A reprint from

communications in statistics



COMMUN. STATIST.-THEORY METH. 19(8), 2757-2766 (1990)

IDENTIFIABILITY OF INCOME DISTRIBUTIONS IN THE CONTEXT OF
DAMAGE AND GENERATING MODELS

Caterina Dimaki and Evdokia Xekalaki

Department of Statistics, The Athens University of Economics,
76 Patision St., 104 34 Aﬁhens, Greece.

Keywords: Regression function, Damage Model, Generat ing Model,
Characterization, Income underreporting, Insurance
Overreporting, Pareto Distribution, Power function

distribution.

ABSTRACT

In the context of additive or multiplicative damage models,
and under mild conditions, it is shown that the functional forms of
suitably chosen regressions on a random variable X or/and its
recorded part Y are characteristic of the distribution of X. The
paper treats the cases where the recorded value is either an

understatement or an overstatement of the true observation.

1. INTRODUCTION
Very often, the observed md—value Y of an observation
differs from the actual value of the original. observation X as a
result of some destructive process so that the recorded observation

Y can be regarded as the undamaged part of X. Such situations
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arise for example in area sampling (where the size of a herd of
animals is recorded as equal to Y instead of X due to visibility’
bias), in labour force surveys (where registered unemployment Y is
used instead of actual unemployment X), in income distribution
analysis (where people tend to underreport their income for tax
purposes) and in insurance claim distribution analysis (where
people tend to overreport their true insurance claim). Most, if
not all, of such practical situations cari' be viewed as falling
within the framework of the damage model ~hereby an original
observation X subjected to additive or multiplicaiive damage is
recorded as YsX or within the framework-of the generating model
whereby X due to additive or multiplicative enhancement is recorded
as YzX. The above mentioned two forms of the damage model have
been considered in the literature as tools for obtaining
characterization results based on conditions that relate the
damaged part of X to its undamaged part. From among the results
that have appeared in the literature in the context of damage
models those for which damage is identified with underreporting of
income, property or wealth will be in the focus of the present
paper. Characterizations of this type often utilize appropriately
chosen regression functions. These enhance the application
potential of the characterization results as information on the
regressors and the regressing random variable is more easily
accessible. So, by considering multiplicative damage Krishnaji
(1970), proved that the linearity of the regression of a random
variable Z on X and on its observable part Y characterizes the
distribution of the original random variable X as Pareto. Xekalaki
(1984) proved that among the discrete ix;come distributions the Yule
is the only distribution that preserves the lineality of regression
in Krishnaji’s sense. Within the framework of the additive damage
model Revankar et al (1974) proved that the linearity of the
regression of the damaged part of X on the original part,
characterizes the distribution of X as Pareto.

This paper investigates the question of whether results of

more general nature hold in the context of the above models that
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will allow characterizations of more general families of
distributions. The section that follows shows that indeed this is
the case. So, section 2 provides two theorems that in the context
of additive or multiplicative damage models show that the
functional form of the regression on X or/and Y of an appropriately
chosen random variable is characteristic of the distribution of X
under assumptions that can be thought of as mild in connection with
practical situations. These results cons}dér X to be an absolutely
continuous random variable. In order to cover cases such as an
overreport of a true insurance claim, the previously described two
forms of damage model may accordingly»bg converted so as to lead to
further characterization results. So, in section 3 a generating
model is considered whichby the recorded observation Y is an
overstatement of the actual observation X i.e., Y2X. A model of
this type and of an additive nature has been considered by
Panaretos (1983) who refers to it as the generating model. Within
the framework of this model, but allowing for both additive and
multiplicative enhancement of the value of X it is shown that the
functional form of the regression on X or Y of an appropriétely
chosen random variable is characteristic of the distribution of X
which 1is again considered to be an absolutely continuous random

variable.

2. CHARACTERIZATIONS IN THE CONTEXT OF UNDERREPORTING.

Let the actual observation be denoted by X, a random variable
on (0, +w). Let Y, Y = X be the observable part of X and assume
that Y=RX, where R is a random variable independent of X and
distributed in the interval (0,1) according to the power function
distribution. The problem to be studied then, would be the effect
of the distribution of X on the regression E(Z|Y=y) of any random
variable Z (independent of R) on Y when the régression E(Z]X=x) is
of a given form. Conversely, the effect of the form of E(2|Y=y) on
the distribution of X will be examined. The following theorem

shows that the former uniquely determines the latter.
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Theorem 2.1. Let X be an absolutely continuous random
variable with a non-degenerate distribution and let
h(x) = E(Z|X=x), x >0 (2.1)
be a non-constant function of x where Z is another random variable
with an arbitrary distribution function. Further, let R be a
random variable independent of Z and X with a density function
given by:
fR(r) =p rp_l , 0<r«<1, p>0 . . (2.2)
Then the functions h{y), y>0 and
Aly)= E(Z]Y=RX=y) y>0 ’ . (2.3)
uniquely determine the distributioﬁ of X.
Proof. Let Fw(w) and fu(w) be the joint distribution function and
Joint probability density function of a random vector
W= (wl,...,wn). n =z 1. Then, if Z takes on values in an interval
denoted by RZ'

J J fz v (z,y)

E(Z|Y=y) = z f (z) dz= 2 ————~——— dz. (2.4)
Z|(Y=y) £, (y)
Rz Rz Y

But, from (2.2) and since R is independent of both X and Z, we

have
1

= Y p-1
FZ,Y(Z’y) J; FZ,X [z, = J pr dr

which implies that,
«©

= -1 -p
fZ.Y (z,y) = pyp J; fZ,X(z’X) x © dx. (2.5)

Consequently, combining (2.4) and (2.5)

-]
-1 p-1
E (Z]Y=y) =[fY(y)] 3% J [J
y

X’

-p \
z fZ[(X=x)(Z) dz]fx(x) x Tdx

or, using (2.1)
-1 pm1f® o
E (2|v=y) = [f‘y(y)] Py J h(x) £ (x) x Pax. (2.6)
Y

1 1
- <v|R= dr = vy
But FY(y) = J; P(RX=y |R=r) fR(r)dr J; FX [ = ] fR(r) dr.
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Therefore,
o«

o Pl P (2.7)
fY(y) oy J fx(x)x dx. i
Hence, combining (2.6) and (2.7)

«©

@
E (2|Y=y) = J h(x) fx(x)x-pdx/J h(x) £,00x Pax.
Yy Yy

Using (2.3) this equation becomes

© .
J h(x) fX(x)x_pdx = A(yJJ fx(x)x’p dx.
Yy y .
Differentiating with respect to y it follows that
©

—h(y)fx(y)y"’= h’(y)[ fx(x)x"’ dx - Aly) fx(y)y"’. (2.8)
y

Letting K(y) = fx(x)x—p dx relationship (2.8) becomes

Y
[h(y) - Aly)IK' (y) = A’ (y)K(y).
Obviously, h(y)-A{y)#0 as otherwise fX(x)=O which would contradict
the assumption that the distribution of X is non-degenerate. Hence
K’ (y) _ Al (y)

X (y) T Ry,
The solution of this differential equation is

_ A y)
K(y) = C exp {J RyTAy) dy}.
This is equivalent to

A’ (y)

]
-P =
J; fx(x)x dx = C exp {J Ry TA(yT dy}

which by differentiation leads to

£,0y) = cyP —XT;—;EK—()),).exp “ #&gy)dy}. (2.9)
Hence, the result.
Corollary 2.1. (Chéracterization of the Pareto Distribution).
Let X,Y and Z be defined as in theorem 2.1' and assume that
E(Z|X=x)=6+Bxa » ®,8,8 € R. Then E(Z|Y=y)= 6+7ya , ¥ € R if and
only if X has a Pareto distribution provided that ay/(y=B)>p.
Corollary 2.2. (Characterization of the F distribution). Let

X, Y and Z be defined as in therem 2.1 and assume that
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E(Z|X=x)=61+BX» 3,,B € R. Then E(Z|Y=y)= 3oty » &,
only if X has Fisher’s F distribution with B-y and 61
1—60= 2y/(p+1)}-2(p+1)eZ.

Remark 1. Krishnaji's (1870) result can be considered as a

<61, <8 if and
—60 degrees of
freedom provided that B-y = 2{p+1)eZ and &

special case of corollary 2.1 for a=1.

Remark 2. Let fx(x;e) = x_e exp {-A(x)+B(8)} be the
probability density function of the log-exponential family
.Substituting fx(x;e) into (2.9) and differsntiating the resulting
equation with respect to y it follows that
(e+p)/y = D(y) - A’(y) - D'(y)/D(y) where D(y)'= A (y)/(h(y)-A(y)).
So, it 1is obvious that the form of A(y) deterﬁines a unique
relationship between h(y) and A(y).

In the sequel, we treat the additive damage case.

Let X, a random variable with a non-degenerate probability
distribution on (m,+w) where m>0, denote the actual observation and
let Y, Y=X be its observable part. Assume further that Y¥=X-U and
O<U<max (0, X-m). Then, the following theorem can be shown to hold.

Theorem 2.2. Let X,Y and U be defined as before and let (2.10)
hold. Then the functions h(x) = E (U|X=x), x>m and g(y)=E(U|X>y)
uniquely determine the distribution of X.

Proof. Let Fw(w) and fw(w) be the distribution function and
probability density function respectively, of a random vector W =
(wl,....wn), n =z 1. Then, if U takes on values in an interval

denoted by RU,

gly) = E(U|X>y) (u) du.

u f

J Ul(X)y)
RU

Hence,

«© «©

J fx(x) glyldx J u [J fU,X (u, x) dx] du
y Ry y
or, equivalently

° .
[1—F (x)].g(y) = J f(x) J u f _y(u) du| dx.
X y X R, Ul (x f) ‘
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Substituting h{x) for E(U|X=x) we obtain

y
[1-Fx(y)].g(y) -E [h(x)] R Jm h(x) d[1-Fy(x)].
Integrating by parts and since Fx(m)=0

[1—FX(YJ].g(y)=E[h(x)]+h(Y)[1-Fx(y)]- h(m)—J'm [1—FX(X)] h’(x) dx.
Differentiating with respect to y and letting Fx(x)=1—FX(x) it
follows that

l?x(y) [g(y)—h(y)] = —?X(y) .gly).

Obviously g(y)-h(y)#0 since otherwise }-:X(y)=0 for every y>0 which

would imply a degenerate distribution for. X. Therefore

FX’(y)/EX(y) = g '(y)/(g(y)-h(y)).

The solution of this differential equation leads to

g'(y) g’ (y)
f‘x(y) =C —— .exp J-——.—-dy .
gly)=h(y) h(y)-g(y)

Therefore f‘x(y) is uniquely determined by the regression functions
gly) = E(U[X=y) and h(y) = E(U[X>y).

Corollary 2.2. (Characterization of the Pareto Distribution).
Let X,Y and U be defined as before and assume that E(U|X=x)=6+[3x°‘,
«,B,3eR. Then E(U|X>y)=6+7y°‘, 7€R, ay/(;—BbO if and only if X has
a Pareto distribution.

Remark 3. Revankar et al.’s (1974) result can be regarded as

a special case of corollary 2.2 for «=1.

3. CHARACTERIZATIONS IN THE CONTEXT OF OVERREPORTING

Let X denote an actual observation and Y its observable
(recorded) part. This section treats the case of problems in the
context of the generating model where the recorded value Y is an
overstatement of the true observation X. Before proceeding to the
proof of the main results of this section we prove the following
lemma. -
Lemma 3.1. Let X be a random variable with an absolutely

continous distribution function and let R be a random variable
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independent of X with probability density function given by (2.2).
Assume, that P(Y=X/R < x0)>0 for some x0>0. Then the distribution
of X/R truncated to the right at Xy coincides with the distribution
of X if and only if X follows a power distribution on (O,XO).
Proof. Adopting the notation of section 2 we have that

1
FY(y) =J; Fx(yr)dFR(r). (3.1)
Note that (3.1) holds for any arbitrary distribution of R provided
that its range is contained in (0,1). -
Necessity Let X be distributed according to the power

distribution on (0,x). Then

FX(X) = (3.3)
1 otherwise
Observing that

1

a
_ { (x/xo) for X<Xqi x0>0, a>0

Fy(xo) = J; Fx (xor)d FR(P) we have for any y<x
1
FY(y) - FY(XO) Fx(y) = J; [Fx(yr)—FX(xor)FX(y)] dFR(r).

o°

But F(xyxo) = F(xxO)F(yxol. Therefore Fx(yr) = Fx(y) Fx(rxo),i.e..
Fx(y)/FY(xo) = Fx(y). Hence,

P(Ysy, Y<x.) F,(y)
P[Y = —g— = y|Y<x0] = o . Y = Fy(y)
P(Y<xo) FY(xo)

Sufficiency: Combining (2.2) and (3.1) it follows that

Y
— AP p-1
FY(y) py J; Fx(x) X dx

or, equivalently

Y
1 _ p-1
- Fy(y)yp = J; Fx(x) X dx.

Differentiating with respect to y and letting K(y)= Fx(y) ypyields

K (y) _ P
K(y) ~ V(g
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whose solution leads to

(] —1—*1]'
FY(xO)

Fx(y) =C
Hence the lemma has been established.

Consider now a multiplicative generating model whereby X
denotes an actual observation and Y denotes its observable part
which is at least equal to X. More specifically assume that the
damage on X is effected through the relatjoﬁship Y=% where R is
a random variable independent of X and distributed according to
the power distribution in the interval (0,1). Then the following
theorem can be shown. .

Theorem 3.1. Let Z be a random variable with an arbitrary
distribution and let X be a random variable with an absolutely
continouous non-degenerate probability distribution.Let R be a
random variable independent of Z and X with a density given by
(2.2). Then, the functions h(y)=E(Z]|X=x) and A(y)=E[Z]Y=%y]
uniquely determine the distribution of X.

Corollary 3.1 (Characterization of the Pareto Distribution).
Let X,Y and Z be defined as in theorem 3.1 and assume fhat
E(Z|X=x)=a+6x, «,8eR. Then E(Z|Y=y) = a+By, BeR if and only if X
has a Pareto distribution of the first kind provided that B/{(8-8)<p.

Considering now overreporting within the framework of an
additive generating model the following theorem can be shown.

Theorem 3.2 Let Y,X,U be random variable defined as in
theorem 2.2 and assume that Y=X+U.

Then, the functions h(x)=E(U|X=x) and g(y) = E (U|X<y) uniquely

determine the distribution of X.
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