = (Yi- # i ) / ~ ) ,  the unsealed generalized Pearson residuals. This equa- 
tion can be solved in the same way as the EQL estimating equation by fitting a 
gamma model to the squared Pearson residuals. 
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Another possibility, discussed by Moore (1986), is to use a simple moment method, 
replacing the pseudo-likelihood estimating equation for ~b by the following unbiased 
estimating equation 

i : , [  ~iV-(~i) 1 : 0 .  

This moment method corresponds to solving X 2 -- n, where X 2 is the generalized 
Pearson Z2-statistic. A variant of  this is to solve X 2 = n - p, where p --- dim(/I), 
which amounts to a degrees of freedom correction for the parameters in the regression 
model for the mean. This equation can be solved iteratively using either Newton- 
Raphson or fixed-point type methods. In an early paper on overdispersed binomial 
models, Williams (1982) proposes estimating ~b by solving X:  = E[X2], which gives 
simple one-step update for ok. On iterating this with quasi-likelihood estimation for fl 
we obtain the same estimates as the degrees of  freedom corrected moment method, 
since on convergence E [ X  2] = n - p. 

For the case in which all of  the sample sizes are equal to m, the beta-binomial 
variance function (3) reduces to constant overdispersion, as in (2). The weights in 
the quasi-likelihood estimating equations for fl are all constant and so these equations 
reduce to those for the standard binomial model. The estimation of  tp is also greatly 
simplified as dlog(~bi)/dq~ = (m - 1)/[1 + ~b(m - 1)] is now constant. Thus, EQL 
reduces to equating the binomial model scaled deviance to n, while PL uses the Pear- 
son X 2 as in Moore's method. In the case of  unequal sample sizes it can be seen that 
the moment method is essentially a weighted version of  the PL estimating equation. 
This suggests that a similar approach may also be taken in EQL, equating the scaled 
deviance to n, although the resulting equation is not unbiased as E[D(yi, pi)] ~ dpi. 
To take account of  the estimation of  fl it is possible to apply a degrees of  freedom 
correction to EQL and PL by including the factor (n - p)/n before the second term 
in the expression for Q+ or P, see McCullagh and Nelder (1989, p. 362). 

A conceptually different model for overdispersion is to assume that the individual 
binary responses are not independent. Assuming a constant correlation p leads to a 
model for the Y~ with 

ELY/] = miTz i and Var(Y~-) : m i T z i ( 1  - -  7zi)[l d- p ( m i  - -  1)], 

which is of  exactly the same form as (3). However, it is now possible for p to 
be negative ( -1 / (m~n) -  1) < p < 1) corresponding to underdispersion. Using the 
mean-variance specification this model is fitted precisely as above. It is also possible 
to extend the beta-binomial distribution to handle underdispersion (Prentice, 1986). 

2.1.3. Logistic-normal (Williams type III) and related models 
The beta-binomial model assumes that the Pi have a beta distribution. Another 

possibility is to assume that the linear predictor, r/i, has some continuous distribution. 
If this distribution is taken to be in the location-scale family then this corresponds 
to including an additive random effect in the linear predictor and we can write 

~]i : ~tXi A¢- aZi, 
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where z~ is assumed to be from the standardized form of  the distribution. Most 
commonly z is taken to be normally distributed leading to the logistic-normal and 
probit-normal models. The probit-normal has a particularly simple form as the indi- 
vidual binary responses can be considered as arising from a threshold model for a 
normally distributed latent variable, see McCulloch (1994). A general approach to the 
estimation of  models of  this type is to use the EM-algorithm with Gaussian quadra- 
ture to integrate over the normal distribution, following the same approach given by 
Hinde (1982) for the Poisson distribution. Williams (1982) shows that, for small 
values of  a, the logistic-normal model can be approximated by a quasi-likelihood 
model with a variance function of the form 

Var(Y/) = m i l z i ( l  - 7t i ) [1  q-  o-2(mi  - 1)Tzi(1 - ~zi)], (4) 

which he refers to as type III. EQL, PL and moment methods can be used for the 
estimation of  o -2 taking q~i = 1 + a2(mi - 1)r~i(1 - rci). 

Aitkin (1995, 1996) replaces the assumed distributional form for z by a discrete 
mixing distribution. The computation again involves an EM-type algorithm in which 
the mixing distribution is assumed to be a discrete distribution on a specified number 
of points and the weights and points for the quadrature become additional parameters 
in the model. This results in a non-parametric maximum likelihood (NPML) estimate 
of  this distribution together with the regression parameter estimates. 

2.1.4. A general variance function 
The various variance functions considered above can be seen to be special cases 

of  the following general form 

Var (Y,.)= miTzi(1 - 7zi)[1 + q~(m,- 1)~'{rc;(1 - rc~)}~2]. (5) 

The standard binomial model corresponds to ~b = 0; 61 = 62 = 0 gives the constant 
overdispersion model; 61 = 1, 62 = 0, the beta-binomial variance function, and 
61 = 62 = 1, the Williams type III model. A set of  GLIM4 macros (Hinde, 1996) 
allows the fitting of  overdispersed binomial data with a variance function Vat (Y,.) = 
mirci(1 -r~)[1 + q~f(mi, zc,)], where f is a function specified by the user. Hence, the 
above general form can be used for specified values of 61 and 62. 

2.2. Examples 

Here we will consider the application of  the various methods described above to 
several standard examples from the overdispersion literature. This extends the com- 
parison by Liang and McCullagh (1993), who only consider constant overdispersion 
and the beta-binomial-type variance function. 

2.2.1. Orobanche germination data 
Crowder (1978) presents data from a study of  the germination of two species of  

Orobanche seeds grown on 1/125 dilutions of  two different root extract media (cu- 
cumber or bean) in a 2 × 2 factorial layout with replicates, see also Collett (1991). 
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Table 1 
Orobanche data: deviances with overdispersion estimated from maximal model 
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Binomial Constant Beta-binomial 

Source d.f. ML QL ML EQL PL 

Extract I Species 1 56.49 30.34 32.69 31.68 31.37 
Species I Extract 1 3.06 1.64 2.88 2.84 2.85 
Species .Extract 1 6.41 3.44 4.45 4.40 4.62 

q~ 1.862 0.012 0.013 0.013 

Beta-binomial Logistic-normal 

Source d.f. Moment a EQL a PL a Moment ~ ML 

Extract I Species 1 22.95 24.67 24.76 21.49 31.33 
Species [ Extract 1 2.64 2.69 2.72 2.54 2.85 
Species.Extract 1 3.54 3.72 3.98 3.52 4.44 

q~ 0.025 0.022 0.021 - -  - -  
d 2 - -  - -  - -  0.108 0.056 

a(df corrected). 

The data consist of  the number of  seeds and the number germinating for each repli- 
cate. Interest focusses on the possible differences in germination rates for the two 
types of  seed and root extract and whether there is any interaction. Table 1 presents 
results for different models and estimation methods with the overdispersion parame- 
ter estimated from the interaction model and fixed for all sub-models. An alternative 
strategy is to re-estimate the dispersion parameter for each model; this is considered 
later. Note that the overdispersion parameter estimates are not all comparable as they 
relate to different overdispersion models. 

The residual deviance for the interaction model using the standard binomial fit is 
33.28 on 17 df, giving strong evidence of  overdispersion. Using a constant overdis- 
persion model and quasi-likelihood gives a non-significant interaction term (deviance 
= 3.44), with extract as the only important factor (deviance -- 30.34). The conclu- 
sions are less clear cut for the other overdispersion models with the interaction being 
marginally significant. For the beta-binomial variance function the only real differ- 
ences between the estimation methods are whether we use the degrees of freedom 
correction or not; without any correction the EQL and PL results are very simi- 
lar to the maximum likelihood fit (ML) and, indeed, using an uncorrected moment 
method also leads to very similar estimates. The slight difference between the de- 
grees of  freedom corrected moment and PL methods is due to the different forms 
of weighting in the estimating equation for 4). The sample sizes here vary from 4 
to 81 giving weights which vary by a factor of  10 for a typical value of @, al- 
though the impact on the final estimate is slight. Interestingly, if we parameterize 
the constant overdispersion model as 1 + 7 ( ~ -  1), where the mean sample size 
is ~ = 39.6, we obtain ~ = 0.022, which is very close to the degrees of freedom 
corrected estimates for the beta-binomial variance function. The differences between 
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the maximum likelihood and moment method fits for the logistic-normal can also be 
attributed to the degrees of freedom correction. Notice that, as the fitted proportions 
for the S p e c i e s * E x t r a c t  model are not extreme (from 0.36 to 0.68 with overall 
proportion 0.51) the results from using a logistic-normal variance function (4) are 
very similar to those using a beta-binomial form (3) - for all fitted proportions r~i, 
the logistic-normal moment estimates give ~2r~i(1 - z ~ ; ) ~  0.025, the estimate of ~b 
under the beta-binomial model. 

Comparing the beta-binomial and binomial models the change in deviance for the 
additional parameter is 2.34 on 1 degree of freedom giving no evidence for the 
beta-binomial overdispersion function. Nelder and Pregibon (1987) make a similar 
observation in considering the EQL fit. Liang and McCullagh (1993) conduct a 
formal test between the constant overdispersion and beta-binomial overdispersion 
models and are unable to choose between them. The same conclusion results from 
using the general form of the variance function introduced above and looking at the 
profile likelihood for 61 with 62 = 0. 

There is considerable confusion about residual deviances for overdispersion mod- 
els. In general, these provide no information about the fit of the model, because of 
the estimation of the overdispersion parameters. Deviances for the beta-binomial and 
logistic-normal models are often given with respect to a binomial saturated model 
and, while this is a useful device for comparisons with the standard binomial model, 
it does not provide a goodness of fit measure. For the beta-binomial family it is pos- 
sible to calculate a true deviance for a fixed value of the overdispersion parameter, 
but when the parameter is estimated, not surprisingly, this always seems to result in 
values close to the degrees of freedom. 

Using the NPML approach the mixing distribution is considered as a nuisance 
parameter and estimated for each model. Table 2 compares the deviance differences 
from this model with results from other overdispersion modelling methods when 
the overdispersion parameter is re-estimated for each submodel. The results are all 
similar. For the interaction model the NPML fit gives a two-point mixing distribution 
with a variance of 0.08, comparable to the variance estimate of 0.056 for the logistic- 
normal fit. A plot of the component probabilities against the binomial model residuals 
shows a strong monotonic relationship, indicating that the mixing distribution is 
picking up overdispersion. 

It is interesting to note that the results from Tables 1 and 2, for using a fixed 
overdispersion parameter or re-estimating it in each model, are fairly similar. Al- 
though, as would be expected, all of the deviance contributions are reduced in Table 2 

Table 2 
Orobanche data: deviances with overdispersion re-estimated for each model 

Logistic Beta-binomial 

Source NPML normal ML EQL PL 

Extract I Species 12.92 15.26 15.44 15.08 15.78 
Species I Extract 1.98 2.70 2.73 2.70 2.73 
Species.Extract 4.22 4.15 4.13 4.10 4.34 
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Table 3 
Trout egg data 
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Location Survival period (weeks) 

in stream 4 7 8 11 

1 89/94 94/98 77/86 141/155 
2 106/108 91/106 87/96 104/122 
3 119/123 100/130 88/119 91/125 
4 104/104 80/97 67/99 111 / 132 
5 49/93 11/113 18/88 0/138 

Table 4 
Trout egg data: deviances with overdispersion estimated from maximal model 

Binomial Cons tan t  Beta-binomial 

Source d.f. Logit CLL CLL Logit CLL 

Loc[ Time 4 849.1 853.8 184.1 158.6 178.6 
Time [ Loe 3 164.1 168.8 36.4 31.4 35.9 
Residual 12 64.5 59.8 

q~ 4.64 0.038 0.033 

as the overdispersion parameter estimate increases to account for the extra-variation 
of  the omitted term. The fixed strategy seems more sensible and is analogous with 
the usual procedure for the normal model. Our primary interest will usually be in 
the fixed effects model and if  possible we would like to obtain an estimate of  pure 
overdispersion - this is available from the maximal model. 

2.2.2.  T r o u t  egg  da ta  

Manly (1978) considers the analysis of  data on the survival of  trout eggs. Boxes 
of  eggs were buried at five different locations in a stream and at four different times a 
box from each location was sampled and the number of  surviving eggs were counted. 
The data are presented in Table 3 as proportions s /n ,  where s denotes the number 
of  survivors and n the number of  eggs in the box. 

In his original analysis of  this data, Manly used a log-log link function for the 
probability of  surviving, which we reproduce here by using a complementary log-log 
link (CLL) for the probability of  death. In Table 4 we present deviance contributions 
for the two factors in several models. The residual deviance for the binomial logit 
model is 64.5 on 12 df, while that for the CLL model is 59.8 indicating a slight 
preference for this link. The results for the beta-binomial variance function are based 
on moment estimation. 

The large amount of  overdispersion present here has a clear impact on the effect 
deviances, although both effects remain significant in all of  the models. For the 
beta-binomial variance function with complementary log-log link we have a slightly 
smaller estimate of  the overdispersion parameter and correspondingly larger deviance 
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differences for the effects. We will return to the comparison of  these models in 
Section 5. The other point to note here is the great similarity for the complementary 
log-log link of  the constant overdispersion and beta-binomial deviances. This is 
because the sample sizes here are relatively large and not too different (ranging from 
86 to 155 with mean 111). If  we parameterize the constant overdispersion model as 
1 + 7 ( N -  1), where N is the mean sample size, we obtain ff=0.033, exactly the same 
as in the beta-binomial model. Because of  the large and relatively similar sample 
sizes the other estimation approaches for the beta-binomial variance function give 
similar results. 

The NPML approach gives a less satisfactory answer here with components picking 
off the observations with extreme observed proportions. 

3. Overdispersion models for count data 

3.1. Models and estimation 

We now assume that the random variables Y,., i = 1 . . . .  , n, represent counts with 
means Pt. The standard Poisson model assumes that Y~ ~ Pois(#i) with variance 
function 

Var (Y,.) =/~i. (6) 

When there is overdispersion we need to consider variance functions which predict 
greater variability. A simple constant overdispersion model replaces (6) by 

Var (Y~) = qb/.t~ (7) 

and estimation proceeds by quasi-likelihood as for the binomial. 

3.1.1. Negative binomial type variance 
A two-stage model assumes that Y,. ~ Pois(0;) where the 0i's are random vari- 

ables with E(Oi) = #i and Var(0~) = o.~. Unconditionally, we have E(Y/) = #; and 
Var(Y,.) = ~i + o-3 giving an overdispersed model. Further, if the 0~'s are assumed to 
have a constant coefficient of  variation, o "2, we have Var (Y~) =/~+o.2#~, a particular 
form of  quadratic variance function. For a fully specified model, a common assump- 
tion is that the 0,- follow a F(k, 2~) distribution which leads to a negative binomial 
distribution for the Y~ with E(Y~) = k/2i =/z~ and 

Var(Yg) = # / +  #~/k. (8) 

Maximum likelihood estimation for the negative binomial distribution is relatively 
straightforward as for fixed values of k the distribution is in the linear exponential 
family and estimates for regression parameters p can be obtained using the standard 
iteratively re-weighted least-squares (IRLS) algorithm for generalized linear models. 
To estimate k we can use Newton-Raphson for the score equation and cycling 
between the estimation of  p and k we obtain the joint maximum likelihood estimates. 
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The asymptotic independence of  ~ and k means that the standard errors for/~ from 
the IRLS fit are correct, see Lawless (1987) for details. 

Using EQL for the negative binomial variance function presents some ambigu- 
ity due to different factorizations of Var (Y/ )=  ~iV(#i). Three obvious possibilities 
are 

(i) 1~)i ~ 1, V(#;) =/~i + #~/k; 
(ii) q~i = 1 + #ilk, V(#i) = I~i; 

(iii) ~bi = #i + #~/k, V(#i) =- 1. 

In principle, all of  these lead to different estimating equations for fl, defining 
different iterative schemes. On convergence these all give the same estimates and 
the sensible approach is to use quasi-likelihood with the negative binomial variance 
function. For the estimation of k things are not so simple and the different formu- 
lations will lead to different estimates. Using (i) leads to an estimating equation for 
k similar in form to the negative binomial score equation. In cases (ii) and (iii) 
the parameter k appears in the scale parameter and gamma estimating equations are 
obtained. In (ii) Poisson deviances are used as the y-variable, while in (iii) we use 
Poisson Pearson residuals and this corresponds to pseudo-likelihood with estimating 
equation 

~-~(  (Yi--l~i)2 1} dlog(1 + #Jk)  
i=~ #i(1 ~ #i/k) dk = O. 

Here the simple moment  method gives the unbiased estimating equation 

i=l #i(1 + #i/k) 

This is the form used by Breslow (1984) although he incorporated a degrees of  
freedom correction. This equation is easily solved for k using a fixed-point method 
or Newton-Raphson. Breslow uses this together with weighted~Poisson regression 
for the estimation of  fl with weights 1/(1 + ~i/lc), where/~i and k are obtained from 
the previous iteration. Use of the correct negative binomial variance function is more 
efficient. Note again the link between the pseudo-likelihood and moment methods; 
if the weights in the pseudo likelihood, dlog(1 + lai/k)/dk = - ( # j k 2 ) / ( 1  + #ilk), 
are approximately constant the estimating equations will be the same. This will be 
true if k is small, corresponding to a large degree of  overdispersion, or if all of  the 
means #i are large. 

Note that by assuming a different form for the gamma mixing distribution we 
can obtain different overdispersed Poisson models. For example, taking a F(r i ,2)  
distribution leads to Var (Y/) = #i + #i/2 - ~b#i, the constant overdispersion model. 
However, the resulting distribution for Y~ is not in the exponential family and so the 
quasi-likelihood estimates are not maximum likelihood for this distribution (Nelder 
and Lee (1992) give details of maximum likelihood estimation). In the same way, for 
the binomial distribution, by assuming that different functions of  the beta distribution 
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parameters, ~i and fl~, are fixed, we obtain different compound distributions with 
different variance functions. 

3.1.2. Poisson-normal and related models 
Proceeding as for the binomial model we can also consider including a random 

effect in the linear predictor. Using a Poisson log-linear model and a normally dis- 
tributed random effect leads to the Poisson-normal model, see Hinde (1982) for 
details of maximum likelihood estimation. The variance function for this model is 
of the form Var(Y,.) -- #i + k'# 2, that is, the same as for the negative binomial 
distribution. In fact, with a log-link function and an additive random effect in the 
linear predictor, we always obtain a variance function of approximately this form for 
a random effect in the linear predictor, see Nelder (1985). Hence, approximate quasi- 
likelihood estimates are those for the negative binomial distribution. Alternatively, 
by using Aitkin's NPML method we can avoid any specific distributional assumption 
for the random effect. 

3.1.3. A 9eneral variance function 
A general variance function which encompasses the various models considered 

here is 

(9) 

although other natural extensions would be to consider a general quadratic variance 
function or a simple power function. This general formulation can be used to provide 
profile likelihoods for the additional parameters q~ and 6 which, in principle, provide 
some means of comparing the different variance functions. 

3.2. Examples 

3.2.1. Pump failure data 
Gaver and O'Muircheartaigh (1987) present data on the numbers of failures and 

the period of  operation, ti (measured in 1000s of hours) for 10 pumps from a 
nuclear plant. The pumps were operated in two different modes; four being run 
continuously and the others kept on standby and only run intermittently. To model 
the failure rates we need to allow for the different periods of operation. Using a 
log-linear model for the numbers of failures we include log t; as an offset in the 
linear predictor. The Poisson model allowing for the two modes of operation has 
residual deviance of 71.4 on 8 df, showing a very large degree of  overdispersion. 
Table 5 shows the results for a constant overdispersion model and a negative bino- 
mial variance function estimated by maximum likelihood (ML), EQL (using form 
(ii)) and PL. For the negative binomial variance function all three estimation meth- 
ods give similar results. A likelihood ratio test for overdispersion comparing the 
negative binomial and Poisson likelihoods (k = c~) has a value of 45.25 on 1 
df. Since the null hypothesis of a Poisson model corresponds to a parameter value 
on the boundary of  the parameter space, the appropriate asymptotic distribution for 
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Table 5 
Pump data: deviances and parameter estimates 

163 

Source d.f. 

Poisson Constant Negative binomial 

ML QL ML EQL PL 

Deviances 

Mode 1 53.1 4.8 6.1 7.3 9.4 

Parameter estimates 

mode 1.88 1.88 1.67 1.68 1.68 
S.E. 0.23 0.77 0.63 0.60 0.61 

q~ 0.0 11.2 - -  - -  - -  

/~ - -  - -  1 . 3 0  1 . 4 6  1.39 
S.E. 0.63 0.56 0.56 

1 1 2 this statistic under the null hypothesis has a probability mass of  ~ at 0 and a 5Xfl) 
distribution above 0, see Lawless (1987). Here there is clearly overwhelming ev- 
idence against the Poisson assumption. A comparison of  the two overdispersion 
models gives no clear preference, but with such a small data set that is hardly 
surprising. 

3.2.2. Fabric fault data 
These data, listed in Hinde (1982), are counts of  the number of  faults in rolls of  

fabric of  different lengths. Fig. 1 shows the raw data and indicates that the mean 
and variance of  the number of  faults increase with the length of  the roll. This 
suggests a Poisson log-linear model with log of  the roll length (log l) as explanatory 
variable. However, this model has a residual deviance of  64.5 on 30 df, indicating 
overdispersion. Table 6 shows the results of fitting several overdispersion models to 
these data; here the overdispersion parameter is estimated in each model to allow a 
comparison with the NPML approach, although the estimates given in the table are 
just for the full model. The NPML models have estimates for the mixing distribution 
on just two points and again there is a strong relationship between the component 
probabilities and the residuals from the ordinary Poisson fit, indicating that the mixing 
distribution is picking up overdispersion. 

The parameter estimates for the explanatory variable log l are all very similar. This 
is also true of  the standard errors for the overdispersion models, which, as would 
be expected, are larger than those for the Poisson model. The deviance differences 
for log l are also all very similar for the overdispersion models. Some clarification 
is needed with regard to the residual deviances. The quasi-likelihood deviance is 
close to the residual degrees of  freedom (30) as it must be since ~b is estimated 
from the residual Pearson X 2. The residual deviance for the negative binomial fit 
is for a specified value of  k; it indicates an adequate model, but again k has been 
estimated. The compound Poisson model residual deviances are to a Poisson baseline; 
this allows a direct test with the Poisson model, but does not provide a measure 
of  fit. 
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Fig. 1. Fabric fault data. x - data; - -  Poisson fit. 

Table 6 
Fabric fault data: deviances and parameter estimates 

Poisson Constant Negative Poisson Poisson 
Source ML QL binomial normal NPML 

Deviances 

log l 39.2 17.3 15.7 14.9 15.8 
Residual 64.5 28.5 30.7 51.7 49.4 

Parameter estimates 

log l 0.997 0.997 0.938 0.922 0.800 
s.e. 0.176 0.265 0.228 0.221 0.201 

0.0 2.27 - -  - -  - -  

/~ - -  - -  8.67 - -  - -  
t~ - -  - -  - -  0.34 0.31 
s.c. 0.63 0.07 

4. Extended overdispersion models 

In  m a n y  a p p l i c a t i o n s  t he  o v e r d i s p e r s i o n  m e c h a n i s m  is a s s u m e d  to  b e  t h e  s a m e  f o r  

a l l  o f  t h e  o b s e r v a t i o n s .  H o w e v e r ,  in  s o m e  a p p l i c a t i o n s  it  is q u i t e  c o n c e i v a b l e  tha t  t he  

o v e r d i s p e r s i o n  m a y  b e  d i f f e r en t  in d i f f e r en t  s u b g r o u p s  o f  t he  data .  E x p l i c i t  m o d e l s  
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for the variance, and hence overdispersion, are easily handled by an additional model 
for the scale parameter of the form 

h(4~i) = r 'z~ 

for some suitable link function h, usually the identity or the log. The vector of 
explanatory variables z~ may include covariates in the mean model giving great flex- 
ibility for joint modelling of the mean and dispersion. Estimation can proceed by 
either EQL or PL using a gamma estimating equation for g as in Section 2.1.2; 
see McCullagh and Nelder (1989, Ch. 12), for a detailed discussion of this. A re- 
lated approach is the double exponential family of Efron (1986), in which standard 
one-parameter exponential family distributions are extended by the inclusion of an 
additional parameter 0, which varies the dispersion of the family by altering the 
effective sample size. The dispersion parameters 0~ can again be modelled by ex- 
planatory variables and the estimation procedure is very similar to that for EQL or 
PL. For a simple example of modelling within this family see Fitzmaurice (1997). 
A very general framework for these extended models is given by the exponential 
dispersion models of Jorgensen (1987, 1997). 

This approach to dispersion modelling is in the spirit of the our first category for 
handling overdispersion in Section 1. A natural way to extend the second category 
of models is through the addition of more complex random effects structures in the 
linear predictor, taking 

where ig is a vector of fixed effects, ~ is a vector of random effects and xi and zi are 
corresponding vectors of explanatory variables. Assuming that these random effects 
are normally distributed gives a direct generalization of the standard linear mixed 
model for normally distributed responses to what is commonly called the generalized 
linear mixed model (GLMM). Estimation within this family is non-trivial and a num- 
ber of different approaches have been proposed, including penalised quasi-likelihood 
(Breslow and Clayton, 1993), restricted maximum likelihood (Engel and Keen, 1994) 
and Bayesian methods using Markov chain Monte Carlo (Clayton, 1996). In some 
simple models with nested random effects, maximum likelihood estimation is pos- 
sible (Anderson and Hinde, 1988) and Aitkin and Francis (1995) describe GLIM4 
macros for fitting such models. In many situations the assumption of normality for 
the random effects is neither natural nor computationally convenient and Lee and 
Nelder (1996) propose an extension of GLMMs to hierarchical generalized linear 
models. Here, the random components can come from an arbitrary distribution, al- 
though they particularly favour the use of a distribution conjugate to that of the 
response. Estimation is based on h-likelihood, a generalization of the restricted max- 
imum likelihood method used for standard normal linear mixed model. Such models 
are also easily handled within the Bayesian paradigm using Markov chain Monte- 
Carlo methods (Clayton, 1996). The non-parametric maximum likelihood approach 
can also be extended to these more complex models, see Aitldn (1996) and Aitkin 
and Francis (1995). 
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Table 7 

Rat survival data: models  wi th  common  and distinct overdispersion parameters  - deviances and 
parameter  estimates.  

Common overdispersion 

Binomial  Constant  Beta-binomial  Logist ic-normal  Beta-binomial  
Source d.f. ML QL momen t  momen t  ML 

Trealment  1 9.02 3.35 3.86 5.68 5.77 

q~ 0.0 2.69 0.20 - -  0.02, 0.31 
#2 - -  - -  - -  1.29 - -  

4.1. Examples 

4.1.1. Rat survival data 
Weil (1970) presents data on a toxicological study with a treatment and control 

group each comprising of  16 litters. The mothers in the treatment group received a 
diet containing the chemical of  interest and the response is the number of  rat pups in 
the litters surviving after 21 days as a fraction of  the number alive at 4 days. Fitting 
a binomial logit model with a treatment effect results in a residual deviance of  86.2 
on 30 degrees of  freedom with clear evidence of  overdispersion. The deviance for 
the treatment effect is shown in Table 7 for several overdispersion models. With both 
constant overdispersion and a beta-binomial variance function the treatment effect is 
not significant. 

Examination of  the data shows that there are different degrees of  overdispersion 
in the two groups and fitting a beta-binomial model with different parameters for the 
two groups shows that the overdispersion parameters (0.02 and 0.31 for the control 
and treatment groups, respectively) differ by more than a factor of  10, however, the 
standard errors are very large. Allowing for this difference in variability, the treatment 
effect becomes significant. A similar conclusion is obtained using a logistic-normal 
variance function (4), where the overdispersion factor models the variance in the 
two groups. Liang and McCullagh (1993) note that, allowing the overdispersion 
to be different for the two groups, it is again not possible to choose between the 
constant and beta-binomial type of  overdispersion. In terms of  our general form of  
overdispersed variance function (5) it seems not to matter what value is taken for 
6~, however, taking 62 = 1 provides a simple method of  allowing for the different 
overdispersions in the two groups. 

4.1.2. Orobanche #ermination data 
Using EQL or PL we can fit the full interaction model S p e c i e s * E x t r a c t  with 

different overdispersion parameters for each of  the four species/extract combinations. 
The results from both estimation methods are very similar and while the estimates 
for the (#-parameters range from 0.002 to 0.018 the standard errors are very large. 
The change in extended quasi-deviance is only 0.2, showing no evidence against the 
common overdispersion parameter model. 
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5. Diagnostics 

We have already mentioned problems with assessing the fit of overdispersed mod- 
els, in that when an overdispersion parameter is estimated, the residual deviance or 
Pearson X 2 are typically close to the degrees of freedom. Similarly, residuals based 
on either of these quantities will be scaled and not particularly large. However, this 
does not mean that the residuals are no longer useful for model diagnostics, it is just 
that any useful information is contained in their pattern and not their absolute value. 
Standard residual plots can be used to explore the adequacy of the linear predictor 
and link function and identify outliers. A plot against the fitted values will provide 
an informal check of the specification of the variance function V(#), however, this 
may not be helpful in choosing between overdispersion models involving the scale 
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Fig. 3. Manly data. Half-normal plots: × - d a t a ;  - -  simulated envelope. 

parameter ~b. For example, the constant overdispersion and beta-binomial variance 
function models differ only in the dependence of q~ on the binomial sample size. 
Liang and McCullagh (1993) use plots of binomial residuals against sample size to 
suggest an appropriate model, however, it seems that such plots are rarely definitive. 
Ganio and Schafer (1992) also consider diagnostics for overdispersion models using 
a form of added variable plot to compare variance functions. 

A useful omnibus technique for examining the residuals is to use a half-normal 
plot with a simulation envelope (Atkinson, 1985) which takes account of the overdis- 
persion in the model. Dem&rio and Hinde (1997) give a simple GLIM4 macro for 
such half-normal plots which is easily extended to a wide range of overdispersed 
models. Fig. 2 shows half-normal plots for some of the models considered in Table 1 
for the orobanche data. In all cases the residuals are for the full Spec i e s*Extrac t  
model with a logit link function. This clearly shows the failure of the basic binomial 
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model  and also suggests that the constant overdispersion (quasi-likelihood) model 
is inadequate. There is no clear evidence to choose between the other two variance 
functions, although the beta-binomial form seems most  appropriate. 

These plots can also indicate the failure o f  various other model  aspects. For ex- 
ample, with the trout egg data, discussed in Section 2.2.2, Fig. 3 very  clearly shows 
the failure o f  both ordinary binomial models and, more interestingly, the inadequacy 
o f  the overdispersed model with a logit link, while the complementary log-log link 
model  has residuals inside o f  the envelope. The technique is also useful for detecting 
the presence o f  outliers which can have a large impact on overdispersion estimates. 
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