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0. INTRODUCTION

0.1 Preliminaries

The subject of this thesis is to study the 'Capon estimator' which is a non-parametric
estimator of the spectral density (spectrum) of a stationary stochastic process.

Non-parametric estimators of the spectrum which are quadratic in the observations have
been widely used and studied. On the other hand, in the applied sciences, types of non-
parametric spectral estimators which are non-quadratic in the observations are also used;
these are considered to have better small sample properties than classical periodogram
based (quadratic) estimators. Such a non-quadratic estimator was introduced in 1969 by
Capon for estimating the wavenumber spectrum of a homogeneous random field. It
became known to engineers as a 'High Resolution Estimator'. In 1972 Pisarenko
considered a generalization of Capon's method in the context of estimating the
continuous spectrum of a univariate time series.

Some existing approaches to analyse the stochastic behaviour of the Capon estimator are
based on unrealistic simplifying assumptions. In the present thesis we study this
estimator under more realistic assumptions (given in Section 0.6): we prove a Central
Limit Theorem, we propose and discuss an automatic selection criterion for its
smoothness parameter. A summary of the results can be found in Section 0.7.

Before we introduce the Capon estimator we present some preliminaries concerning a
‘classical’ non-parametric estimation of the spectrum.

The spectrum f of {X;};. 7 is a 2n-periodic, symmetric around 0 function, defined as the

Fourier transformation of the covariance function ¢, := E (XX1+y), ue Z. Thus:

0.1 £ = ﬁz coexp(-iu) , AeR

U=-co
supposing this limit exists. The spectrum describes the periodicity structure of the time
series. Roughly speaking, the time series may be decomposed into a sum of sinusoidal
waves of different frequencies: the amplitude of the wave of frequency A is a stochastic
variable with expectation 0 and variance f(A) (for an exact formulation see e.g.
Brockwell, Davis (1987) § 4.8: 'The spectral decomposition of a time series’).

We suppose that a realization X,..., Xt of a zero mean stationary stochastic process
{Xi}icz, Xi€ R has been observed. Classical non-parametric estimation of the spectrum
is based on the periodogram Ir:



T
0.2) H() = 2a1) ! 1Y Xeint |2
t=1
This is motivated by the fact that the periodogram is the finite Fourier transformation of
the empirical covariances o1{u), u = -(T-1),...,T-1:
T-lu]
0.3) &(w) =T1 Y XXpyjup
t=1

The expectation of the periodogram tends to f but its variance does not tend to 0.
Consistent spectral estimators are obtained by taking the convolution of the periodogram
with a kernel whose bandwidth tends to 0. An alternative smoothing procedure is the
Kolmogorov statistic which consists of taking the mean of periodograms based on
different segments of the original data (see (0.6) below). Estimators of these two types,
which are quadratic in the observations, have been widely used and studied. (e.g.
Brillinger (1975), Rosenblatt (1985) and Brockwell, Davis (1987)).

0.2 Introducing the Capon estimator

The Capon estimator is defined as follows:

(0.4) =t ) = EdE (B; T le, Ae[-m,x),

where Ed,T (defined in (0.5) below) is an estimator of the dxd covariance matrix I'=I4 of
(X15---X4a) ", by, := {exp(iAt) oo, q.1€ Cland d< T2 is a smoothing parameter.

(For be CY we denote by b* the transposed and by b the component-wise conjugation.)

As covariance matrix estimator we use the following 'segment' covariance matrix
estimator:

'z

0.5) Tr=Typs Tiap= LYY, where

I

11
—

N=Ng= Ny, = [Ié—d-]+1 and Y; = Y?'C :=( X(i_l)c+1,...,X(i.1)c+d )t, i=l,: N
(c-displaced segments of length d of the data).

The following graphic illustrates the segments:
X1 X4l X4 Xevd Xt
I T T T T 1

Y,

Y2

YN




Observe that for c=1 we obtain almost fully overlapping segments and for c=d we obtain

disjoint segments. This special case, namely the case of I'q 41 (disjoint segments), was
considered in previous works on the Capon estimator (e.g. Pisarenko (1972) and Subba

Rao and Gabr (1989)). Note further that I’ de,T is unbiased and not 'Toeplitz'. This is its
main advantage compared to some other estimators which are ‘Toeplitz'. (However in
Chapter IV we study the Capon estimator also in the case when, in (0.4), instead of

T4c;r 2 Toeplitz' covariance matrix estimator is used).

Subsequently we also write devc,-r for the Capon estimator when using /I:d‘c,T as
covariance matrix estimator. But we often suppress in our notation the dependence of
several quantities on d and ¢ (e.g. ?d,c,T £ ?T), and of d and ¢ on T, where this does not
lead to confusion.

The form of the Capon estimator is surprising since more classical estimators, e.g. the
periodogram and the Kolmogorov statistic, may be written as a quadratic form in an
estimator of the covariance matrix; on the contrary the Capon estimator is the reciprocal
of a quadratic form in the inverse of the estimated covariance matrix.

Let for example the segments over which periodograms are taken in the Kolmogorov
statistic to be exactly the Y; defined in (0.5). Then the Kolmogorov statistic (see also
Zhurbenko (1980) and Dahlhaus (1985)) may be written as:

0.6) Lie1(d) = (2nd) 1 B} Taer by

The periodogram may also be written in this form if one regards X'X, where
X = (X4,...,X7)", as an 'estimator’ of the covariance matrix I T

In the next section a motivation for the form of the Capon estimator will be given.
0.3 Motivating the Capon estimator

An advantage of the Capon estimator when compared to periodogram based estimators is
that it is very effective in coping with the ‘leakage effect' by using 'adaptive windowing',
when the covariance matrix estimator iﬂ- involved is unbiased (as the one defined in
(0.5)). When using a periodogram type estimator, mass from strong peaks may leak to
other frequencies and hide weaker structures of the spectrum. This effect is called
leakage effect’ (see e.g. Bloomfield (1976) Ch. 5.1-5.3). Leakage may be reduced to a
certain extend by tapering the data. Taperin g consists of multiplying the data X, by some
weights hi. Usually these are taken as ht:=hp(t T1), where hy:[0,1]-R is a



continuously differentiable function which equals 1 on [ p/2, 1- p/2] and decreases
smoothly to 0 at the edges, e.g. the p % Tukey data taper (see Bloomfield (1976), Ch.
5.2). Then the tapered periodogram is defined as:

©.7) 1) = (2nEp) ! | 2 hXei™ | 2 where Hy _Z h2,

t=1 t=1
Before explaining 'adaptive windowing' more explicitly let us describe very briefly what
causes leakage. The expectation of thc (non-tapered) periodogram is the convolution of
with the Fejer kernel AT(K) =T| 2 et | 2 Leakage is caused by the fact that the latter

places a lot of mass in the 51delobes Tapermg has the effect of concentrating the mass of

the corresponding (modified) kernel Hifl | 2 heiM | closer to 0 and reducing the mass
in the sidelobes. The Capon estimator us[e_slimplicitly automatic adaptive windowing: in
estimating f(A), a kernel is chosen for each A which minimizes -adaptively to f- the mass
contribution coming outside a neighbourhood of A and which, thus, may differ for
different As not only in location but also in form. Therefore the problem of choosing an
optimal data taper is avoided.

Let us now make the property of adaptive windowing more precise by giving the
motivation of McDonough (1979). Let ﬁLT be any unbiased, positive definite estimator

of T4 (e.g. T'q1 :=I'qc1). Fix A and consider the following class of estimators ?T-WAO‘):

~ ~o d
fT,w,»O\) = th Tyt wy, waeC

Note that e.g. the Kolmogorov statistic (as specified in (0.6)) belongs to this class: put

,lld;p =T deT and wy =(2md)'?b). More generally the average over hi-tapered
periodograms belongs to this class: put w; = (21 Ha) V2 h, exp[it] } 1=1,...a and ’I:¢T:=
Lac1 (see also Zhurbenko (1980) and Dahlhaus (1985)).

Then the expectation of ?T‘wk(k) is given by
T
= 2
Effru,®] = % Tuw, = f £ W0 au
-7

- 2 . -
The aim is to choose a 'good’ kernel 'W;bu! , that is to choose a 'good’ w;. A possibility
to formalize this is the following: in order to choose a direction for w), (a form for the

kernel) a logical demand is that the corresponding kernel has a peak in A. At the same

time the mass contribution coming from other frequencies should be minimized. This can
2

be obtained by minimizing,[ f(w !—\N—/&b,.J du under the constraint that | W‘xbxl =C for

some CeR. (The proper normalization C, on which the total mass of the kernel depends,



can be chosen afterwards). This yields:
2 -1
“'f{ %, Tawy || 70| = C } S v
: ; . . { =t 1 ]—1 -1
the infimum being attained at wy : =C| by T'q by | Tq by

The proper normalization can be obtained by setting f = 1/(2x). In this case I'q is the

identity matrix; in order that c?] b} by I*= (2m)! one has to take C?=d (2n)!. This
normalization seems natural for general f as well as can be seen from Relations (A.2.2)

: ¥
2
and (A.2.3). We remark that the mass of the thus obtained kernclf Mbu] dp is not
-
constant in A but that it will converge to 1 uniformly in A as d tends to infinity.
. . . o=t i k=] -1 ]‘1 .
With this choice of wj,the quantity W I'q wy becomes d (2r)' | by I'q by | ,which can
be naturally estimated by the Capon estimator. Let us underline that the above motivation
of the Capon estimator is only heuristics which does not even prove the convergence of
- -1

ryld [5ra by )" to £V

0.4 An illustration example

To illustrate that the Capon estimator copes with the 'leakage effect’ we present a
simulation example. T=512 observations were generated from an autoregressive AR(18)
process with innovation variance 1 and characteristic roots (for definitions see Section
V.1.2) z;! and 7}, with:

(radius , angle/r , order)

AR(18)  (z) (0.99, 0.3672, 3), (0.99, 0.3086, 3),
(0.995, 0.5625, 1), (0.9954, 0.6719, 1)
(0.9958, 0.7734, 1).

This process was chosen in a way that leakage is extreme in order to make visible the
differences between the estimators. For a more moderate example see Fig V.1.

In the next picture we present the Capon estimator and the smoothed periodograms
Igrh)*Kb, non-tapered and 100%-tapered. We use the Tukey data taper. As smoothing
kernel, we wuse the Barlett-Priestley kernel with bandwidth b:
Kp(x) := b [1- (x /br)?] on (-br,br) and elsewhere it equals 0. The parameters
(bandwidth for the kernel and d for the Capon estimator) were chosen empirically. All
estimators are computed at the points A :=2n /T, k=0,...,T/2. The estimators are
plotted on a logarithmic scale (natural logarithm).



From Figure 0.1 it is clear that the untapered periodogram suffers from leakage and fails
to discover weaker structures of the spectrum beyond the two main peaks. Leakage is
suppressed to some extend by tapering. On the contrary, one has the impression that the
Capon estimator is not affected by leakage although no taper was used for it.

Fig. 0.1. A realization of some spectral estimators

y-Axis scaled logarithmically, sample size=512 -

1
0.0m 02m 04 m 0.6m 08m
True spectrum T=512 —— Smoothed periodogram taper=0% BdWidth=0.008
Capon d= 90 ~—— Smoothed periodogram taper=100% BdWidth=0.008

0.5 Burg's relation

Several interpretations of the Capon estimator were given by Burg (1972), Marzetta
(1983) and Byrne (1984). The most known is the first; it states that the Capon estimator
with parameter d is the harmonic mean over autoregressive (Burg) estimators of orders 0

to d-1. Let, for example:
2(h)

o f47 be the Capon estimator as defined in (0.4) but with a Toeplitz covariance matrix
estimator given by some empirical covariances, e.g. (0.3) or a tapered analogon, instead
of (0.5). Let also:

2(h,AR : : ; ;
° fé,-r ) be the autoregressive spectral estimator of order p, defined in a classical manner
by estimating the coefficients from the Yule-Walker equations (see V.1.3) using the same
empirical covariances as for the Capon estimator.

Then Burg's relation states that:



a1 -1
A(h ~(h,AR -1
©.8) 20 = {at S [EBAR) )Y
p=0
Burg's relation has to be slightly modified when using a covariance matrix estimator
which is not 'Toeplitz' as (0.5) is not. We give this modification in II.1.4.

From Burg's relation it is clear that the Capon estimator will in general have a larger bias
than the corresponding autoregressive estimator -since lower order autoregressive
estimators are also involved in the mean- but will, on the other hand, be smoother (see
also Baggerroer (1976)). Therefore the comparison of the two estimators is an interesting
point which will be partially dealt with in this work.

0.6 The model, the assumptions and some notations

In this thesis we assume that the spectral density f of the time series exists and is
bounded above and below by some constants m, M >0: m < f < M. This assures that the

dxd covariance matrix I' = T'g of {X};c7z, with (i,j) element c| |, is positive definite for

each d. The latter also holds for fd,c,T, defined in (0.2), with probability 1if d < Ng 1.

‘We make the following assumptions:
(A) fis continuous and there exist m,M >0 with m < f < M. Further it fulfills

IC: |fx)-f@|< Cllog|x-y||?! Vxye[-n,x]
Assumption (A) is the minimal assumption under which the convergence of orthogonal

polynomials to f " is obtained (see Relation (A.2.3)). The (stronger) assumption (B)
allows to study rates for this convergence (see Lemma 1.3):

®) [ Lip*={g|3 M<w: |g0)-g|<M |x-y|* Vxye[-mnl},
where g is the r-th derivative of g.

(C) { X}z has higher order spectral densities f () bounded above for all orders k:
[[£0) || <o VK >0.

A spectral density of higher order is defined as a function f&) : [, ] ¥! — C, such that

k-1 k-1
cum(th,...,th) = i(k)(ocl,..., ak-l) exp (l 2 404 - tq i 2 (XJ) d(al... (Xk.l).
j=1 j=1



(Integrals are always taken over [-x, n]¥, for some k depending on the integration
measure.)

We remark that if {X;};.7 is Gaussian then £&) =0 for k > 3. Further if {X;}, is a
linear process, that is if it admits a representation as an infinite moving average over
some sequence of iid random variables {€&},c7, then condition (C) is equivalent to
existence of all higher order cumulants of &;.

We then have the relations:
0.9) Cu= f f(A) exp(iu)dih, Tg= f f(L) b;ﬁ;‘ dA, b; asin (0.4)

Finally we make the following two general notational remarks:

a) bounds of the form O [ar In (by)] with ar, bre R are to be read as O [ar ] when
br=1.

b) for any matrix A we denote by || A||the operator norm of the matrix:
Al]:=sup{ || Ax[|2 | [Ix|l2=1).

0.7 Summary of results

In this section we give a very brief summary of the results of the thesis. A more
extensive presentation of the results can be found in the sections 'Introduction, results' of
each chapter. The proofs can be found in the sections 'Detailed results, proofs' of each
chapter.

We first give some references concerning previous work on the Capon estimator.

Contrary to classical nonparametric estimators the Capon estimator is non-linear / non-
quadratic in the observations, being a functional of the inverse of the estimated
covariance matrix. There are therefore many difficulties in analyzing its statistical
behaviour. Until now very little theoretical work has been done in this direction. Its
asymptotic distribution has been studied by Capon and Goodman (1971), Pisarenko
(1972) and Subba Rao and Gabr (1989). Their approaches are based on the unrealistic,
simplifying assumption that independent, Gaussian segments Y; (of length d) of the time

series are available (i.e. that I'r is exactly Wishart distributed).

In Chapter I of the present work we show the asymptotic normality of the Capon
estimator, when the latter is defined by using the segment covariance matrix estimator, as
in (0.5), and when d, T—ee. We drop the assumption of the Gaussianity of the original
process, substituting it by the boundness of the higher order spectral densities (see above
assumption (C)). We study the bias and variance of the Capon estimator



and,consequently, we recommend the use of an 'almost-fully-overlapping-segments
covariance matrix estimator' (c=1).

A further result of more general interest is the improvement of the condition sufficient for
consistency in the operator norm of the covariance matrix estimator: whereas other
authors require d 2/ T—0, we only need d 1*¢/ T—0 for arbitrary £>0.

In Chapter I we develop an automatic data adaptive dimension selection criterion for the
'smoothness' parameter d -the dimension of the covariance matrix estimator used. The
necessary.expansion is carried through up to including second order terms thus yielding
as by-product an improvement of the AIC (an order selection criterion for autoregressive
type spectral estimators e.g. in Brockwell, Davis (1987) § 9.3).

Finally, based on these considerations, we propose a (quasi) bias correction for the
Capon estimator (which can also be carried over to autoregressive estimators); we also
show that the corrected estimator has asymptotically, in mean, a smaller error.

In Chapter III we show that the dimension selection criterion developed in Chapter II is
asymptotically efficient in the sense of Shibata (1980), using the Whittle distance as a
discrepancy: the error in the estimation of f when using this dimension selection criterion
is asymptotically equivalent to the minimum possible error (for d smaller than some
dmax—°°).

In Chapters II and III we assume almost fully overlapping segments (c=1).

In Chapter IV we show the asymptotic normality of the Capon estimator, when using
other covariance matrix estimators instead of (0.5). Namely, we first discuss the use of a
symmetrized-segment covariance matrix estimator, and secondly a Toeplitz covariance
matrix estimator based on tapered data. In the latter case the necessity of tapering, which
was supposed to be avoided by the Capon estimator, is reintroduced: from Burg's
relation follows that the estimator will be affected by leakage, since the (Toeplitz)
autoregressive one also is. However we study this case for reasons of completeness.

In Chapter V we study, with a simulation, the performance of the Capon estimator as
compared to other non-parametric estimators of the spectral density. We also study the
performance of the dimension selection criterion and the (quasi) bias correction proposed
in Chapter II.

In the Appendix we state and prove some lemmata concerning the properties of
‘orthogonal polynomials' associated with f and some derived quantities, as well as two
other technical lemmata.



L. THE CENTRAL LIMIT THEOREM

I.I INTRODUCTION, RESULTS

The aim of this chapter is to prove the asymptotic normality of the Capon estimator ?d,c,T,
as defined in (0.4) and (0.5) and to study its bias and variance assuming d,T—eo. In our
proof we use a refinement of Pisarenko's expansion argument, the theory of Orthogonal

Polynomials of Szegd (1959) and for the cumulant calculations the concept of ‘LT
functions’ of Dahlhaus (1983).

A technical result of a more general interest is Lemma I.2 in which we
prove I ' ,I:d,c;r - Fdll —0 under the assumption ¢ d 1*¢ T —0. This convergence is also
used in the context of non-parametric spectral density estimation or prediction of time
series via autoregressive approximation (e.g. Berk (1974), Shibata (1980), Lewis et al.
(1985)). In these papers it is proven under the stronger assumption d2 T-! —0 and c=1.

We now proceed to the statement of the main theorem of this chapter.

Besides the assumptions on the regularity of the spectrum f ((A) and (B)) and the
boundness of spectral densities of higher order (C), we also need some assumptions on
the parameters ¢ and d of the estimator which are allowed to converge to e together with
T. Assumptions i) and ii) of Theorem 1.1 are 'consistency conditions'; they will be
discussed in Remarks 1.1 and 1.2 below. Assumption iii) enforces d—>eo. It is only
needed to assure the convergence of the covariances of the estimator to the values given
in the theorem (see also Lemma 1.9).

The asymptotic normality of the Capon estimator will be stated in terms of ’f\d,c,—p divided
by some proper normalization so that the variance does not depend asymptotically on the
spectrum f. As such normalization we first take the theoretical quantity corresponding to
the Capon estimator (statement 'a’ of the theorem) which is defined as follows:

@) i) =L B v’ 2er.

Secondly we take the spectrum f as normalization (statement 'b' of the theorem), which
is the quantity one wants to estimate. In doing this we introduce a bias term due to the
approximation of f via . In statement 'c’ of the theorem, which could be used e.g. for
constructing confidence intervals for f, we impose an additional condition on the speed of
convergence of d to infinity forcing the above mentioned bias term to converge to 0

(when blown up by YT/d ).

10



The asymptotic variance of the (standardized) estimator is given by limp_,., 6 (dr/c1),
where

0(x) :=x-1 z - |u| x1]?, xeR*.

Julkx

The appearance of the function 6 in the variance is better understood by observing that if
2 k
x=ke Z* then 8(k) = (2 k) [ [A¥00)] *ah, where %)) == k113, eitt |2 which is
1=1
the Fejer kernel. From Lemma A.5 we have that 8(x) will tend to its minimum value 2/3

e.g. when cy=1 and dy—eo (almost fully overlapping segments) and it will equal 1
when dt = cr (disjoint segments) (see also Remark 1.2 below).

For fixed ve R* and Age[ -7, 7 ], k=1,....K let Z;V =( C‘{,,CIV( ) e RX be a Gaussian
random variable with expectation 0 and covariance cov(CJY, C;): V[Sljﬁk + 87»5-7»1(]’
where & denotes the Dirac function, extended to be 2n-periodic.

Theorem L1 Suppose that (A), (B) and (C) hold and the sequences cr, dr fulfill
i) cd!*€/T — 0 for some e>0 ,

ii) ¢/d < C for some constant C <ee.

iif) d-PIn(T) (In(d))2 ln(c) — 0 (where B := -l—%, r, o as in (B)) as T tends to
infinity.

Then setting v := limy_,., 6 (dt/cT) (assuming it exists) we have:

VTd? {f—‘L;—T (A4)- 1} =p ¢’
d

k=1,..,.K

pVTdl ldeCT (A - 1-Bd(xk)> =D ¢, where By =T £ -
k:

Remark L1: Bias considerations. The bias of the Capon estimator E ?d,c,T -f
consists of two parts. The first results from the approximation of f via fs. It is the part
represented by By in the above theorem. Its order of magnitude is studied in Lemma 1.3

below. The second part of the bias E ?d,c,T - T4 results from the non-linearity of 'f‘d‘c,T. It
is shown below, in Lemma L4, to be of order O (c d*¢ In(T ) In(c) In(d) / T) , V £>0.

11



The (quasi) bias correction of ?d,c,T proposed in Section II.1.3 concerns this second part
of the bias.

Remark I.2: Choice of ¢. From the properties of 6 (Lemma A.5) it is clear that the
variance tends to the minimum possible value 2/3 when ¢ / d —0, while it equals 1 when
c=d (disjoint segments). Moreover for fixed d the coefficient of the first order expansion
term of the variance and of the bound for E ?d,c,T - T4 are minimized by c=1 (see also
Remark I.1). Note that for c=d the consistency condition ii) in Theorem L1 is
d2*¢ / T — 0 whereas for c=1 itis d'*¢/ T — 0.

Remark I.3: Interpretation of d. The role of d in the Capon estimator and in the
Kolmogorov statistic I, defined in (0.6), is analogous to the inverse b 1 of the
bandwidth b in the kernel smoothed periodogram It * Ky, where 11{?») is defined in
(0.2), Ky(x) := b! K(x b-}) and K is a kernel. This may be seen by a comparison of bias
and variance; the variance of the limiting distribution of %d,l,T f-! (and of f! Id,l,-[(?») ) is
approximately (2nT)! | (Ad)2 =% d/T, where A" is the Fejer Kernel (see Section 0.3)
and that of (It * Ky) f! is approximately (Tb)"! [K 2 In the same way, if f fulfills (B)
with r=0, the (first part of the) bias of the Capon estimator is of order O(d“‘ln(d)) (see
Lemma 1.3), that of Id,l,'r(l) is of order O(d-%), while the bias of the kernel smoothed
periodogram is, as can easily be seen, O(b%) if K is Lipschitz continuous.

On the other hand, if ones imposes stronger regularity conditions on f, €.g. that the k-th
derivative of f is bounded from above, then the bias of the Capon estimator and of
Id,l‘-[(?») remains in general of order not smaller than O(d'l), whereas the bias of the

kernel smoothed periodogram becomes, as can easily be seen, O(bk) if the first k-1
moments of K vanish.

Remark L4: Choice of d. If ¢ equals 1 (following Remark I.1) the problem of
choosing d arises. This problem is dealt with in Chapters II and III, where an AIC-type
criterion is developed and is shown to be asymptotically efficient in the sense of Shibata
(1980).

Remark L.5: Efficiency considerations. In order to compare the performance of
the Capon estimator to that of other estimators, we consider bounds of the convergence
rate to 0 of any error criterion, which has the form squared bias + variance. Assuming
fe Lip® the error of the Capon estimator, the Kolmogorov statistic, the kernel smoothed
periodogram and the autoregressive estimator have almost the same rate (up to In(T)
terms): we get by a minimization of d 2%1n%(T) + dT ! (see Lemma 1.3) that the error of
the Capon estimator is O{T“(Z“) /@e+1) 1n2(T )) (the power of the In-term has to be
doubled when o=1). This is almost the same (up to the In-terms) as the rate for the kernel
smoothed periodogram (Parzen (1957)), for the Kolmogorov statistic and the
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autoregressive estimator.

On the other hand, if one imposes stronger regularity conditions on f, e.g. that the k-th
derivative of f is bounded from above (it follows f<-Ue Lipl), the error of the Capon
estimator and the Kolmogorov statistic has a slower rate than the one for the kernel
smoothed periodogram and the autoregressive estimator. The error of the Capon
estimator and of Iq  {A) remains of order not smaller than O{T-23). The error of the
kernel smoothed periodogram becomes, as can easily be seen, O(T‘(Zk) / (Zk“)) if the
first k-1 moments of K vanish; already for k=2 and K symmetric this is O(T-45). The
error of the autoregressive estimator is of order O(T‘(Zk) /(@x+1) an(T)) (which follows
easily from Lemma 1.3). The difference between the first two estimators, on the one
hand, and the two latter, on the other, is due to the different order of the bias (see
Remark 1.3 above). Note that for the two latter estimators (not for the Capon) the error
rate approaches the 'parametric rate' O(T‘l) as the smoothness of the function increases.

Note also that O(T'(Zk) / (2‘“1)) is the optimal rate under the conditions used here (see
e.g. Rosenblatt (1985), Ch. V.6).

The proof of Theorem I.1 is obtained from several technical lemmata in Section 1.2. We
now sketch the basic idea of the proof and present two results that are of a more general
interest.

To obtain the asymptotic distribution of the Capon estimator we need an expansion of it.
It turns out that it is technically more convenient to expand the standardized quantity
-1

faer/Es = (B;t (fly)'l b;) )
where

a2 Tar =’I:;,C,T= U Taer (UY" and by:=Ug'b, / | S|P

Here I'y = Uyqg U,‘j is the Cholesky decomposition of I'y (Ug = U4 is a lower triangular
dxd matrix). Quantities involving a standardization with U3 will be denoted by "*'. Thus

~k ~
Iyt is a 'standardization’ of I'yT.

~% \-1 ~ -
By a Neumann expansion of (I‘d-r) we show that fg / fqis asymptotically equivalent
to

(1.3) LY = I 1) = by Tarb,.

I;_C,T may be interpreted as a 'standardization' of the Kolmogorov statistic Iy ¢ 1, defined
in (0.6). I;,C,T is a random variable which involves the (unknown) true covariance matrix

13



but is quadratic in the observations and can therefore be studied by standard cumulant

,I:d,T - I“ —p 0, where I is the dxd

methods. For the expansion to be valid we need l
identity matrix. This is assured by the following:

Lemma L2 Assume that (A) and (C) hold and that the sequences cr, dr fulfill

d ¢ In(T)In(c)/ T =0 and ¢ /d < C for some C as T tends to infinity. We then
have:

~ K
E H Tar- IH =0 (cd" In(T) In(c) In(d) / T)¥?, £>0, Ke Z* arbitrary. ~ ®

Another result of general interest concerns the (first part of the) bias of the Capon
estimator (see Remark I.1). It gives upper bounds for the convergence rate of fa-fto
zero. By (¢k(l)}ke N we denote the system of orthogonal polynomials associated with f

(see Appendix: A.2). The quantity E{l may be written as the mean over the squared
modulus of orthogonal polynomials (see (A.2.2)):

z-1 ¢ 2
fBl=at Y o]
i=0

Since lower order polynomials are also involved in this mean, it is clear that in general
f4 - £ will be of order not smaller than d!.

Lemma I.3 Assume that (A) and (B) hold and let r and o as in (B). Then the
following hold:

2| |o6]?- £1]] = Ol *In(@)

- Olale+onilin@)) if r+om1
ol &t -1l.= .
O(d'1n2(@)) if r+a=1

1.2 DETAILED RESULTS, PROOFS

Here we prove the results stated in 1.1. In Section 1.2.1 we prove Lemma 1.3, in Section
1.2.2 the asymptotic equivalence of %d,c,T /% and I;yc,T, in Section I.2.3 we bound the

Tar- I|| (Lemma 1.2), in Section 1.2.4 we study the cumulants of I;,c,T
and in Section 1.2.5 we prove Theorem I.1. Some intermediate steps of the proofs will
be stated as separate propositions since they will be also used in subsequent chapters.

moments of |
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1.2.1 Bias considerations (part 1)

In this chapter we prove Lemma 1.3 by utilizing properties of orthogonal polynomials
which are proven in the Appendix. This lemma concerns only the component of the bias

of the Capon estimator resulting from the approximation of f via f3 (see also Remark L1).

Proof of Lemma 1.3
a) The result follows directly from Lemma A.3 a), taking p, =n=d. Observe that by
(A.2.4) we have | Waa|?= [ta] 2

b) Follows directly from a), smce“ [A -f1H <4 2 ” IQ)P -f“HM. O
P—

1.2.2 Asymptotic expansion and bias considerations (part 2)

In this section we prove the asymptotic equivalence between fgc 1 / T4 and I;;,c,’l“ As a
by-product we also obtain a bound on the bias E facrid 1_ 1. We state the result in a
somehow more general context, allowing also for other covariance matrix estimators,

because it will be needed in this form in Chapter IV. In this order let lA'd,T be any dxd

A%
~

~ ~k
covariance matrix estimator and define fgy, Tqr and Iyt analogously to

’f\d,c,T, /l:'d,c‘T and I;‘C‘T respectively (see (0.4), (1.2), (I.3)). Then the following holds:

Lemma 1.4 The following two implications hold:

T/d

2 ~ ~k
—p0as T—eothen YT/d [?d,T/?d-Id,T]—f,o

O (oty) for some sequence ot then

E[E,T/fd-f;T}:O(“T) *

Proof. First note that :

~ |1 4 ‘
st s Pl vt v el )
1 1 by \la1/ by -

(5% (U ugt by

&
-
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A%

’I:d_T - IH < l/?.}, Then on At we

Now let the following event be denoted by At = { ‘

~% -1
may expand [I"d;p} :

RN T

j=0
This implies
¢ ~* )1 ) i a* (

— * —k *

(bx <F¢T) b/-1 = b;‘(I-I’dYT)bK + O | )onAT
Since we have:

( ; N -1
€ by, (rd.T) bx) - 1] <
it follows from the preceding that
-1 -1

@ By rdT b;) -1=b (rﬂ I)bx + o( on At

2
—p 0 and P(A(T:) —0 i) is proven.

Since Bit(f‘¢T-I) = T/d

We now turn to the proof of ii). First note that (1) above holds everywhere, not only on
Ar. From this and (2) we have that:

E[?d,T/?d'iT] < O(1>f

Ar

At

c)} 172

+ O(l)[

This concludes the proof. O

Remark 1.6 We consider the case Ty =TIy 1. In this case we obtain E I;»c,T=1. This
together with Lemma 1.2 yields a bound on the second part of the bias of the Capon
estimator:

Efacrfi'-1=0(cd In(T)Inc) In@)/T), V e>0.
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1.2.3 Consistency of the covariance matrix estimator

In this section we prove Lemma I.2 as a direct consequence of the following Lemma L5.
LetN = Ng.T asin (0.5).

Lemma L5 If (A), (C) hold, Ke N is even, d N-lIn(N) In(c) =0 and ¢/d<C

(for some constant C) then we have
~ K
Etr[l‘d,-r-l] =O(N'K/2dK/2"1[ln(N)In(c)ln(d)]K/2 ). e
The proof of Lemma 1.5 is rather complicated. The first step is given in Proposition 1.7.

The actual argument is given in Proposition 1.8. A technical tool used here and in
subsequent chapters is Proposition I.6. First we introduce the following notation:

Table I.1 We consider a 2 X k table of variables of the form:
a; By
ox B

and partitions 4¥) ={ Py, ...,Ps} of the 2 x k table. Let s; :=| P;|. For a partition subset
P; :=(K1,....Ks;) (x stands for some o or B) denote by K= (Kl,...,KSi.l) and set

si-1
K, 1= - 2 ;. Let 2 denote summation over the indecomposable partitions of the
i=1 ip. (k)
2 X k table, 2 denote summation over all partitions of the 2 X k table and Z
ap, (k) ap\, (k)

denote summation over all partitions of the 2 X k table excluding those which contain a
partition subset consisting of exactly one row of the table.

For a fixed partition %) we will call indecomposable row-subtable a union of rows of
the original 2 x k-table, if and only if it can be written as a union of some partition
subsets and cannot be split up any more in this sense. Similarly we will call
indecomposable diagonal-subtable a union of diagonals { o ,Bis1 } of the original 2 x k-
table, if and only if it can be written as a union of some partition subsets and cannot be
split up any more in this sense.

......

17



Proposition 1.6 Assume (C). Let A; j=1,....k be arbitrary TXT matrices. Using
the notation in Table L1 (e.g. S is the number of partition subsets of, s; :=| P;| ) we
have:

k k S
2) cm(H xtij) = 1'[ £69 () [ vb;Asbp; TT dxi
j=1 i=1

=1 ap, (k) i=1

b) cum (X'AX,... X'AX) = Y, Hf<so HbaJAJ b HdKl
ip, (k) i=1

k
oycum|[][X'AX - ExtA,-x]) = ¥ H £63) (x; H b; Ajbg; H dx; °
=1

ap\¥, (k) i=1

Proof. The results follow from the product theorem for cumulants by straight forward
calculations and by using the spectral representation

cum(X gy, Xeg) = | {0, 0g-1) exp('Z 10 - tqz aj) L 0gq) O

j=1
Let further Ej = E°" :=[0gxg1yc Ia Oaxra.nye)] € R™T. Then Y; = Y§* =EX

N
Denote by AN(X,) =Nl | G)N(l)| 2 the Fejer Kemnel, where @N(k) = 2 eiM and also by
t=1
Kalee,B):= T3 bp.

For a given partition #¥) of the 2 x k table 1.1 we denote by

Vv (,_P(k)) Nk H f(S,) H (©) (ca, + CB) Kd( o, Bwl) H di;

and by
V (ﬂik)) =N * Ik-[ LN (C(li + Cﬁi) Ld (ai + Bi+1) ﬁ d;i
i=1

i=1

where the LN functions are defined in the Appendix (A1). In these expressions indices
are always taken mod(k): e.g. Px+1 = 1.

The proof of Lemma I.5 will be obtained directly from the following two propositions:
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Proposition .7 Assume (C). Then we have (using the notation of table I.1)

Ee|[fir-1]" = 3 V() .
ap\¥, (K)

Proof. From 1 = (ZR)'lf b, b5, dA (Lis the dxd identity matrix) we obtain:

A~k K K ~% K
ﬁ[ Tar- 1} =emy® | J1 554[ Tar- I] Brer L1 9Mi
i=1 i=1

Observe that:

~% N
B, Tar-1] by, = XAX - By, where A; = NTY. B (U by, BLUZ B,
j=1

We have that E; by = exp|-i (j-1) cB] b. This yields:

b Ajbg =N 0" (carreB) bl (U) by, B by expl-i (ca+ep)).

A~ K
With these we get directly from Proposition 1.6 c¢) that the expectation of tr{ Lt - I]
equals (using the notation of table I.1)

N K K S
(2nNyK \Z(K) LT £XRITT [0 cou+<Bd b (036, By, Ualbg]T T a[ T o
ap\¥, i=1 i=1 i=1 =l

The desired result follows after integration with respect to A;, i=1,...,K noting that:

) 1 . 1
(@ny! j bl (U 'or,, B, Ud b, dhiar = by T b, = Kd-oi Bir) O

Proposition 1.8 Assume that (A), (C) hold and ¢ /d < C (for some constant C).

Further let for K arbitrary X bea partition of the 2 x K table I.1 which does not
contain any partition subset consisting of exactly one row of the table. Assume that

£K) consists of M row-subtables and L diagonal-subtables. Then we have

V (Q(K)) =0 (N MK g 14+K-M o M-K+L-1 In@N) K-M In(c) K-M-L+1 In(d) M ) °

Proof. First enumerate the elements of each partition subset P in such a way that its last
element appears in the first row of those containing elements of P.
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To prove our assertion, we will integrate with respect to (and successively eliminate) the
variables under the integral in ? (:l{K)) using Lemmata A.1 i) and A.1 ii). Note that this is
possible since we have the structure needed to use them: each variable appears once with
positive and once with negative sign in the arguments of the LN-factors as well as in the
arguments of the Ld-factors (if it appears at all). We will use the following integration-
elimination scheme: first integrate with respect to / eliminate the variables (which are not
the last of their partition subsets) in the first row of the 2xK table, then in the second,
and so on. Use Lemma A.1 i) where it is possible.

Observe that the factor LN(caj+c[3j) appears in the integrand in V as long as neither o;
nor Bj have been eliminated. In this case we call the row j ‘unconnected’. We also call
‘connecting' an unconnected row when we integrate with respect to / eliminating o or

B;-

In this integration / elimination process LN(0) =N will appear exactly when all rows of a
row-subtable have been connected; thus we obtain the factor NM for the final bound. In

the same way we also obtain the factor dL. Finally Lemma A.1 ii) will only -but not
necessarily- be used when connecting a row, that is at most K-M times. Moreover we
claim:

(1): the number of times Lemma A.1 ii) will have to be used instead of Lemma A.1 i)
does not exceed K-M-L+1.

Accordingly in the final bound the factor
« d In(N) In(c) /c will appear whenever Lemma A.1 ii) is used thus K-M-L+1 times;

« In(N) will additionally appear whenever Lemma A.1 i) is used (on two LN
functions), thus K-M times in total;

» In(d) will appear whenever Lemma A.1 1) is used (on two Ld functions), thus
K-L+1- (number of times Lemma A.1 ii) is used).

These yield:
V (%) <0() NMK L (glc_)K'M'L+1 In KM I () KML#1 gy (KLe1)-(KML+1)

This proves our assertion. It remains to prove (1). In view of our remark preceding (1),
it is sufficient to prove (2).

(2): for each diagonal-subtable up to the one containing o; and Bx one may use Lemma
A.11) instead of Lemma A.1 ii) for connecting its last row.
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Proof of (2):
Let Bj+1 be the element of the diagonal-subtable considered in (2) with maximal index.
Due to our enumeration we may assume -without loss of generality- that

i) Bj+11s not the last element of any partition subset;
ii) the row j+1 has not yet been connected;

iii) the row j has been connected and o, B; have been eliminated, if they are not the
last elements of a partition subset.

There are two cases:

i) @ is the last element of a partition subset P. Then the P must contain B;.;. The
reason is that since Bj+] has maximal index in its diagonal-subtable, our enumeration
allows only B;, Bj.1 as probable candidates for elements of P. The assumption that there
is no one-row partition subset excludes the case ;.1 ¢ P.

ii) (i) is not fulfilled, that is 0,; is not the last element of any partition subset P.

In both cases Bj+1 does not occur in the argument of an L9-factor and thus the j+1 row
may be connected by using Lemma A.1 i). This proves (2). O

Proof of Lemma L5 According to Proposition 1.7 it is sufficient to show that for any
partition 4% of the table I.1 | \% (Q{K)) | has the desired order. Now, because of Lemma
A.2, we have I \% (fl(x) | = O( —Vv (T(K)) ) and Proposition 1.8 yields the result with
the help of the following three observations:

a) M <K/2, as each row-subtable consists of at least two rows.

b) d N-1In (N) In (c)—0 by assumption and

¢) M-K+L-1<0, since each m-row-subtable contains maximally m-1 diagonal-subtables,
except the m-row-subtable which includes the first and last row; it may contain
maximally m diagonal-subtables.

Concerning c) let us remark that there are partitions for which M-K+L-1=0; for example
the partition {((xl, Bz),...,((l](, Bl)}. Thus we do not really loose anything by this
inequality. O

Finally we prove Lemma 1.2 as a simple consequence of Lemma L5.

Proof of Lemma I.2 For any peZ., p even, Holder' s inequality and Lemma 1.5
yield with some constant Cy p:

o1l < (B e[f-07) "

-1l <[el

E|
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1+ 2/K, K
£ Gk, c dl+2/Kp 1n(¥’ ) In(c) ln(d)) =0 (C dl*€ In(T) In(c) h’l(d)/T)m
if p is chosen in a way that K <E ]

1.2.4 Cumulants of I;,C,T(l).

In this section we study the second and higher order cumulants of the random variable
I;,c,TO")' Let 8 and & be defined as in Chapter 1.1 and N = Ng. 1. We prove the
following results:

Lemma L9 Under (A), (B) and (C), assuming T—ec and ¢ /d < C for some (8
we have:

E[5 10 -1]=0, and

cov[ \/_NT? i1V, \/'_%—?IE,C,T(IJ)] = {

L 0(d/c) [Brup + B+ ORY), else

O(Ry), if A#+L mod(2r)

with  Rp:=d2[|a]?+| A+ ?] 10(N) In@) In() + Ry and

Ry :=d P In(N) (In(d))2 In(c) +d(c N)1, where B:= litfa, r,o asin (B). ©

For the next lemma we use the notation of table 1.1 (with r instead of k). Further we
regard the partitions of table L1 as naturally and simultaneously translated to partitions of
the following table:

A -A

A e
For a partition subset P of this table we write zﬂiepﬁq to indicate the sum of its

elements.

The next result is broken into two parts: only the second bound is needed for the proof of
Theorem L.1; the first is needed in Chapter IIL
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Lemma 1.10 Under (A), (B) and (C), assuming T—ec and ¢/ d < C (for some C)
the following holds:

cum | 4 T 1 1), B2 Tho1(h] =
s
=0[a4/2+1) (Nc) 472-D (in(c) In(N)) 1] supyn In@y~S*1[ | Ld(ZﬂiepjiM)
j=1
=0 [de 1N 1] [1(N) In(¢) ] In(d)) .
In order to prove these two lemmata we need the following technical tool (using the same
notation as in Table I.1):
Proposition I1.11 Assume (C). Then the following holds:
I
Nc * Nc * c \r2gr r F
cum| 4/ 2 Iy tr), ..\ = Lict)|={ 55 dT (2n) [ t‘d(k) :|
[Vdd” d T](dN) Jl;l :
S r S
z(’ ) H £05) (Ki) H [ Kd(lj , 0 ) Kd(-xj s ﬁj) @N(C(Xj + cﬁj)] H dg;.. ©
ip, (k i=1 j=1 i=1

Proof. The proof is a direct consequence of Proposition I.6 b), by observing that

N
rA)=2nd1EA) XA, Xwith A, :=N-1Y E!Ts" by b I'4" E; and that
A A i A J
=1

bl A by =Kq(h, ) Ke(-A, B) N1ONcot o) expli(corcp)l O

Using this proposition one may prove the lemma concerning the first and second order
cumulants of If(A).

Proof of Lemma L9 The first statement concerning the expectation of I;(k) follows

A%k
easily by observing that E Tr=14.

Next we study the covariance structure of I-;OL). The indecomposable partitions of the
2x2 table I.1 are

D{or, B2}, {Broo) i {on,az),{Br,B2) i) { o, ca,Br,B2)
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Thus by Proposition I.11 and setting

Pocr(Ehm) = f f(c)) £B) A"(cB-cer) K, o) K-p,-ct) K, B) Ko -A,-B) dex dB

we obtain:

cov[ -%I-}(K), %I{{u)]=
a3 2n)2 B0 ) Efu )k [ Pact(EAm) + Poor (EAp) +
ff(“’(a,ﬁ,v) ANcarrcB) K, 0) K1) K y) Ked-p-(e+B+y) d(opy)]

Now the last integral in the above expression multiplied by ac may, by Lemmata A.2
and A.1, be shown to be O(d-! In(N) In2(d) In(c)) under (C).
With the same method we obtain

d-3 ¢ Pygr(f.A.41) = O (In(N) In(@) In()) d 2 (L9{p-2)

Since for p#t+A mod(2n) and for d sufficiently large we have (Ld)z(u-k) = | u-?»lz, it
remains to prove that:

d3c (2n)2E0) Pacr(fAA)=6(dc)+OR,y).

To prove this, let gdA) be a sequence of AR(pa) spectral densities, pa := A1+ 1, o as
in (B) with|| gg - f||. = O(pd'(”a)) (Lemma A.3). Then it follows that:

d 3 C | Pd,c,T (f’)"v)") - PdC,T (gdv)"vl)l =0 (d * ln(N) lnz(d) ln(C)) ’ ﬁ:_l-l:;g'a )

This is proven by substituting in Pg ¢ T (f,?»,k) successively all quantities depending on f,
that is f and Kq4 (f,?»,p), by the quantities corresponding to gq. Observe that the error for
each substitution is O p™® In(@) )| d ¢ Peer(£:41)]=0( df In(N) In2(d) In(e))

d-1 —
Now let K, (£Ap):=(2n)" > 00 60, {0 )ken as in A2 and define

j=p
PE,P,C,T (f,?», u) asPgct (f,k, u] by substituting K;yp (.,.)instead of K4 (.,.).

Again we obtain, with p:=py,
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d3c | Pip e (gahd)-Pacr(gart)|= 0Old#1nN) In%d) Ine)) .

This follows from

| Ke(htt) - K3, ()] £ O1) A1) O (B]14w-2) O (a#)14u-2)

using the same argument as above. Thus remains to prove that:

d3c (2n)2gdh) Pipyerlzarn)=6(dc1)+ ORy)

But in P;'P e T (gd,l,?») enter only the polynomials orthogonal to gq of degree k = pq,
which are exactly known (care of (A.2.4)). By substituting them, all the terms depending
on gq are canceled. We now substitute the remaining 2}1;1, ei (@D () by 2}1;%) ei(en)(u2)
having again a total error of O(R;). As elementary calculations show the remaining
quantity equals

cd! 2n)2 f ANcarcp) AYo-r) aYp-1) d(oB) =6{dc)+0ldecINT) O

Finally we prove the lemma concerning the higher order cumulants of I;O»):

Proof of Lemma 1.10 The proof follows partly the lines of the proof of Lemma 4.5
of Dahlhaus (1985). Fix a partition £9={ Py, ...,Ps} of the 2 xr Table L1 and let
si :=| Pi|. According to Proposition I.11 and Lemma A.2 it is sufficient to show:

n [ L0+ L Ag+B) Neorshes] H a5,

S
= O(N (d/c In@) In()™ In@ =Sy ¥ +n
=1 +hePj
since S <rand L4<d.

To prove this we assume, without loss of generality, that the Pj, j=1,...,S are
enumerated in such a way that for each P; exists a P (for some k < j) and a row of the
table, such that P; and Py contain at least one element of this row. This is possible by the
indecomposibility of the partition. Now let:

U :={ Ke Pq , g >t such that: k has a row-neighbour e Py, q' <t } and by

V, :=( ke P, such that: x has a row-neighbour € Py }

(where x stands for some o or B of the Table I.1 ) and let
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‘We claim that:

(1) for t < S the integral over Ei, i=1,...,t of terms in the expression to be bounded,
involving these variables, is less than or equal to some constant times

(- P CK)H L Zererithy)

To see that the desired result follows from (1), observe that:

E(s DHmy-1)*-n; SR T
dIn(N) ln(c)}l 1 [m@]g( e

a) (mp-1)*=0, m21fort>2, since Uy NP, #@, which follows from the
t t
enumeration we chose. This implies that Z (m; -1)* = 2 (m; -1).
i=1 i=2

S
b) Z ne+ 2 m; =T, since the first sum equals the number of rows occupied by elements
t=1 t=2
of the same partition subset and the second that of rows occupied by elements of different

partition subsets .

s s
Thus: Y e+ Y (mel)t = S+

These in turn yield a final bound of:

$ S
{H L Zonierith )} [4/¢ 1m0 )i (655 -1)-(my -1)*n;] @) [(m; -1)* +n]

which is exactly of the desired order.

To check the validity of (1) it is sufficient to prove it a) for t=1 and b) for t+1, assuming
it holds for t. Set P, := {Kl,...,l(st}. We indicate the proof of b) assuming further that

¥ € Uy, K, € U1 (note that the chosen enumeration of the partition subsets
guaranties Uy N Py # @ ). The other case (which may be treated by similar arguments)
is that Py < Uy.;. Assume ¥; =ap, K= bg. Lemma A.1 ii) yields:

sp-1

L9va) L ( " apzx,) o 3 o L»(aq%zz,c) sy 2

xe U1
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O(d/ ¢ In(N) In(c)) Ld(x?-xq-s’z'l acj) LN(caq- > oek+ Y cx).

=2 xe Up.1\Py xePAUL.1

Notice that the ke U;.;"P; do not appear any more in the argument of an LN factor (we
call this (¥)). Therefore they can be eliminated by using Lemma A.1.). After having
integrated with respect to / eliminated a ke Vi, (*) holds also for its row-neighbour. So
the number of times (*) occurs while integrating with respect to elements of P is
(m -1)*+n,. The proof is completed by integrating with respect to / eliminating
successively all e Py, bearing in mind the above remark. It yields that the power of the
factor In(d) in the bound will be (m; -1)*+ny, and the power of the factor d /¢ In(N) In(c)
will be s-14(m; -1)*-n..

What remains is exactly Ld(zﬂje p[+lixj). This finishes the proof of b) O

1.2.5 Proof of Theorem I.1

Under our assumptions Lemmata 1.2 and 1.4 yield that VT/d &5’ (K) and"
VT/d I’}()\.) are asymptotically equivalent. On the other hand, using the cumulant

method together with Lemmata 1.9 and 1.10, one gets that YT/d [I—}(X) - 1] is
asymptotically normal and has the desired covariance structure. This proves a). Our
second assertion now follows from the fact that

bfl- 1-Ba = Bt [BE -1 = [ 8 - 1) (1+ O dleronilina) )

by Lemma I.3. Finally c) is a direct consequence of b) and Lemma I1.3. O
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II. CONSTRUCTING A DIMENSION SELECTION CRITERION
II.1 INTRODUCTION, RESULTS

Qur aim in this chapter is to construct a 'dimension selection criterion’ for the parameter d
of the Capon estimator, that is a procedure allowing the automatic, data adaptive, choice
of this parameter.

In previous chapters we discussed the role of d as a smoothing parameter. In our
examination of the asymptotic distribution of the Capon estimator we let d—eo, assuming
this convergence is not too fast. This approach does not offer any solutions on the choice
of d in a finite sample situation. Thus the need for a dimension selection criterion is
obvious: a too big value of d will inflate the variance of the Capon estimator; a too small
will lead to a larger bias. Therefore we try to estimate the value of d which minimizes a
certain error criterion or discrepancy of the form squared bias + variance.

From Remark I.2 it is clear that the parameter ¢ of the Capon estimator should be chosen
as equal to 1, the value which minimizes the first order expansion term of the variance
and the bias. Therefore in this and the next chapter we make the assumption that e=1 and
suppress ¢ in our notation.

Obviously a procedure aiming to the choice of d will depend on the distance measure
(discrepancy) between f and ’f\d;r. For this purpose we use the Whittle discrepancy
A(f ,‘f\d‘-r), defined in Section IL.1.1 below, and obtain an AIC-like criterion for the choice
of d (Akaike (1970)). Its development is based on a stochastic expansion of this
discrepancy whose leading terms do not depend on f (Section II.1.2). The theoretically
interesting contribution of this chapter, proven in the main Lemmata II.1 and II.2, is that
this expansion is carried through up to second order terms included. These second order
terms play a considerable role in finite sample situations (see Figure II.1). Our criterion
will be the following:

d := argmin (27) 1 f In far(h) d + g, where o = pozi=1+&-+ (Q) E
d<dmax NN

where N=Njy as in (0.5).
As in the AIC, a quantity of the form 'estimated innovations variance' + 'penalty’ is
minimized over a parameter region d<d,x. The typical condition on the speed of

dmax—>o° is d2,;x T1—0 (e.g. Shibata (1980)). We relax this to dii& T-1—0 for some
€>0. This is important in finite sample situations where one is interested in allowing
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arge enough' values of d.

Further, based on these considerations, we propose and discuss a (quasi) bias correction
of the Capon estimator (Section II.1.3). Our results carry over to the AIC for
autoregressive least squares spectral estimators yielding an improvement on it (Section
1I.1.4).

Questions concerning the stochastic properties of A(f jdi) and A(f K E,T) (where d is the
dimension selected according to the criterion) will be dealt with in Chapter IIL

II.1.1 The discrepancy

For measuring the distance between the Capon estimator and the spectrum f we use the
Whittle discrepancy which is defined as follows:

A f
Ned) = A [ o)) £6) -1 o
2n f f
4T
The Whittle discrepancy (between a parametric estimator, say %1(9) and the spectrum f)

has been often used for defining minimum distance estimators which are also called
quasi-maximum likelihood (e.g. Hosoya and Taniguchi (1982)).

The main motivation for its use is that in the Gaussian case the Whittle discrepancy
A(f,g) of a spectral density g with respect to a spectral density f may be considered to be
an approximation of the Kullback-Leibler distance of the distributions induced by these
spectral densities. Let us make this more precise.

Suppose that observations Y1,...,YT are drawn from a (zero mean) Gaussian process
whose spectral density is f. Then, writing Lf) for their likelihood, when the true
spectrum is f and By(f) for the TXT Toeplitz matrix associated with f, the Kullback-
Leibler discrepancy (multiplied by 2/T) of L((g) relative to the true distribution of the
process is defined as (Brockwell and Davis (1987) § 9.3):

dif,g) :=- % Es In Lyfg)+ % Ef In Liyyf).
We have
3 % Ef InL(fg) = In(2r) + T-lIn [detBr(g)] + Tt Br(f) Bf'(g)].
Thus

anft.g) = T In[det B Brig) + T [ Br(e) Bi(@®)] - 1.
Now using the Szegé approximation (Grenander and Szegd (1958) § 6.2) one obtains
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that, when T—eo

&ff, g) - ﬁf}n{%(x)]ﬁaé(x) ST W |

The error of this approximation has been studied in the case where f and g are fixed
functions (e.g. Coursol and Dacuhna-Castelle (1982)). But for the approximation of
dr (f ,'f¢T) by A(f ,fd,T) things are more complicated: first g = ’fd,T is random and secondly
iiT approximates f (yielding that both discrepancies tend stochastically to 0). Therefore it
would be interesting to have a result of the type:

dr (f,f¢'r)
Alt fa)
It is an open question if this holds. However it does not affect our reasoning, since it

plays a role only in the motivation of the Whittle discrepancy. In the Appendix (Lemma
A.6) we show that a weaker result holds, namely that:

—p 1 uniformly in d < dpax

| ar (e Far) - AlE.£ar)| = 0p(d/ T) when d,T —eo.

11.1.2 Constructing a penalty term (from the discrepancy to the
criterion)

In order to construct a dimension selection criterion, once a discrepancy is given, one
could try to select the value of d minimizing A(f ,ﬁu—). But this quantity is unknown, since
it involves the unknown spectrum f. A possible strategy, proposed e.g. by Linhart-
Zucchini (1986), is to aim to the selection of d which would in mean do best, minimizing
E A(f ,fd,T). In order to construct a dimension selection criterion based on this approach,
one needs an asymptotic expansion of E (2x)! j [f /f}lT] (7») dA which does not depend
on f. In many papers dealing with similar problems, e.g. the derivation of the AIC, such
an approximation is obtained by arguments of the following type: (27! _[ [f ?‘LIT] (k) dA
is asymptotically chi-square (or F) distributed, thus its expectation can be approximated
by the expectation of this chi-square (or F) distribution' (see e.g. Hurvich and Tsai
(1989) and Brockwell and Davis (1987) § 9.3). Since however we want to avoid this
incorrect type of argument -even in the motivation- and on the other hand we could not
obtain an asymptotic expansion of E (2x)! f [f ﬁfT] (X) dA, we adopt an indirect
argument.

First observe that (2r)! J. [f ’f\,ilq{k)} di=d! u(f;r) -1. Thus the minimization of

~ ~ ~x -1
A(f ,f¢T) is equivalent to the minimization of (2x)! Jln fd,-[{K) di+dle (I"d_T) . Now
instead of aiming to a minimization of the latter, we try to minimize a stochastic
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approximation of it namely (2n)‘1jlnf¢1{1) dL+DgT, Wwhere

5 A k
Dyr:= d! z tr [I-l' d_’[] . This approximation is justified by the Lemma IL1 below,
k:=0

~% -1
obtained by an expansion of (rd,T) to higher order terms.

Next we estimate Dg, which still involves the unknown matrix Ty, by its expectation
and obtain a dimension selection criterion by minimizing (27) ! j In fd;[(k) d\ +E Dy .
This is possible because E Dg1 = 1+ d N'' +d2 N2, N as in (0.5), does not depend

asymptotically on f, as shown in Lemma II.2 below.

Accordingly, the dimension selection criterion d we propose consists of taking:

d := argmin (2m) ! mfd;(x) dA + g, where pg = pa1i= 1+ 4. (i)2.
d<d N N
max

Our development is justified by Lemmata II.1 and II.2 below. For their statement we
make the following assumptions:

(D) Assume that (A), (B) and (C) hold, that c=1 and let B:= 1:3(1’ r, o as in (B).
diis

Finally assume that T — 0 for some €>0 and for a sequence dpax —> -

(D1) Assume that (A), (B) and (C) hold, that c=1 and let 3 := I+Q_ r o as in (B).

i
dIn(T) In(d) e
T

Finally assume that — 0 for some sequence d=dT.

Lemma IL.1 Assume (D). Then we have

~x -1 dle 3
sup \d‘lu[l"d,l- ]-Dﬂ’:oP“ “,if"‘ln('[')] ) °
d<dmax

Lemma IL2 Assume that (D1) holds with d—ee, B as in (D1) and N=Ng as in
(0.5). Then:

E Dyt =1+[%+(§)2] [1+0 (aB10ev)]. o

Remark IL1 The above considerations, which motivated the dimension selection

criterion, do not give any information about its properties. Thus they do not, for

example, give any answer to the question of how close A(f ,fﬁ;r) is to dsld?nf A(f ,’fcu-) ;
ax
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This question will be dealt with in the next chapter, where we will show that these two
quantities are asymptotically equivalent (asymptotic efficiency of the dimension selection
criterion). This will be the actual justification for the criterion (see Theorems IIL.1 and
1.2 as well as Lemma II1.3 and the remark following it).

Remark IL2 The penalty term pg may be regarded as a multiplicative (quasi) bias
correction for iﬂ, since -(Ug+1) is an additive bias correction for Dy which is a
stochastic approximation of (27)! j [ 2 fd'}f] (A) dn (see IL.1.3).

Let us discuss some of the consequences of the last lemma. First we observe that the
expansion E Dyt =4 is valid only for d—ee. It is obvious that for the dimension
selection criterion to be 'good' -whatever this may mean- it is necessary that the
expansion is a 'good' approximation at least in a neighbourhood of the 'truly optimal
parameter’, say d* (we make this more precise in Chapter III.). Thus d*—ee is necessary
for the dimension selection criterion to be 'good'. In Chapter III we show that d*—es is

almost sufficient (see Theorem II1.2) for the dimension selection criterion to be efficient,
in the sense already mentioned in Remark II.1.

In order to geta beﬁer impression of the quality of the approximation E Dg1 = 4 + Ra,
where Ry is the error, let us regard the order of magnitude of Ry. It is easy to see that this
order depends on the rapidity of d—e. To make this clear, note that Lemma I.2 yields

an error term of order d!"BN!. Thus when T d"B—0 we have Rg = 0 [ d®N-2]. But how

big is Rq when d is close to d*? The next lemma helps us answer this question.
Lemma I1.3 Assume that (D1) holds. Then we have

EDyr =1+ &+ 4 By+ O[(%)Zlnm] +0[dT 1]+ O T In(T) In(@)),

where By= f;f [ﬁl f- 1] Z()\,) dr
and y:=o if r=0 and vy:=1 else (r, & as in (D1)). °

Unfortunately for d close to d* we have By~ dN-L. Thus for d close to d* Lemma IL3
indicates that Rg = O[ d2N‘2]. So, why do we consider it an improvement to include
quadratic terms in 4? First, because the coefficient 1 for d?2N2 in 14 goes in the right
direction: % ﬁ;i is positive. Secondly, because the inclusion of the quadratic term in gy
yields Rq = 0] d2N-2] for the large values of d, e.g. d close to dmax When dmax tends

rapidly to infinity: T d;},;ﬁ—m. In this case this prevents us from choosing a too large
value of d. A look at Figure II.1 convinces us that this is a real danger when we use only
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the linear term in pg.

In Figure IL1 we show the performance of different penalty terms for the selection
criterion of the Capon estimator compared with the corresponding simulated quantity
under white noise (500 samples, T=256). It is evident that the linear penalty terms 14+d/N
and 1+d/T are good approximations only for small values of d whereas |4 is a much
better approximation also for larger values of d.

Fig. IL.1 Simulated and 'estimated’ Xf/f* for the Capon estimator
when f= white noise and T=256.

2.4
\# Simulated
2.2
1+d/N+
2 d2/N2

I1.1.3 (Quasi) bias correction of the estimator

Based on Lemmata II.1 and IL.2, one may propose a modification of the Capon
estimator. As discussed above (2xt)! j f ?CLLT(K) d\ = pgr. Thus by setting

A -~
faT :=HaTfar

-1
we obtain (2)" | £ £11{A) d) = 1. Following Remark I1.2 we call this modification a

A
(quasi) bias correction. In the next lemma we show that, in mean, the estimator far has a
discrepancy to f smaller than the one ?d"r has.

Lemma I1.4 Assume that (A), (B) and (C) hold. Further assume that d—ilfi—é 0 for
some £>0 and a sequence d=dt — . Then
d d!
EAlt3i1) <Ea(t3i1)- ( )+ o(N) .

Note that the dimension selection criterion for the corrected estimator would be
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d := argmin (271) ! f 1n f41(A) d\ = argmin (27) 1 j 1n £37(0) dA +1n (ua)

d<dmax d<dmax

and compare this with the dimension selection criterion for the non-corrected estimator

d : = argmin (27) 1 f In ?dJ(K) dA + pg.
dsdmax

In the next Figure IL.2 we show the box plots for the discrepancies of the Capon
estimator, non-corrected and corrected for fixed and estimated orders. The simulation
consists of 500 samples, each of size T=256 drawn from 'Model A' which is given in
Chapter V. Note that:

« the corrected Capon estimator performs better than the non-corrected.

« dimension selection criteria, including quadratic terms, yield discrepancies very close to

the optimal d (lines in Figure I1.2). (For the corrected estimator, the 'quadratic term' is
implicitly present in the correction).

- the dimension selection criterion including only the linear term performs significantly

worse.

Fig. IL2 Box-plots of discrepancies for (segment-) Capon-estimators
(corrected and non-corrected) for d fixed and estimated (500 samples under
Model A, T=256).
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Cd: (Segment-) Capon spectral estimator for fixed dimension d.

CdAM(N)80 : Cd, d estimated (p<80) with penalty term d/N.

CdA(NN)8O0 : the same with penalty term d/N + (4/N)2.

Ced: Cd, multiplied with 1+ d/N + (d/N)2. CcdA80: Ccd, d estimated (p<80) (with penalty term 0).



II.1.4 Carrying over to autoregressive estimators and the AIC

Our results carry over to autoregressive estimators yielding an improvement of the AIC
as an order selection criterion and a (quasi) bias correction for autoregressive least

squares estimators. Let féﬁm be the autoregressive least squares estimator of order p and
52 T the estimated 'innovations variance' defined as follows (Kay and Marple (1981)):
P, y

Let af, :=(1,ap,1,...,8p p) and define the ‘residuals’ ep (a) := Xi+ap 1 Xp.1+...+2p,pXep

T
t=p+1,...,T. Further define 521 :=infy », €% {a) the infimum being attained at @p,T.
t=p+1

Then
@R =2/ 2m |3t by

The link for carrying over our results concerning the Capon estimator to the
autoregressive least squares estimators is Burg's relation (see Section 0.5), which, in this
case, has to be slightly modified, as elementary calculations show, into the following:

el = (o0 8 [0 0]}

p=0
It follows:

AR a1 -l
f( 1 =(p+1) fpenyT - P o1

For constructing an order selection criterion one could, as above, try to minimize
J_ Inl f(AR) Vi, el | b
f ( * 2n f(ATR) (X) i,
P

But the second term in the sum above can be approximated (with the same magnitude of
error as in Lemma I1.2) by

(P+1) Kep+n)T - PHpTa = 1+ 2% +4 (%)z + CJ[(-I%—)B\/N ‘1],

which follows from (2r)! If ?'11(7» dA = pp 7 together with Burg's relation. For the

first term we have ln(?rlz,;r) = (2m)! Jln( (AR) ( )d?» (follows e.g. from Brockwell,
Davis (1987) § 5.8). The resulting order selection criterion p is:
p: —argmmln(of,T)+2p +4( )
PSPamax
Observe that the first order expansion term 2% resembles the penalty term of the AIC:
2% The use of N instead of T is due to the fact that our expansion was done for the
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autoregressive least squares estimator, that is for the conditional maximum likelihood
estimator.

In 1989 Hurvich and Tsai proposed AICc as improvement of the AIC, which is known
to be biased in finite sample situations. In the AICc the penalty term equals

1+p/T _ |, .P 3)2 [33 .1J
1-(p+2)/T 1+2T+4(T +0| [Fv T

Observe that, if one substitutes N instead of T in the AICc, the resulting penalty term
equals the one above developed up to terms of order dp3T‘3 v T ]

In Figure I1.3 we show the performance of different penalty terms for the order selection
criterion of the autoregressive LS estimator compared with the corresponding simulated
quantity under white noise (500 samples, T=256). With AICc(T) we denote the AICc
given above and with AICc(N) the same quantity with N substituted instead of T. Note
that AICc(N) as well as 1+ 2 p/N +4 (p/N)2 are good approximations of the simulated
value even for large values of p whereas the others (including AICc(T)) are not.

Fig. IL3. Simulated and 'estimated’ Xf/f* for the AR-LS estimator
when f=white noise and T=256.

5:5
5 f Simulated
4.5 AICc(N)
44 L
1+ 2 p/N+
3.5 4 p2/N2
3
2.5 AlICc(T)
«ust 1+2p/N
2 _,,..»-“‘“’w A P/
o
LSy T e _— 1+42p/T
0 10 20 30 40 50 60 70 80 90 100 p

In the literature dealing with order selection criteria enough attention has not been paid to
the following matter: 'T' (in the penalty term) should be substituted by other quantities,
depending on the type of the autoregressive estimator used. The reason for this
negligence is obvious: the effect of the above substitution is reflected only in terms of
order O(p2T-2), which until now were regarded as negligible and whose effect is not
reflected in known efficiency properties (see Lemma IIL.3 below and the remark
following it). The only justification for such a substitution are expansions of the type
used in Section II.1.2, which make it 'seem appropriate’. Its role in finite sample
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situations is obvious: set T=256 and p=80 then p/T=0.31 and p/N=0.45 making a
difference of about 50%.

Our conjecture is that for the Yule-Walker autoregressive estimator based on tapered data
(defined in Section V.1.3) one should use the sum of the squared taper instead of Nor T,
whereas one should use T (no substitution) for the maximum likelihood autoregressive
estimator.

However the next Figure 114 indicates that this is not the only problem. A comparison
with Figure I.3 shows that the simulated values for the Toeplitz autoregressive estimator
have really a different form than for the LS: it seems that the higher order terms in the
expansion are different for different estimators. Note that the linear expansion
approximates the simulated values for the Toeplitz autoregressive estimator much better
than for the LS estimator. This explains why the AIC works better with Toeplitz than LS
estimators.

Fig II.4 Simulated and ‘estimated’ Tf/fr for the 100% tapered
Toeplitz AR estimator when f=white noise (500 samples, T=256).
8 N . i i i

1+2 p/H+
7 4 p2/H2
H::DI% |
6
5
4
3‘ 1+2p/H
Simulated
1 ALCS(T)
1+2p/T
1 - : : ' ' | | |
0 10 20 30 40 50 60 70 = = -

The (quasi) bias correction of the Capon estimator and the modification of the dimension
selection criterion (see Section IL.1.3) can also be applied to the autoregressive estimator:

A(AR) p p z] 2(AR)
f :=[ 1+42= e
pT TN +4(N) fpr

The order selection criterion for the corrected estimator would be

3 = argmin (2r)) 1 f nia) dh = argmin n(@37)+ In [1+ 2B+ (%ﬂ

P<Pmax
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In Figure IL5 we show the box plots for the discrepancies of the autoregressive LS
estimator, non-corrected and corrected for fixed and estimated orders. The simulation
consists of 500 samples, each of size T=256 drawn from 'Model A’ which is given in
Chapter V. Note that:

« The corrected estimators perform better than the non-corrected.

- Dimension selection criteria including quadratic terms yield discrepancies very close to
the optimal d (lines in Fig IL5). (For the corrected estimator, the 'quadratic term' is
implicitly present in the correction).

« The dimension selection criterion including only the linear term 2 d/N performs
considerably worse. The simple AIC with penalty term 2 p/T performs very badly.
The performance of the BIC is surprisingly good.

Fig II.5 Box-plots of discrepancies for Autoregressive-LS-estimators (corrected
and non-corrected) for d fixed and estimated (500 samples under Model A, T=256).

Bl I 1 T 1 1 I I I 2 't 1 't 1 1 1 1 A L 1

non-corrected corrected
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x = R
S8 g 8 2
ARp: Autoregresive Least-squares spectral estimator of fixed order p.
ARpA(T)80 : ARp, p estim., penalty = 2p/T (AIC).
ARpA(N)80 : ARp, p estim., penalty = 2p/N (almost AICc(T) ).
ARpPMNN)80 : ARp, p estim., penalty = 2p/N + 4 (p/N)2.
ARpA(In, T)80 : ARp, p estim., penalty = In(T) p/T  (BIC).
ARcp: ARp, multiplied with 1+ 2p/N +4 (p/N)2.
ARcpA80: ARcp, p estim., penalty= 0.
In Figure IL6 we show the box plots for the selected orders of the autoregressive LS

estimator for different dimension selection criteria. The simulation consists of 500
samples, each of size T=256 drawn from 'Model A' which is given in Chapter V.
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Fig IL6 Box-Plots of the estimated order for the AR-LS estimator for different
order-selection-criteria (500 samples under model A , T=256).

T
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20] _|_
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PATIRO PANIBO PANN)EO cp80 PAIn.T)80
(AI0) (AICc) (BIC)

PA(T)80:= arcmin (p<80) fin(fp) + 2p/T,  pAN)80:= arcmin (p<80) Jin(fAp) + 2 p/N,
PANN)80:= arcmin (ps80) in(frp) + 2p/N + 4 /N)2,

cp/80:= arcmin (p<80) fin(fAp) + In(1+ 2p/N +4 (p/N)2)
P(In,T)80:= arcmin (p<80) fin(f7p) + In(T) p/T.

Note that:
« the only criterion whose median is 26, the truly optimal order, is the one of the
corrected estimator. It estimates the optimal order better than BIC.

« the dimension selection criterion including only the linear term 2 d/N performs worse.
The simple AIC with penalty term 2 p/T performs very badly.

I1.2 DETAILED RESULTS, PROOFS

In this chapter we prove the results stated in Section II.1. In the first Section I1.2.1 we
give the proof of Lemma IL1. In the second I1.2.2, the proof of Lemma I1.2, which is
the most tedious, and we leave the proof of the remaining lemmata for the final Section
11.2.8.

I1.2.1 Asymptotic expansion (proof of Lemma II.I)

~x -1
In this section we prove Lemma IL1, the stochastic approximation of d'ltr[I"d,T ] by
Dy

Proof of Lemma IL.1 Let the following event be denoted by

Ayt = { Hﬁ,r - IH < 1/2}. Then on Ag we may expand
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IA";,T g [I = (I 2 f;T ) ] (I rd,T)
J-J)

6
on AgT.

~% -1
This implies l d! tr[l'd,T ] - D¢T| <
Recall (Lemma 1.2) for any ke Z*, 1>0 and 3>0 we have

¢ ) <22 E || Tar - 1]| ™= 0l n(ry i@y 1), yielding:
Aq.

~% -1
P{[Td;,;;gln-lmF sup Id-lu[rﬂ }-D¢T|2n} <

d<dmax

IN

S (at) 5 pllraaswomlfo ol T 2ol

k
Ol algs, T a3 1n2(m)* + O(d¥B9 T d:lg In (1) T dh In(T) Indma)) " >0 ,

if 8 and k are chosen such that 3+ k'! < g/4. O

I1.2.2 Approximating the expectation of Dat (Proof of Lemma II.2)

In this section we prove Lemma I1.2. In order to calculate the expectation of Dy one has

A% K
to calculate the expectation of tr[I“d,T-I] for k=2,...,5. As already shown in
Proposition 1.7

~ K
EulTor-1) = 3 V()
ap\, (K)
where we adopt the same notation as in Table I.1. The proof will consist of the following
steps:
i) first we show that for each K the sum is dominated by some partitions. These are the
following:

K=2: 22 {(a1.82), (0281) }
K=3: 2 ~{ (01,2 (02B5) . (o3,81) } and ) = {(c1.B3) . (02,81, (023.82) )
K=4: B9 - {(01,82) ., (@2.81) . (3.84) . (ca.B3) )

A < {e1.84) . (cs.B1) . (02,83, (o3.82))

A { (01,83) . (c3.B1) . (c2.B4) . (ca.B2) |
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These can be represented graphically as follows:

i Yo o B o P o P

1(12):0[[5 1(13)"BOL 1‘23)«'(113 5‘;14)-'B * ‘1(24)»'Y ° 1‘34)-'7 °
Ba 5 8 y 8 3y B o

! ! 3y B o 3y

All other partitions contributing to the sum will be shown to be of lower order.

ii) In a second step we show that V (éK)), K=2,...,4, j=1,...,K-1 do not asymptotically

depend on f -up to a multiplicative error of O(d’B) and we evaluate them by setting

fi=L
2n

Thus Lemma I1.2 will be a direct consequence of the following two lemmata:

Lemma IL5 Assume that (D1) holds. Then
i) 1 42282 then a1 V (£2) = O] N In(N) In(@)).

ii) It 29 (#9,63)) then a1 V (%)) = Of d N2 1n?N) In(@) ]
i) 2 {427, 9} then a1 V (24) = Of d N2 1n?(N) 1n@)]

iv) a1V (25) = Of & N3 1n3(N) In2(d) | for any £, .

and

Lemma IL.6 Assume that (D1) holds. Then

a1V ()= %[ 1 +Old#1n(a))]

iy a1 v (49) - ﬁ?z-[ 1+ O(d)][ 1+OlaBin@]) for K=3.....4, j=1....K-1

We postpone the proof of Lemma I1.2 until the end of Section I1.2.2, after the proofs of
Lemmata IL.5 and IL.6. For proving these two, a further number of propositions and
lemmata will be needed. We turn first to the proof of Lemma II.5. For each K we will
prove the claim by a ‘clever' exhaustive enumeration of possible partitions. We now state
some helpful propositions.
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Proposition II.7 Assume that a partition #3) of the 2x3 table L1 contains the
subset P:={aj 5 ﬁj,,l}. Let the partition #2) of the 2x2 table be defined by removing
P from #3). Then we have:

V () < o[ 2O) ¥ () .

Proof. Bound the factor LYc; - &)= L40) in V (%) by d and use
f L}((Xj-f[?)j) LN((lj+1-aj) do; < O(In(N)) LN(aj+1+Bj).(Lemma A.l1).

What remains is exactly N 1 v (£2). a

n
Proposition IL.8 For arbitrary distinct variables o;e R, i=1,...,nlet sy = z Qa;
i=1

n
and sy = 2 (-1) o, for arbitrary ye{ 0,1}. Assume sy # £ s, .Then:

i=1

f LNs1) LN -s1) LYs2) LY -s2) d(@t;...0) = O[d N In(N) Ind] .~ ®

Proof. First observe that the quantity to be bounded is smaller than
dN j LNs;) LYs,) d(ot;...0t,). Without loss of generality, we may assume that

t; :=0. For some j we have t; =-1, since s # % 5. Set & := 51 and B :=2 a; - 0. Then

1#]
by a variable transformation we obtain

f LN(s1) LYs2) d(oty...00) < O(1) f LNo) L9B) d(ap) = Oln(N) In(@). 01

Proof of Lemma IL5
i) If 1(2);&1’&2) and #?) has no 'one-row' partition subsets, there are two possibilities left:

49 —{(a1,02), (B2B1) ) and #?) ={ (c1,00,B2,81) ). In both cases one may easily
check the assertion by using Lemma A.1 and Proposition IL.8. We do this in the first
case:

a1V (49) N -2j (LN {o-B) (L) {4+ B) al(xp)

and the result follows from Proposition II.8.

ii) Assume that IB)E{Q{IS),?(Z”} and %) has no "one-row' partition subsets. Further,

42



because of Proposition IL7, we may assume that it has no subset of the form
P:={(lj 5 BjH}A If the contrary was the case, it would follow that
v (1113)) <dN-1m@) V (1‘2)) with 1{2):&&112) and our assertion would follow from i).

We observe that: a) for jk arbitrary oj+B; # ouc+Bx+1 and b) if K=3 and at the same time
for some j,k arbitrary o;+pB;=- (ak+Bk+1) then k=j+1 (if not, then two of the four
variables would be identical -remember indices are taken modulo(K)-, yielding an
equation in the variables vanishing identically with one coefficient equal 2).

After these remarks we proceed to the proof of ii).
Using Lemma A.1 ii) we integrate with respect to one of the variables of the table, say K,
for which k and -k do not belong to the same row. We get

T (6) <100 N3 || (0297548 09 {escr ) LT 6.
i=1

where j is the row and k the diagonal to which neither k nor -K belong. Of course j and k
depend on which K is chosen. Observe that our assumptions on 1(3) guarantee that otj+B;
and ox+PByxs1 do not vanish identically. From a) above it follows that

aj+P; # ox+Pi+1.There are now two cases: if o+B#- (ak+Bk+1) the desired result
follows directly from Proposition IL8. If this is not the case, that is if we have

o +B; =- (ak+[3k+1), then from b) above it follows that k=j+1. It follows further that
3) must contain the subset { 43, Bi+1 } Let us assume, for notational convenience
(without restricting generality), that j=1, k=2. Then £ ) must have the form:

a; B
A3, o K
-k P3
Now either the second or the third row have at least one further variable, say ¥', in
common with the first row. Repeating our argument from the beginning with X' instead
of k we obtain the same bound as above with some (j', k') # (j, k). By arguing as before
if oy+By #- (ak-+ [ik-+1) the proof is finished. If this is not the case, it follows again that
either{ o2, B } or { oy, B3 } belong to #3). But this can only happen if ’1‘3)=1’(23),
contradicting our original assumption on 1{3 ),

iii) Assume that 1(4)41(4),11; ),LF(;)} and that #4) has no ‘one-row’ partition subsets.
Further we may assume that 4% has exactly two row-subtables, since it cannot have
more than 2 (see the second assumption), and if it had less than 2, already Proposition
1.8 would yield the assertion. Finally we may assume that it has no subset of the form
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P:=‘ 0, B+ } If it had two such subsets, then it would be identical to fE‘f ) or 1»‘24 ) (since
it has exactly two row-subtables). If, on the other hand, it had one such subset, say in
the first row-subtable, then by setting L%0) = d, integrating with respect to the variables
contained in this row-subtable and using Lemma A.l i), it would follow that

V (#9) <d N1 In) V (4?) with 1(2);&1{12) and our assertion would follow from ).
We distinguish two cases: a) each row-subtable consists of two neighbour rowé, say the
first and the second row and b) they consist of two non-neighbour rows, say the first

and the third row.

Let us first study a). Integrating with respect to the variables in the first two rows, using
once Lemma A.1 ii) and once Lemma A.1 i) we get:

a1V (49)<d N3 d n@) In@) | (LN az+Bs) (L9 2(0(3+B4)f1 dx;
i=1

with some S'<S. Since ((x3+[33] #0 #a3+64) (because of our assumptions on 51(4)) and
(cx3+[33) #+ (oc3+[34) we may apply Proposition II.8 and our assertion follows.

We now turn to b). Again we distinguish two subcases: b1) There exists a partition
subset with 4 elements, say 0.1, B, @3, B3:=-01- B;1- &3 and b2) bl) is not fulfilled.

For bl) we get, using Lemma A.1, after integrating with respect to o (for some
$',8"<S) that d!'V ('_114)) is less than or equal to:

o
O N31a@®) | (LN Hez+B2) LYBa-Brtoto-ais) Ltz +a) Ld(a4+B1)H dx;

i=1

s
<O N3 @) In2@) | (LN Hoz+Bo) LYBo+Baraa+an) [] d¥i
i=1

=0(d N 2 In2(N) In¥(d)), since Pp+Ba+0s+0s = 0.

If b2) holds there are exactly 3 partitions left up to Qm, namely:

{(ce1.B3) , (c3,B1) , (2,04) , (B2.Ba) ), { (@1,03) , (B1,B3)  cx2,Ba) . (oa,B2) |
{(e1,03), (B1,B3) , (cr2s0ta) , (B2Ba) ).

The first two cases are straight forward as above. We treat separately only the last one:

44



a1V (#9) <01 dN2 | INow+B) LNou+B2) L{our+B2) L40-B1) ]S'[ dx;

i=1

By a variable transformation, this quantity is less than or equal to:

O(dN-2 f LNy LN(B) L) L4d) d(aBy8) = Ofd N2 1n2(d) In(N)).

iv) 41V (2{5)) = O[ & N3 1In3(N) 1n2(d)] by Proposition L.8, since the number of
row-subtables has to be less or equal to two (because no ‘one-row’ partition subsets are
allowed). O

We now turn to the proof of Lemma II.6. The key will be the following lemma which
shows that V (Q{K)) does not depend asymptotically on f.

Lemma I1.9 Assume that (D1) holds. Then for partitions 4¥) containing only 2-
element partition subsets we have:

Vi (#9) = Vo) 1 (#9) + Olafin@) V (). .

Proof. To prove this, let gd(k) be a sequence of AR(pa) spectral densities,
p=pa := dV/I++®) with || g4 - f||.. = O(d'B). Then we get (Lemma A.3):

|Ke (£.2.11)- Kalgatn)| = O(aPin(@) 14u-2).

First we show Vg (fE(K)) =Vg, (1(K)) + O(d'Bln(d)) v (Q{K)) This may be proven by
substituting in Vg (Q{K)) successively all quantities depending on f, that is f and

Kd(f,k,u), by the quantities corresponding to ga. Observe that the error we have each
time is O{d-Bin(@) V (%),

Next we substitute successively in ng (E{K)) the quantities Kd(gd,k,u) =

d-1 —
(2m) 1 2 &;(A) 6;(1), where {dpk(?\.) }ke n denote the orthogonal polynomials with respect
i=0
to g4, by the truncated
a1l —

K (gadat) = (2m) 1 Y, 400 00 (:=py)-

i=p
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Observe that we have: l K4 (X,u) - Ks,p (k,u)l < LP(u-x) < g— L"(u—?») =qf Ld(u-l). We

conclude that in each substitution the error is again O(d‘ﬁln(d)) V (Q{K)).

Finally in the resulting quantity enter only the polynomials orthogonal to gq of degree
k 2 pg, which are exactly known (care of (A.2.4)). By substituting all of them the g4's

d-1
are canceled. We now substitute in the expression the remaining Z eil@1)(w-) by
j=p

&l -

Y e (@1)(k-%) having again a total error of O(d‘ﬁln(d)) \% (fl(K)). The remaining quantity
j=0

is exactly V(27r)-1 (Q‘K)) O

Proof of Lemma II.6 In view of Lemma IL9 it is sufficient to set 2%{ and to

show that

a1V (£2)=F
i a1 v (49) =§iz[ 1+0(d]], for K3, 4, j=1,... K- L.

The calculations are straight forward. We will only show as examples the cases i) and ii)
K=3, j=2.
patv (€)=

Ln? f A1) dapen-r) 0w = & (2m)? f ANnep) dlan) = &

ii) K=3, j=2. Denote o;:=A, 0t2:=H, 0t3:=K. Then

alv (1‘23 )) = ——l_—3-(21t)‘3 f G)N(K—u) @N(u-lc) @N(K-k) e"(x-x) @d(u-k) @d(l(—},l) d(?»w()

N d-1
ey 3 3 [eterena f einlle)+ (9] g f i)+ (9]

r=1 j,mk=1

d-1

Mz

N B
=- 1 2 61=r+k—j 85:!&j+m =4

B1<rek-j<N j =
- -j<N A 1<r-j+msN
dN 3 s,t,r=1 j,m k=1 dN N3 b¢

jmk=1

[
-



d-1
= a\%jgﬂ%ﬂ Nebj-mak = %[ 1+0(4]. O

Proof of Lemma I1.2 From Lemma II.5 we have

4 K-1
EDar =1+ 3 Y (-1)¥a? V (€9)+ O N 1n) n(@)]

K=2 j=1

since V (1[!()) = O[ V (1(K))] and the 'error' terms in Lemma ILS5 are also
O[ N1 In(N) ln(d)]‘ The desired result follows from the above together with Lemma
116, observing that N1 In(N) In(d) = O (—191_ d-P In(N) ln(d)}, since B<1. O

I1.2.3 Proof of the remaining Lemmata in Chapter 11
In order to prove Lemma IL.3 we need two more propositions.

Proposition I1.10 Assume that (A) and (B) hold. Then we have:

) |%'0) - )| = Olaph-sf a 1) ana

if) d | Kelpwp-n) - Kefpr) | = Old - £ 1) .

Proof. Denote by {¢k0»)}kEN the orthogonal polynomials with respect to f. Then from
the Theorem of S. Bernstein (Grenander and Szegd (1958) § 1.16) we have

|og)- o] <Cp s,

where the constant C depends only on the maximum and minimum of £. Now from
(A.2.2) we have :

|50 - &) =

L8 (1ol ol l|sc 1 3o bl ca bl

for some C'.The result i) follows from the additional observation that f&l(k) < C" for
some C".
ii) follows similarly by observing:

},—dg W ogln-1) - oglp)

| Rep-d) - K| = <oml Z phy. O
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Proposition IL11 We have: f [danl]da= 0(d ) .

Proof: The proof is straight forward by bounding A™(t) < N ! (LN(et))? and braking the
integration region in { | | <N u{Nl< lal<du{lal > d-1). In the first two we

have d & A 1 =d o and in the last it equals 1. O

Proof of Lemma II.3 From Lemmata IL.5 and IL.6 we have that:

EDyr =1+d1V (£9) + O[ () 2] +0 N In(N) In(@)) .
Now we have that d-1 V (£?)) = 4 f AN-p) £(0) L) ap).
fa fa
Further using (2m) f —(7») di=1:
f A £0) £ o) = f am f A(-p) £0) an ap
fa fa fa fa
= j ( é(p.) m )2 + O(% In(T))+ OT) =1+ By + O{% In(N)) + O(T).

The second to last equality following from

HExAN - F = o(%ln(m), which in turn follows from Propositions IL.10 and IL.11,
and

ii) AN - £ = O[N ). (e.g. Dahlhaus (1985)) O
P . o | ( 2l —alel T 4
roof of Lemma IL4 We write Zgr=1 | {fer (\)ar=d"|Tar |. We

define further the events At := ( l } and Br:={ZaT<2}.

Now observe that:

il

~k -1 ~%
i) B% o A%, since d°! tl'[rd;r ] > 2 = Amin (F¢T) S%—
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ity Alf 1) - A(E24r) = In(pe) + (gt - 1) Zar

~% -1

iii) on At we have|Zg1-Dat|<2 | ‘ /I\’;T -1 H6 (obtained by an expansion of 'y on
Ar).

iv) P(BS) < P(A%) = O({d%e— In(N) ln(d)] ‘ )for any integer k>0 and any £>0 when
d—>ee, which follows from i) and Lemma 1.2.

rdP-EDgr|= o({ilg—s In(N) ln(d)] 3).

Proof of v): The quantity on the left in v) is less than or equal to

flomdmf IAT-D¢T|dP+f |Zax} | Dax| dP
B BrNAT BrMA%

~% 6
_2f |D¢T|dP+2EHFd,T—IH +f 2 dP because of 1), iii)
A% AT

=d [d%?— In(N) ln(d)] 3) because of iv), Lemma 1.2 and ED&T: o 1).

From these the assertion of the lemma follows , since from ii) we have:

EAlf,55:1) < BAle fax) + In(ua) + (g - 1) f Zg7dP + (ud“-l)f Zy7dP
Br B%

< EA(f,?d_T) + In(pg) + (ud'l - l)f Za1dP | since pqt-1<0
Br

= EA(f ,§¢T) +In(yq) + (pd' L 1) ED4r+ 0{(%) 2] because of v)

= BA(f,fa1) + In(ia) + 1- pa + o[( ) ] (because of Lemma I1.2)

A1) - ( )+o(—%)2. O
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III. ASYMPTOTIC EFFICIENCY OF THE DIMENSION SELECTION
CRITERION

II1.1 INTRODUCTION, RESULTS

In the previous chapter we introduced the discrepancy A(f,fd;r) and developed a
dimension selection criterion for the parameter d of the Capon estimator. Our

argumentation aimed to the minimization of A(f,fﬂ), but it did not clarify if this

minimum is really approximated by A(f,’f"d’T), where
d := argmin (27) 1 f In ?d"[()\,) dv+ 4+ (—Q) 2
d<dmax N N

In this chapter we prove that there exists a stochastic lower bound of the loss A(f ,?d,T)
which is asymptotically attained by the proposed dimension selection criterion (Theorems
III.1, 1.2 and Lemma IIL.3). A corollary is that the loss A(f,f’&y) (when using the
dimension selection criterion) is asymptotically equivalent -in probability- to the
minimum possible loss infacd .y A(f v?rLT} In this sense our dimension selection criterion
is asymptotically efficient.

In this chapter we also discuss the 'estimation’ of A(f,?d;) and A(f ,?Q,T) (see Remark
1I1.2).

For the definition of the notion of the asymptotic efficiency of a selection criterion we
have adopted the approach of Shibata (1980). He showed the asymptotic efficiency of the
AIC as an order selection criterion when autoregressive LS spectral estimators are used
and when the one-step prediction error is taken as a discrepancy. Taniguchi (1980)
extended the results of Shibata to the case where i) the underlying process is not
necessarily Gaussian and ii) the estimators (approximating models) are not necessarily
autoregressive. Tanigutchi, however, uses a stochastic approximation of the one-step
prediction error as a discrepancy for defining asymptotic efficiency. This is not very
problematic since, in both papers, the definition of asymptotic efficiency itself is a
statement in probability. Both papers assume that the true spectral density does not
belong to the approximating model class: the ‘truly optimal' order, say p*, which
minimizes the expectation of the discrepancy, tends to infinity with the number of
observations. For the validity of our results we assume a similar condition.

Before we proceed to the statement of the results we introduce some notation:
We write Af(d) := A(f ,fdr). We may decompose A1{d) as follows:
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Ar(d) =Ba+ Var + War,

where
Bom g [ B+ £0)- 100 Vit f W)t 1a
andwcLT=—21—jE—dT A 1] [é(k)-l]dk
( since (2] f £ (\ar =dle (rd f f(A) byby, dx)— 1.

We further define the approximations V¢T, W;ﬂ- (see Lemma II1.8 below) of Va1, Wy
respectively:

Var=7- [ [G0)- 1]7 dh and Wypi= L I [1-1544)] [?i

(A)-1 ] i,

where I;_T(X] = B;f ild,T b; as in (1.3).

Finally let Li{d) := B4+ EVyr and d"= dr := argminged,,,, L1(d) for some sequence

dmax—oo. Observe that from Lemma 1.9 we obtain Li{d) = Bg + —~ e(d)

d +0(d N&I).

Ng

Remark IIL.1 As will be shown below (Lemmata IIL.5, III.8 and IIL.11), the
decomposition of Ar{d) reads:

Ar(d) = Ba+ Vg1 +0p (L1{d)) = Li(d)+ op (Lr(d)),

uniformly in d<d;ax which may be viewed as a stochastic decomposition into a
'squared-bias' and a 'variance' term.

Remark IIL2 In the praxis one is interested in an approximation or at least an upper
bound of A(f ,'f\'d,r) and A(f ,?&T). From the preceding remark it follows that these
quantities may be approximated by Li(d) and L-f(a) respectively. The problem is that these
two quantities involve the unknown By. One possibility to overcome this difficulty is to
observe that if dBg is falling at d* (which is the case for sufficiently regular f and d* large

enough, see Proposition A.4), then §dS@ 4 for d> d*. Thus in this case

0d) 4

. 4 yoldNg)<Lyd) < ed)—d—+0(de)
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In this chapter we make the following assumption:

1+¢
(D2) Assume that (A), (B) and (C) hold and that c=1. Further assume that d—"}r‘"‘l — 0 for

some sequence dpy,.x—>° and some €>0.

Our first theorem ensures that LT(d') is a lower bound for the loss.

Theorem IIL.1 Assume that (D2) and d*'In%T)In§d*)—0 hold. Let

d= HT < dmax be any sequence of random variables, measurable with respect to
X1,...,XT. Then for any e>0 we have:

PfAT(a) >1-el>1. L

\Lrda®)

This justifies the definition of an asymptotically efficient dimension selection criterion d
as one for which

Ad)
L1{d")

—pl.

The next theorem states that the selection criterion d := argmin S7(d) is asymptotically
demax

efficient, where St{d) :=(2x) 1 f In ’f\d;{l) dr + f\Jd_ and N = Nj as in (0.5). (Note the
d

change in the meaning of d compared to the previous chapter.)

Theorem IIL2 Assume that (D2) and d*" In%(T) In{d*) -0 hold. Then we have:

i) A-I{d*) —p1 i) ————Ax{d) -pl b
Lild") infacy_ Ar(d)

As a corollary we obtain from the next lemma that &= argmin S;-(d) is also
d<dmax

asymptotically efficient, where S;(d):=(21l:) 1 f In ?dJ{X) di+ ﬁd— + (I_Vd—) ’
d d

Lemma IIL3 Assume that (D2) and d*! In(T) In(d*) —0 hold. Further assume
that the dimension selection criterion d := argmin S7(d) is asymptotically efficient
d<dmax

~ o
and that a second dimension selection criterion consists of d°:=argmin S{d).
d<dmax

Assume that S:I(d) fulfills:
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supasa_,, L7(d)[Sr{d)-Srd*}S5(dpss(d") — 0.
Then @ is also asymptotically efficient. o

We remark that, as follows from Lemma III.3, the notion of asymptotic efficiency -here
as well as in the case of examining order selection criteria when using an autoregressive
spectral estimator- looks’ only at the coefficient of d/ N in the penalty term. The property
of asymptotic efficiency of a dimension selection criterion does not change if one changes
the coefficient of (d/ N) 2. Thus this concept does not give any answer to the questions of
i) whether one should include (d/ N)? in the penalty term, ii) whether one should use the
AICc instead of the AIC (see Section II.1.4), and iii) whether one should use N instead
of T in the AIC and the AICc (see Section I1.1.4).

Finally let us remark that from the above considerations it follows that if f; 1 := Wp 1 fp T
as in Section II.1.3, and if a dimension selection criterion is defined by

d := argmin (27:)‘1]]n?¢1{k) dA, then this dimension selection criterion is also
d<dmax

asymptotically efficient for ?CLT and for ’fd,T:

Lemma IIL4 Assume that (D2) and d*"! In¥(T) In{d") —0 hold. Then we have:
i~k An
Alf3) Algf30)

LAd*) Ld*)

i) —pl i) —pl ®

I11.2 DETAILED RESULTS, PROOFS

In this section we prove the main results stated in Section III.1. A first explanation of the
reasons why these results hold, will be given in Section II1.2.1, where we also state the
basic Lemmata IILS, ITI.6 and IIL7 leading to the proofs of the main results. In Section
II1.2.2 we prove Lemmata III.5 and IIL.6, in Section II1.2.3 Lemmata II1.7 and finally,
in Section III.2.4, we prove the main results stated in Section III.1.

We remark that the basic idea for the proofs of the main results, namely the steps
represented by Lemmata IIL.5, III.6 and II1.7, is adopted from Shibata (1980) where
analogous results are proven. On the other hand we use rather different methods for our
proofs.

53



II1.2.1 Some key results and a first explanation

Before we proceed to the proofs of the above theorems and lemmata, we state and
explain the main points which lead to these results.

The first critical property is that Af{d) concentrates stochastically on Li{d), uniformly in
d<dpmax.

IIL5 Lemma. Assume that (D2) and d* In¥(T) Ind*)—0 hold. Then we have
1(d)

=L

Lr(d)

SUPd<dmax —p 0. °

This helps us understand the behavior of St(d). We can write:

S1(d)- (2m) ! f in(fA)dr = AT{d)+NAd -d-lu[f“;{lh 1=

A~ Ak 2
= -1 _1l - gt S d
Add) + &t | Tar 1} (d a[Tar-1] Nd) + OP(Nd)’
the last equality following from Lemmata II.1 and 1.2.

Since A1(d) concentrates stochastically on L1{d) (Lemma III.5), the minimization of A{d)
-our actual aim- could be approximated by the minimization of St(d), if St(d) also
concentrated on L1{d). But it does not; while the last and second-to-last term on the right
hand of the last equality converge stochastically to zero when divided by Li{d) (Lemma
II.6 below), the second term does not. On the other hand, this second term divided by
Li{d) asymptotically does not depend on d (Lemma II1.7 below), not playing any role in
the minimization of St(d). It follows that the minimization of S1{d) is equivalent to the
minimization of

o) - (a0 ulFir-1 & v o).

which -as mentioned above- will be shown to converge uniformly to 1 when divided by
L1(d). This is exactly what we need.

Accordingly the results we need for the proof of Theorem IIL.2 are given in the two
following lemmata:

Lemma IIL6 Assume that (D2) and d* 1n(T) In¥d*)—0 hold. Then we have

SUPdsd ey L1(d) —p0. .

T a
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and

Lemma ITL7 Assume that (D2) and d* In(T) —0 hold. Then we have

SUDPd<d max Lrl(d)l dlw I‘d,'r - d*>1 tr rd‘.T ‘ —p 0. °

111.2.2 The quadratic terms

In this section we prove Lemmata IIL.5 and IIL.6. In both, a random variable depending
on d is shown to converge uniformly in the stochastic sense. It turns out that it is
sufficient to bound the fourth order moments of these variables in order to prove the
convergence. For Lemma II1.6 this can be done directly. For the proof of Lemma IIL5,

which is more complicated, we use the decomposition of Ar(d): first we show that Vgt

and W4 may be approximated stochastically by V'd‘T and W'd,T respectively. Secondly,
we examine the behaviour of the two latter random variables by considering their higher
order centered moments.

We first prove Lemma IIL5. For this we will state and prove a proposition and three
other lemmata.

Lemma IIL.8 Assume that (D2) holds. Then we have:

i) SUPasamey | Var - Var| = 0p (L1(®)
i) SUP<dmgy | Wat - War | = 0p (Lr(@) .
Proof. First we fix a sequence d= dr <dmax. Let the following event be denoted by

% A X -1
PO r¢T-1|| < 1/2}. Further denote by T340) :=[E;' [T) lb;] and let I} 1 as
in (I1.3). Note that we have:

(1) )1 )1 | < [[Far -]
@ (a0 1) - (1-1340) )] <2 -1l onaa
3) [(732A)-1)-(154{2)-1)] <4 ||f~*ﬂ-1||zon AqT.
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~% -1
((2) is obtained by an expansion of [l"ﬂ] ; (3) follows from (2) and (1))

We first prove i). Expanding the functions In(.) and 1/(.) by using (1), we obtain on

AgT:
va:# f (33 0) + (T2 - 1 dk:ZIE f (vi)- 1fan + O(Hf‘*a-llr).

From this and using (1) and (3) we obtain :
@ |Var- Vx| = Oll[Foz-111)on Aur.

Finally for any even k and any >0 and €<1/2 we obtain from (4) and Lemma I.2:
P{supacopes T4 | Vaz- Vaz|>¢) <

dmax dmax ~ 3k

2 P{ AgT}+ > P {de~k ||ru-1|| Zek}

d=1 d=1

= 0(1) &* TH2n(TP* In(dP*  di2: 3+ —» 0

The convergence to 0 follows from (D2) after choosing k large enough and 8 small
enough.

Assertion ii) is similarly proven: from (2) and Hélder's inequality, observing that

J’[f fal(u)-l]zdp=0(§d), we obtain
LA @| War-War| < 20i@ ||Tar-1]| VB,
=O[de'm|\1§¢r-1“2]OnAdT' O

The next step in the proof of Lemma IILS is to bound higher order centered moments of

V‘dT and W;i,T (Lemmata III:10 and III.11). For this we need the following technical
proposition:
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Proposition ITL.9 Assume that (D2) and d= dt < dmax hold. The setting N:=Ny4
we have for any 122:

f (cum [137A).. T 70)] ) dlAs.. 2 = Ofar! N 2D in(dy*t in@)-). @

Proof. Consider indecomposable partitions 7 = { Py, ...,Ps} of the 2 X 1 table:
M A1
}"r ‘)"r

with| P;| = 2 (it follows S<r). Then from Lemma 1.10 we know that:

S
cum T 1{As),... 13 {Ae)] = Ol N1 1nNy1) supgto) In(@S ] | LYY one pjili)
j=1

And from this we obtain that the integral over the square of the cumulant is less than or
equal to:

S
supg Od? N 2D In(N) 26D In(@e5+1) | TT (WP(Lanseritha) dlrs.. Ao
j=1

Now we first bound (L9(.) € d LY.) and then integrate with respect to A,...,A; by using
Lemma A.1 i) maximally r-1 times. The factor L%0)=d will appear exactly once, since
49 js indecomposable. We obtain a final bound of:

supgn O{d2 N -2r-1) in(N) %r-1) 1n(dy2r-5+1)) ¢+ In(d)™!

which proves (1), since S<r. O

We are now able to prove the lemmata dealing with the asymptotic behaviour of
Vyrand Wyr.

Lemma IIL10 Assume that (D2) and " In%(T) In%(d*)—0 hold. Then we have

SuPasdmex L@ | Var - EVyr| —p 0. °

Proof. First we show, for a fixed sequence d<dp.x and setting N:=Ngy, that
cumy (V'(LT,. ; .,VQYT) , the k-th order cumulant of V'd‘T, equals:
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(1) (dm)x f cum [(IQT-1)2(x1),. ..,(I;T-l)z(kkﬂ d(A;... Ax) = O( d¥2 N % In(d)3K2 In@N)¥ ).

To see that this holds consider again indecomposable partitions £ = { Py, ...,Ps) of the

2 x k table:
(I;,T'l) (r1) (I;,T‘ 1) (-n1)

(I;,T'l) () (I;T‘l) (A
with | P;| = 2 (it follows S<k). Then from the Product Theorem for Cumulants we have:

f e[ f ) (51 PO iy, ) =

= O(1) sup(x) f[ cum|[{I3b0s), #hie Pi] d(rs.. )
i=1

S
<0q) Supﬁ{k)’\/ I1 f cum? (T3 ), £hie Byj] a2
j=1

<01 Supﬁ{k)"/ 32k-S N-A2k-S) ]n(N')Z(Zk-S) ln(d)2k+8 ,
by using Proposition IIL9, which proves (1) since S<k.
From (1) and the Product Theorem for Cumulants we obtain directly:

@ E(Vyr- EVyg) = O(d2N4 In(N)* In(@)9).
From (2) we obtain our assertion by using Lt(d) = L1(d") for d<d":
dmax
P { S0pasana LT@ |Var-EVar[>e | <O(4) Y, & In(D* n@®(av T
=1
=0 (ln(T)4 ln(d*)s)( d*J' -0, because of our assumption. O

Lemma IIL11 Assume that (D2) and d* 1n%(T) In(d*)—0 hold. Then we have

SUPasing, LT(@) |War|—p0. .
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Proof. First we show, for a fixed sequence d<dp.x and setting N:=Nj, that :
a E(W,1 )® = OB a2 N+ In(Vy* In(@)6).

To see this observe that for even k we have:

v )= Wk{ Bl 1 1)

k
j=1

[e8()-1] d(xl...xk)}z

=0(1) BY f (Bl 00) - 1) {5200 - 1)] 12 s ),

since [ [f ﬁl(u) - 1] zdu = O(ﬁd), which follows from an expansion of the In-term in ﬁd

together with the facts that f is bounded from above and away from O (assumption (A))
and that fd converges uniformly to f (Lemma L.3).

Let = { Py, ...,Ps) be partitions of Iy 1 (A1),....I3 1 (M) with | P; | > 2 (it follows S<k/2).
Let us write cum(P) for cum(I;’T (M),...,I;‘T (7\1)) ifP= {I;,T (KI),. ol (M)} Then from

the Product Theorem for Cumulants, Proposition II1.9 and since EI;‘T =1, we obtain:

[Efwar}9* = 0 Besupo T 2 dher)

E(W,1)*|" =0 BSsupp] ] [ {cum(P;)}? dlrePp;

j=1
= 0(1) ﬁlé dkS N2 (k-8) (ln(d)) k+S []II(N)] Z(k-S)'
This proves (1) (setting k=4) because S<k/2.
From (1) we obtain our assertion by using L'rl(d) By <1and Ly(d) > Lt(d*) for d<d™:
Aanax :

P { supaca,.. LF(@ | Wyt |>e) <0 @ In(r) in@° (av a*)*
d=1

=0 (1n(my* 1n@»®) (a*)' =0,

because of our assumption. a

The proof of Lemma II1.5 will now follow easily.
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Proof of Lemma IIL.5 We have:

261

V¢T - EV;LT + Wd,T
Lq(d)

VId,T - EV;i,T + W;,’T
T

+op(1) = op(1),

the 0p(1) uniformly in d<d,x. The second equality follows from Lemma IIL.8, the last
equality from Lemmata II1.10 and IIL.11. O

We now proceed to the proof of Lemma III.6. We first introduce some notation and

A~ 2
prove a lemma which gives a bound for the fourth moment of d-! r [F¢T - I] .Let:

Xar-hp) = E;[f;T - I]bu and Zg1 = d“(2n)'2f | Xarl-an)|? - B Xar-A)] > aou.

Observe that d! tr[f';-r : I] 2 dl2m)y? f | Xarl-2)|* dhn).

Lemma IIL.12 Assume that (D2) and dNalln(T )—0 hold. Then we have

d? In*(Ng)In%(d
E21T=o(_—_“( j)“()) .
Ng

Proof. For a fixed sequence d<dmax and setting N:=Ng we have from the Product

Theorem for Cumulants that EZiT= 3 cum3(Zy 1) + cumy(Zq 1), Where cumy.) denotes
the k-th order cumulant. Therefore we first calculate cum{Z4 ).

Consider indecomposable partitions 7= {0y, ...,0p) of the 2xr table

Korlhopm)  Xarlhaop)

’

Xd,’l(‘}‘-r,ur) Xd,‘[{"’l’"ur)

which do not contain any one-element partition subset. Observe that, because of the
indecomposibility of the partitions, they also do not contain any one-row partition subset.

We obtain from the Product Theorem for Cumulants that
m
cumyZy 1) := dT(2r) %" Zip,d’) H cum(0;) n d(A;15),
i=1 j=1

where zip'dr) denotes summation over indecomposable partitions ” and cum(O)
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denotes the cumulant of the random variables contained in the partition subset O, e.g.
cum{O):= cum[ Xd_T(ll,ul)n - Xd,’[(lk,ﬂk) ) ifO= { Xd,'1(7\,1,p,1),. o ng()»k,uk)}.

Let us try to calculate cumn(O), O as above.We consider partitions A% = { Py, ...,Ps) of
the 2xk table 1.1 and adopt the notation used there. Observing that

N
Xarhp) = Xt AQ) X - b by, with Albp) := N1Y, BHUY bubiUZE;, and
i=1

b A(hu) by = N1 0 o+B) bH{UL by biULbg exp| -i (o))

we obtain from Proposition 1.6 b):

S r S
cm(0) =N* Y0 500 | [T ()] 1 [0ei+B3) bt UL "oy B3, Uit 11 a%;
j=1

i=1 j=

Now we are ready to give a closed expression for cum{Zg1): regard the above mentioned
partitions 0™ as partitions of the 4 X r table

ap Brom &

o B % S
by identifying (ct;,;) with Xar{-App;) and (1,8;) with Xar{As,-:). Further consider
partitions P(0) of this table which are defined by the above mentioned two steps: first
take the indecomposable partitions d9 of the 2xr table which is formed when regarding
(ai,Bi) and (’yi,S;) as one element respectively; then for each partition-subset O with
|O|=k (remember one element of O is a pair) form a 2 Xk table and take
indecomposable partitions of it. Note that this two-step procedure gives a partition 2(0)
of the 4 x r table, which does not contain subsets of the form {a;} or {BJ or {y;}or {Si}
or {oui,Bi) or {7.8:) or {ori.Bi, 71,81},
Now using (2m)'! f b4(UY)" by ByUslbg dh = Ky-0,B) and Lemma A.2 we get:
@

I ~

| cum{Zq:7)| = O(1) d™ N supgp( ) T Noi+Bs) LNy &) LY oi+y) LYBi+8:) dxc
i=1

By di, and in order to avoid more complicated notation, from this point on we mean
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integration with respect to all variables X; involved in the current preceding expression
under the integral sign.

It remains to show that the quantity in (1) has the desired order. The following remark
will be helpful (to avoid confusion let us remind that the elements of the partition-subsets
of &9 are 'pairs"):

(2) If & contains a 2-element partition subset, say { (011,[31) ; (72,52) }, then the integral
over the LN, L9 factors depending on these variables is O{d3 N In(N) In(@)):

j N0y +B1) LNY2+82) LYt +7) LYB1+81) LY ca+y2) LYB+32) dx

= 0(@® N In@) In(d))
This follows from Lemma A.1 for each indecomposable partition of

ap B

n &

We will prove that the quantity in (1) has the desired order by a clever exhaustive
enumeration using, on the one hand, remark (2) and, on the other,

(3) we will bound all remaining L? factors by d. The integral of the remaining LN
factors will, by Lemma A.1 i), give an additional factor N In®(N) for each partition
subset (PSS) O of I with|O| =s+1.

‘We have the following cases:
I) r=2.

i) dz) consists of 2 PSS each with 2 elements. Using (2) for one of the PSS and
(3) for the rest we get a bound of O{d3® N2 In?(N) In(d)).

ii) dz) consists of one PSS with 4 elements. Using directly (3) we obtain

O(d* N 1n3(N)) as bound.

II) r=4.
i) d4) consists of 4 PSS each with 2 elements. Then at least two of the PSS occupy
different rows. Using (2) for these two PSS and (3) for the rest we get

O(dS N# In#(N) In2(d)) as bound.
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ii) i) is not fulfilled but d%) contains a PSS with 2 elements. After applying (2) for
this PSS there are 4 L4 factors left and the number of remaining PSS is maximally 2. By
(3) we get a final bound of O{d” N3 In’(N) In(d)).

iii) If there is non PSS with 2 elements, then the total number of PSS has to be less
than or equal to 2. Accordingly (3) yields a bound of O{d® N2 InS(N) ).

In case I, the bounds obtained are O{d3N2In’(N)In(d)) and in case II
O(d® N* In*(N) In2(d) ) (because dN"Lin(T)—0) which, with (1), yields the assertion of

the lemma. O
Proof of Lemma III.6 From Lemmata II.3 and 1.2 it follows that
~k 2
Edla [I‘ﬂ - I] = dN1+o(L1(d)),
the o-term being uniformly in d<dmax.
Thus it is sufficient to prove SUPd<dmax Ld)ZaT —p 0.

From Lemma II1.12 we have

d dmax
P{supasq, , Li(d) Zar2e | <e* Y Ld")Ezir+e* Y, Li(d)Ezir.
d=d"

d=1
= O{a" "In4(T)In2(@") -0,

which proves our assertion. O

II1.2.3 The linear term

~%k
In this section we prove Lemma III.7, whose assertion is that the term dluTqer is
smooth as a function in d when compared to L1{d). We will prove this by bounding the
fourth order cumulants of the increment. This will be done in the lemma which we state
and prove immediately.

First a notational convention: assume that d; < d; < dpax and that quantities indicated by

~% A~ s
d; will subsequently be indicated by 7', e.g. we write 'y 7 instead of I'g; r and Bj instead
of §dj'
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Lemma III.13 Assume that (D2) holds. Then

C— R T I v g, 4DV (do-di )2
E[ dlltrrl,r - dzltl‘rz_r] =0(1) man=1,2[le (Bj+ JN' } v ﬁzz_ﬁlT) s

Proof. For any random variable A with EA=0 we have: EA*=3 curn%(A) + curm(A).
Our first task in the proof will be to calculate the k-th order cumulant of
~% AK
A:= d} o Tyr - d7 tr Ty 1. We have:
Nj
A= XTA; - Aj) X, with A; = (dN;) ZEr E;

i=1
where E; is also considered to be a doxT matrix (filling up with 0's) and we consider I'y
embedded in a dyxd; matrix (again filling up with 0's).

Setting Wj_T((x,B) = bhAjbg = (@GNt e (a+ﬁ) K{ o B exp[ OL+B ] Proposition
1.6 b) yields (we adopt the same notation as in table 1.1):

cums) = nw %) n[wlm, )- wz,ﬂai,ai)liljaa.

ip a{“)
By the Holder inequality and a variable transformation we see that:
k/2
| cum{a)| = O1) U NP () @Ky hep) - N30 (1) a Kol o] deu}

The triangular inequality for the L,-norm yields that EA %s less than or equal to some
constant times:

ZIIN‘@”J(x [ g'2n Kiwae) - £10) |+ £ [Ny (x)-N-zle“z(x)]Hz}“

Now we have:

i)f I N'llG)N1 (7») - N‘21@N2 (X)I dr = N, 131) as seen by an elementary calculation.

i f | NN at2m Kel-puhen) - 0] | alhn) < OON-1) [Bg + aN1n ()]

This follows directly, observing that Proposmon 11.10 ii) yields that N times the left hand
side in ii) equals

[ 80 ([ar2n kaag -0 (00 1 ] o).
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The proof of ii) is obtained from this together with Proposition II.11 and from
f [ﬁl(u) - f‘l(u)] 2du = O(By), which follows from an expansion of the In-term in By

together with the facts that f is bounded from above and away from 0 ( assumption (A))
and that fd converges uniformly to f (Lemma 1.3).

The assertion of the lemma follows directly from i) and ii). O

~% ~%
Proof of Lemma IIL7 Setting Agy:= d* tr Ty - d"! tr Tg* 1 we obtain :

) EadrLi(d) = dma(m (ava’)]

by using Lemma II1.13 and the following points (2), (3) and (4):

@ By, + Ng do In(T)= O(Lr(d) In(T)) for do = d.d".
3) N;t L) = ol ava’) ] for do = d.d*

@ Ni N | adf L) = Offava’)']

Let us prove (2). For d, = d we have:

Ba+Nidln(D) _By , Nd dln(D
S=—+ = O( In(T)).
Lq(d) B4 Nal d )
For d,=d* (2) follows from the preceding together with L-r(d")sL-[(d). By similar
arguments, (3) and (4) can be proven by using I_q(d*) <Lg(d)ford < d~.

From (1) it follows that:

dmax *\-2 #-1 )
Plsupace,., Asrli(d@) 2e}= Ofw2m)) Y., (ava’)” = ola™'?(m) ) -0,
d=1
which proves the assertion of the lemma. O

II1.2.4 Proofs of the main results
We now proceed to the proof of Theorems IIL1 and IIL.2 as well as Lemma ITL.3.

Proof of Theorem IIL1 Is a direct consequence of Lemma II.5 and the definition of
d’. O
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Proof of Theorem IIL.2 We will first prove

13
v o)

Let Sy{d) := S1{d) - (2x) ! f In(fA)dr -d e [f‘fn . 1]. From Lemma IIL6 we have:

—p L.

SH{d) = Ar{d) + op{L1(d)) uniformly in d<dpax and thus from Lemma IIL5:

@ L(d) = St(d) + op(Lr{d)) = S{d") +( Sx(d) - S1{d") ) + op(Lr{a)

=L(d*) +( S{d) - S{d*) ) + op{L1{d)) uniformly in d<dpax.
From Lemma III.7 we have:
?3) S{d) - SH{d*) = S1{(d) - S1{d*) + op{L1(d)) uniformly in d<dmax.

From (2) and (3), setting d:= dand observing Sq(a) - S-[{d*) < 0 we obtain:

Ldd’)
@ 1525 (1),

which together with the definition of d* proves (1).

The assertion i) of the theorem follows directly from (1) and Lemma IIL5.
To prove the second assertion observe that (1) yields that it is sufficient to show:

LiX(d") infaca o, At(d) —p 1.

This is true, since, on the one hand, Lr'l(d*)inf‘gdmax A—I{d)SL,r‘l(d') Add®) —p1

(because of Lemma II1.5) and, on the other,
Li!(a*) infaca,, Ar(d) 2 infacq, L7}(d) Ar(d) —p 1 (again because of Lemma IIL5).
This completes the proof of ii). O

Proof of Lemma IIL3 Follows exactly the lines of the proof of Theorem IIL2, by
substituting d by ® and modifying (3) into

) $7(d) - SHd*) = S1(d) - S{a*) + op(Lx(d)) = Sr{d)- S{d") + op(Lr(d))

uniformly in d<dnax, the last equality following from the assumption of the lemma. []
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Proof of Lemma IIL4 Statement i) follows from Lemma III.3 by observing that
(2m) f 1n f372) d = (2m) ! f Inf11(A) A + In{ptg) and In(utg) = d/N + O(d/N).
In order to prove ii) we first show that:

Altfar)
L1d)

uniformly in d £ dpax. To show this note that we have:

@

Alefar) =AleZar) + n(ua) +[ pgl-1] 0 ‘I[ r .l]

= A(f ,?d,T) +In(ug) + g1+ op(L1(@)).

~% -1
since from Lemmata 1.1 and 1.2 follows that d'! tr[ r - I} =0p(1) uniformly in
d € dmax. From this, together with Lemma IIL.5, we obtain (1).

Now ii) follows easily:

Algf31) _ Ale ,fi"r) LAd) AleF31) ol
* - A An * P
L1(d’) L@  alff)  Ldd)
since the first factor on the right converges to 1 because of (1), the second because of
Lemma II1.5 and the third because of i). O
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IV. USING OTHER COVARIANCE MATRIX ESTIMATORS
Iv.l INTRODUCTION, RESULTS

In all previous chapters we were concerned with the Capon estimator as defined in 0.4)
using the segment covariance matrix estimator defined in (0.5). In this chapter we will
deal with the behaviour of the Capon estimator when in its definition we use other
covariance matrix estimators. Two possibilities are:

a) The symmetrized segment covariance matrix estimator, which consists of a
symmetrization of the segment covariance matrix estimator (0.5) (defined in av.1)
below). In terms of Burg's relation ((0.8), a modification similar to (IL.1), is here also
necessary ) this corresponds to a harmonic mean of ‘forward-backward' LS
autoregressive estimators (see Section V.1.3).

b) The (tapered) Toeplitz covariance matrix estimator, which is the Toeplitz matrix
corresponding to a tapered periodogram (defined in (IV.2) below). In terms of Burg's
relation (0.8) this corresponds to an harmonic mean of autoregressive estimators based
on the Yule-Walker equations when using the empirical covariances of a tapered
periodogram (see Section V.1.3).

In this chapter we will prove that the Central Limit Theorem (eventually properly
modified) holds, when using these covariance matrix estimators for the definition of the
Capon estimator (Theorems IV.1 and IV.2).

For the estimator in 'a' this will be a direct consequence from what is already known
from Chapter I: it turns out that the first order expansion term of the thus defined Capon

estimator is identical to I:i,c,T (see relation (1.3)). For the estimator in 'b' the methods and
some of the results of Chapter I will be helpful, but the proofs are still rather different.

For example, in order to bound E tl{i:;’r - I] * or the higher order cumulants of the
estimator, we again have to bound integral expressions as in the proofs of Lemmata 1.5
and 1.10. Their structure however is totally different; the arguments used in these
lemmata to bound the expressions do not work. This is the reason why we could not treat
all cases by a unique argument and we refered cases 'a' and 'b' to this chapter. One
meets similar difficulties when trying, for cases 'a' and 'b', an expansion of the type
obtained in Chapter II (in order to develop a dimension selection criterion) or when trying
to prove asymptotic efficiency of a dimension selection criterion.
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IV.1.1 The symmetrized covariance matrix estimator

We define the symmetrized covariance matrix estimator as

~(sym) (rev)
Iv.1) o g 5 FicTnl s

with Tgepe=l 2 ¥ (¥*9) where N = Ny as in (0.5) and
1 =1

Y = ¥2 ) 2 (X pyergorKtiert ), that is the YE© (see (0.5)) in reversed order.

Further we define the Capon estimator as

s ) -1
1m0 =120y =L BIFLRT 0) el

For fixed ve R* and Axe[ -, ], k=1,....K let {' and 6 be defined as in Chapter L.
Then:

Theorem IV.1 Suppose that (A), (B) and (C) hold and that the sequences cT, dt
fulfill

i) cd!*t/T — 0 for some £>0

ii) ¢/d < C for some constant C <eo.

iii) dP In(T) (In(d))2In(c) — O (where B := 1:_%&, r, o as in (B) ) as T tends to

infinity. Then setting v := limg_,,, 8 (dr/ c1) (assuming it exists) we have:
sym)
) ¥ Td { ('k)'l} =p ¢
k=1,...K

sym)

b YTa- {d” (- 1- Bd(xk)

=p (', where Bg:=Fsf1-1.

¢) Ifin addition T d {1+2Y) In4(d) —0, where y :=(r+0)A1, then

peym)

—-—d’;'T () - 1

Td1-
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IV.1.2 The Toeplitz covariance matrix estimator

~h
We define the Toeplitz covariance matrix estimator 1"51,1)‘ as follows:

)

v.2) Tat)ij= i),

Ta

where the empirical covariances are given by 'c‘/(}‘)[u) :=H'T12 bXhgeoXtsys v=0,...,d-1.
t=1

Here he=h(tT1), t=1,....,T, is a 'data taper’ with h:[0,1]9R a continuously

T
differentiable function of bounded variation fulfilling|| | > 0 and Ht :=Z h? .

t=1

~(h —
We may write I‘&% = f Igf’)(a) babe do, where Ig')(a) is the tapered periodogram:
I(Th)(a) :={2nH7)! ‘ X‘Dg‘)baj 2 D(;‘) being the diagonal matrix diag(hy,....ht).

Further we define the Capon estimator as

-1 -1
B -1y =g GEA v retnn

x 2
Finally we introduce the kernels O(T'h)(X) = 2 hieiM and A(T’h)(?») = H{ IG)(T’h)(kH
t=1
and the function f{T-h):= £ * A(T'h) as well as the dxd Toeplitz matrix GST‘h) corresponding

to £Th),

Concerning the data taper we have the following properties:
(T1) HrT' || h[13>0

2)|©™| < C LT for some C (Dahlhaus (1983)).
(T3) If £ fulfills (B) then || £T-0)-f||., = O{T") with y :=(r+c)a1 (Dahlhaus (1985)).

‘We now may state the Central Limit Theorem for the thus defined Capon estimator. The
difference with the previous analogous theorems is that, beyond the bias which comes
from the approximation of f via f,, we now obtain a second bias term resulting from the
approximation of f via £Th), It is well known that in small sample situations this
approximation may be spoiled by leakage which can be reduced only by the choice of a
good data taper (see e.g. Bloomfield (1976) Ch. 5.1-5.3).
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Let BIMA) = Bratb) " BralG™ - 1y Tiby, Then || BT | <[] €Tt - 1],
holds, since B"™(A) = f (€Tt - 1)) 0| BT, ]’ (Birde,)” au.

For fixed ve R* and Age[ -m, m ], k=1,....K let ¢" and © be defined as in Chapter L
Then:

Theorem IV.2 Suppose that (A), (B) and (C) hold and that the sequence dr
fulfills

i) d*¢/T — 0 for some £>0

if) d'12TV2Y—0, yasin (T3) and

iii) dP 1n(T) In(d)—> O (where B := r+fa r, o as in (B) ) as T tends to infinity.
Then with v :=2/3 || h|[;? we have:

h)
aVTd! {é—‘" (M) - B&“)(xk)-l} =p '
d

k=21,:K
h)
piTdl F("TT (el - Bd(xk]-BgT‘h)(xk)}k L =D ¢, where
=1,..,

Bg:=Tyf1-1and B(T 1) a5 above.

¢) If in addition Td {1+27) |n 4(d) —0, where y :=(r+a)A1, then

h)
T4 {LT (M) - 1’ =p (. o
f k=1,...K

IV.2 DETAILED RESULTS, PROOFS

IV.2.1 The symmetrized covariance matrix estimator

Proof of Theorem IV.1 Let us define ?‘(;z_l-?) I(;zr{ly (M) analogously to /I:d,c‘T and
I; . 7(A) (relations (1.2) and (I.3) ). We claim that:

a) l o | || er -1l
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For (1) it is sufficient to show

~(rev)*

@ | L

d,c,T

To see this, observe that if Fy is the dxd matrix with 1's in the diagonal from right-top to

left-bottom, then we have for any ve R vt rffcv% v = (Fav) fd,c,T (F4v). Accordingly:

~%
VTS Y = wi Tyer w with wi= Uy Fg(UY)v. From this, (2) follows directly by
observing||v| = ||w|h (use FaTaFa=T9.

From (1) together with Lemmata 1.2 and L4, we obtain that under the conditions of the
theorem

YTdl

gs)’m) ( ) IE']SZ?‘) O\v)l'_‘)PO

We now claim that Ifisz?)*(l) = IEc,TO‘) To see this observe that Y(i'ev) = FqY;, which
yields:

12 | (¥=) e, | = 12 | i Far3Fa by |” =N 12 |vi i, |

i=1 i=1

Here we used Fdl"& Fg= l"fj , which holds because the inverse of a Toeplitz matrix is
persymmetric. The rest of the theorem follows immediately from Lemmata 1.9 and L10.

O

IV.2.2 The Toeplitz covariance matrix estimator

For proving Theorem IV.2 we follow a concept similar to the one we used in Chapter I
Let 1"¢T and I(h (M) (not to be confused with I( ) o)) be defined analogously to F¢CT
and I¢C,T(X) respectively (see relations (I.2) and (I.3)). First we examine the cumulants

I(h)*(k). Secondly we show that, under the conditions of the theorem, f((f% ?d' ! and

I( 7 (L) are asymptotically equivalent.

Lemma IV.3 Assume that (A), (B) and (C) hold. Then we have:
i By -1 = By
i)

O(Ry), if Py, mod(2m
cov[ rﬂh) w. I( (uz)] { (Rp), if pi#tp, mod(2m)
%H D112 [Bpem + Bupuat ORY), else
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with Ry :=d?2[|pp-u2| 2 +| i+h2| 2] In(T) In(d) + R, and

R; :=d P In(T) In2(d) +d T! , where B:= 1:_'_‘:0‘, r,oasin (B). ©

Proof. i) Is straight forward using Ig?-l)-*(u) =fq{u)d? 21tf I(Th)(y)[Kd(y, )| %dy and
Ex{V) = (1),

it) Using 18 () = Epy) & 2n f 1)) Kol;, 15)| 2d% and Proposition 16 b) together
with 1) :=2ntrt XDMb, 5,08 X we obtain that the cumulant of interest

equals (using the notation of table L.1):
2 ~ T
182 []H) -
=1

S =TT o(Th) (T.h 2 2T 4= T
Y | [Tt [T o Mo+n e X34 LT IKeltitsp)| qdkiq dy;
i= i=

ip, (2) i=1 j=1 j=1

Now using Lemmata A.1 and A.2 and (T2), one may verify that each of the three terms
in this sum corresponding to different partitions of the table is bounded. Moreover itis

O(R;) for the partition P= {(al, B1, o2, [32]}. For the two other partitions the
corresponding terms in the sum are bounded. This together with Lemma A.3 and (A.2.4)
allows (as in the proof of Lemma L.9) to substitute all quantities depending on f in these
terms by the ones corresponding to f={27)! having a total error of O(R).

Next for the partition = {al, Bz}, {az, [31} the corresponding term in the sum may be

shown to be Od2) (L (o) if Wi, mod(2m) and to converge to 2/3||h|}? if
W1=p2 mod(2m). The same statements hold with W, substituted by -K2 for the partition

?={ay, B1)y {o2, B2)- =

Lemma IV.4 Assume that (A), (B) and (C) hold and d T-lIn(T)—0. Then we
have:

cum[ ’\/'%I(:%*()\,l) sisss vtgﬂ;“%*o\.r)} =O( [dT '1] 12-1 In(T) 21-1 ln(d)) e
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Proof. The cumulant in which we are interested equals

(B ({19 | ettt st LIk ) Lo

Considering partitions of the table I.1 and adopting the notation used there, we have from
Proposition 1.6 b) and (T2) that:

C“m(l'(:)(“{l)wwl-(rh)(%)) = O(HTI) Z H LT{oj+y5) LT(BJ YJ)H dx;.

ip, (1) J =1

Now one may, in a natural way, consider the partitions ?=(Py,...,Ps) of the table I.1 as
partitions of the table:

Then writing z +v; for the sum of all elements of Py we obtain by Lemma A.1 that:
Py

curn{P),.... X)) = O(E7) In(1) 2 Ssugal [ LT(PZ wj)

i=1
Thus we obtain that the cumulant in which we are interested is bounded by:

S T I
O(B#? 32 In(TS) supe | 1 LT(Z ’—'vj) IT sy )L i+ I ] ay
i=1 =1 =1

P;

Now we may proceed to integrate with respect to ¥j, j=1,...,r successively using Lemma
A.1. In this process LT(0)= T will occur exactly once, since 2 is indecomposable.
Further Lemma A.1 i) will be applied maximally S-1 times and accordingly Lemma A.1

ii) maximally 2r-2S+1 times. What will remain is a product of maximally S L4 factors,
which may be bounded by dS. Thus we obtain a total bound of

(XT-r/Z d-372 ln(T) 2r-S (d ln('l"))s'l(]n(d)) 2r-28+1 48 T)

- O(Tl-r/Z 42s-1-3112 ln(T)Zr-l(m(d)) 2r-25+1)

which yields the result since S<r. O

Lemma IV.5 Assume that (A), (B) and (C) hold, that d*¢T-1—0 for some £>0
and that d"V2T1/2750, y as in (T3). Then we have:

V5 I Al -
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Proof. Let G&T’h) = Vgr’h) (V&T’h))t be the Cholesky decomposition of the matrix GgT'h) s
which was defined above. Further let Ggr'h)* =Ug GgT’h) (Ufi)'l. Then we have

|| 1| < || drmet - 1|l = O(T ), yas in (T3)
Set A(d}:% = (Vg’h)) = 1:(;‘% [(Vgr‘h)) !] _X.We will show:

@ VI |[AR-1]| -0

This is sufficient since:

@ [ 1| sow || A% 1]+ 0 || @ x|

To see that (2) holds, note that
o) (T 1 y(Th h T frre) 1
Tor -G = Uf v ){A(da)“'l] (V)" (uy™.
As in Chapter I, (1) follows from:
(n) k_ dk/2+1 2k
©) Edo Al)-1]"=0 (Tk_/i’- In(Ty2| for k even.
In order to prove (3) observe that we have (indices always taken mod(k)):

K K
U[A(H-I]k= 1} [I(;l)_f(T‘h)](“i) Etﬂi—l[GSiT‘h)]‘lblli I_-! dp;.

k
Next we calculate E (H [Ig‘)—t(th)] (ui)). For this purpose consider all partitions
i=1

A%) = {Py,...,Ps} (notonly indecomposable), which do not contain any one-row or one-
element partition subset of the 2xk table:

no &
Yoo O
Then we have, from Proposition L6 ¢) and (T2), and adopting the notation used there:

k) . )3 s
E|TT )] (ui))= o) supgto | TT L) LTnit8) [T as,
i=1 i=1 i=1
where the supremum is taken over partitions i{k), which do not contain subsets
consisting of one element or one row of the table (E[I(Th)-l(”)] =0, EX=0).
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Now one may, in a natural way, consider the partitions 2% as partitions of the table:
i -l
Bk  -Hk

Then writing z +11; for the sum of all elements of P; we obtain by applying Lemma A.1

i) repeatedly mzjiximally 2k-S times:
E (H (K4 ) Of ) In(TY2%S sup ) H LT(Z ).
i=1
Thus in total we get:

S k k
E of A% -1]"= o) (s supy) [ [ LT(PZ iu;) IT L) IT dws
i=1 : j=1 i=1

Now suppose 1‘]‘) consists of M row-subtables (a subtable is a union of rows which can

be expressed as a union of partition subsets). Since #%) does not contain any one-row-
partition subsets, it follows that M< k/2. For bounding the above expression Lemma
A.1 ii) will be used maximally m-1 times for a row-subtable consisting of m rows, thus
maximally k-M times in total. Further LT(0) =T will appear exactly M times and LY0)=d
exactly once. From these arguments we obtain:

E of A%)-1]" = OB In(1)2S (d In() <M d T™) = O(T+2 2+ In(T)*),
which proves (3) O

Proof of Theorem IV.2 From Lemmata 1.4 and IV.5 we obtain that under the
conditions of the theorem ¥ T d ! i ) Igh% \) | —p 0. Further from Lemmata
IV.3 and IV.4 we obtain that Y Td ! {Ig"% - BgT " 1} is asymptotically normal and

has the desired covariance structure. This proves a). Assertion b) follows from a) with

1. 1.Bg-BITW = Fet [ £ 1] - BTN

= [# & 1 8] (14 of alevonlnz))

Finally c) is an immediate consequence of b) with Lemma 1.3 and (T3). ]
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V. A SIMULATION STUDY

V.1 INTRODUCTION

In previous chapters we studied the asymptotic properties of the Capon estimator and
those of an automatic selection criterion for the parameter d.

But first it is not clear in advance that these asymptotics reflect well enough a finite
sample situation. In time series analysis there are cases where the contrary is true. Thus,
for example, (classical) asymptotic theory fails to describe the leakage effect (which is a
finite sample effect) and to demonstrate the superiority of the tapered periodogram over
the non-tapered: the bias of both estimators tends to zero while the variance of the tapered
periodogram is larger than in the non-tapered case (see also Dahlhaus (1990)).

Moreover in the Introduction of this thesis we claimed that the Capon estimator copes
with the leakage effect without using tapering. The confirmation of such a claim cannot
be obtained by the (classical) asymptotic theory.

However a simulation experiment offers some indications to these and other similar
problems. We are interested in studying the following points:

«  How does the Capon estimator perform compared to other non-parametric
estimators? Does it perform as well as an ‘optimally’ tapered smoothed periodogram?
How does it perform as compared to its natural competitor, the autoregressive estimator?
«  With what covariance matrix estimator does the Capon estimator perform better,
with the 'segment, the 'symmetrized segment' or the ‘Toeplitz'?

° Does the (quasi) bias correction proposed in Section I1.1.3 bring significant
benefits?

. How do the several order dimension selection criteria perform? Is the inclusion of
quadratic terms really an improvement? Does the property of asymptotic efficiency really
reflect the finite sample behaviour?

We will present the results of our simulation concerning these questions in separate
sections of this chapter. As far as the two last questions are concerned, we have already
presented some results in previous chapters (see Sections I1.1.3 and IL.1.4). A very brief
summary of the simulation results can be found in the Section 'Conclusions of the
simulation study’ of this chapter. Before describing the model we used for the
simulation in the Section 'The model (Model A)' and the different estimators we
compared in the Section 'The estimators', we will present the method we followed to
measure the performance of an estimator.
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V.1.1 Method of comparison

To measure the performance of an estimator fT we used the Whittle discrepancy defined
in Section II.1.1. More precisely we approximated this discrepancy by a Riemann sum
over the Fourier frequencies. Thus we used:

- T . . g
Aled) =113 [n( 20 +£5 (1) - 1], where ), :=%1—)
j=1

and T is the sample size, which was chosen T=256.

In order to summarize the information obtained, we present for each estimator the box

plot of Ay(f ,fT) over the 500 simulated samples. Obviously the more the box plot
concentrates close to 0 the better the estimator is. One can look at the median and at the
inter-quartile range to obtain an impression of this concentration.

In order to help judge the difference between two estimators in this visual comparison,
we also show the mean and the 95% and 99.9% confidence intervals for the mean in each
box plot. This suggests implicitly a test to compare two estimators: an estimator is
'significantly better' than another if the confidence interval for the mean of the error of
the first lies at a smaller location than the one of the second without intersecting it. We
underline that this 'implicit test' is very conservative, since it does not take into account
the strong dependence between the two samples: for example the 'pair-wise t-test, that is
the t-test on the sample X; - Y;, i=1,...,n, would often recognize as significant
differences which are not recognized as such by the above test.

There is a second important point concerning the methodology of the comparison: all
estimators depend on additional parameters such as the dimension d for the Capon
estimator, the order of an autoregressive estimator, the bandwidth for a smoothed
periodogram and the percentage of tapering for periodograms and Toeplitz covariance
matrix estimator. The problem is how to choose the parameter value for the presentation
of the results.

For some of these parameters exist automatic selection procedures in the performance of
which we are interested (the first two examples above). In this case it is natural to use
them for selecting the parameter value of the estimator. In other cases exist automatic
criteria but we are not particularly interested in their performance in this context (e.g.
'Plug in' for the bandwidth). Moreover there are cases where automatic criteria do not
exist (or they are not known to us), as for example for the percentage of tapering. In
these latter cases, we simulated the estimator over a grid of values for the parameters and
we present the estimator with the parameter value which empirically performed best.
Thus, when we present smoothed periodograms 30% tapered and with bandwidth 0.025,
we implicitly mean that these values for the taper and the bandwidth empirically
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minimized the mean of the error in our simulation.

Of course this is equivalent to giving 'prior information' to these estimators. One should
keep that in mind when comparing their performance with estimators for which no 'prior
information' is used. For this reason we also present errors of estimators with an
'optimally chosen parameter' even when automatic selection criteria for this parameter
exist and are studied here. This also helps to judge, for example, if a bad performance of
an estimator is due to the estimator itself or to the method used to select its parameter
values.

V.1.2 The model (Model A)

For the simulation we used a Gaussian ARMA(p,q) model. A stationary process (Xthez
is said to be a Gaussian ARMA(p,q) process if there exist coefficients a;, j=1....,p and
B, j=1....,q and a sequence of iid normal variables {€}cz~ N(0, 6) such that the
following equation is fulfilled:

Xi- 01 Xeg - -om 0pXep = €0+ Pr&r1 + ...+ PoErg, t€ Z.

It is well known that if the polynomials ¢(z):= zp-alzp'l— ...-0p and
0(z) == P+P 12"t + ...+Bq have roots outside the unit circle and no roots in common,
then the above equation has stationary solutions which are causal and invertible
(Brockwell, Davis (1987)). The spectral density of this process is given by :

2
f(k) = Loid Iﬂﬂ—, re[ -x, ], where z=ei*
2n 2
o]

Writing zj'l, j=1,...,p for the roots of the 'autoregressive polynomial' lq>(z)|2 and

wj‘l, j= 1,...,q for the roots of the 'moving average' polynorniall 0(z) |2 f can be written
as:

£(2):= %% {ﬁ[ 1 'ZWj]} {ﬁ[ 1-zz] -1, re[ -m, n ], where z=ei*

The simulation consists of 500 samples, with a sample size of T=256 drawn from an
ARMA(12,4) model with Gaussian innovations of variance 1. The spectral density was
chosen to contain strong peaks and gaps, which are typical structures of ARMA models,
but also to contain a flat peak, which is more a-typical for ARMA models. We made this
choice since our estimators are to be studied as nonparametric estimators, so the
underlying model should not grand special favors to any type of estimator used in the
simulation. Clearly autoregressive estimators would perform better than any others, if the
true model was purely autoregressive.
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Below we define the model in terms of the z;, j=1,...,p (AR) and wj, j=1,....q MA)
(omitting complex conjugate roots) and show a plot of the true spectrum, together with a
realisation of a tapered and a non-tapered periodogram, the Capon estimator and the
autoregressive estimator in Fig V.1. The roots were chosen by mouse-clicks, which
explains the number of decimal places.

(radius , angle/r , order)
ModelA: MA (w;) (0.9579,0.1094,1), (0.9639,0.7656,1).
AR (z) (0.995,0.9297, 1), (0.7279, 0.5391, 1),
(0.7242, 0.5234, 1), (0.7224, 0.5078, 1),
(0.7166, 0.4922, 1), (0.7203, 0.4688, 1).

Fig. V.1 The true spectral density and a realization of some specctral etimators.

1 1 ) 1 1
Doox D20% 0407 060m 0som 000m 020m 0407 060m 080

y-Axis scaled logarithmically, sample size=256

True spectrum
Smoothed Periodogram 0% tapered Bw=0.02 —— Capon (Segm.) Dim= 49
—— Smoothed Periodogram 30% tapered Bw=0025 " Autoreg.- LS order= 26

In this figure one sees clearly how the non-tapered periodogram is affected by leakage. A
second interesting point is the difference in the behaviour of the estimators close to the
main peak: the periodograms seem to 'come from above' whereas the other two
estimators to 'come from below' and estimate it much better. One can observe an

'inverse' behavior close to the gap at 0.76 7.

V.1.3 The estimators

Most of the estimators presented in the simulation such as the Capon estimator, the
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autoregressive least squares estimator and the smoothed periodograms have already been
defined in previous chapters. We define here two further estimators: the 'autoregressive
least squares forward-backward estimator’ and the ‘autoregressive (tapered) Toeplitz
estimator'.

The autoregressive least squares forward-backward estimator 'fp(ﬁm) of order p is
defined as follows (Kay and Marple (1981)): let a} := (1 ,p,1,.-,2p,p) and define
«  the forward residuals' e, {a) 1= X+ap 1Xe.1+...+appXept = p+l,....,T and

o the 'backward residuals' bp {a) := X+ap,1 Xis1+...+2ppXtsp t = 1,5aT-p:

T T-p
Further define G5 1 := infy X e2 {a)+ Y, bf,,t(a) the infimum being attained at &, 1.
t=p+1 t=1
Then

FAP) = Shr /2 |Bhrtal

: g \ 2(AR : .
The autoregressive Toeplitz estimator fé,r‘&) of order p and @-% tapered is defined as

h
follows: let the Toeplitz covariance matrix estimator ’I\‘(d,% be defined as in Section IV.1.2,
where h=hy is chosen to be the o-% Tukey data taper (see 0.3). Let

ah :=(1 ,p,1,.--»ap,p) and define ﬁva, 8%1 as the solution of the Yule-Walker equations:

?(;L)LT a1 = (&1 0...0)%  Then ETe(r)=0pr/2n |atrb| .

In the simulation study we included the following estimators.
a) Capon estimators.

« with 'segment’, 'symmetrized segment’ and Toeplitz' covariance matrix estimators,
defined in Sections 0.2, IV.1.1, IV.1.2 respectively.

« corrected and non-corrected. By this we refer to the (quasi) bias correction discussed in
Section I1.1.3. There it was only considered in the case of a 'segment’ covariance matrix
estimator. It consists of the multiplication of the estimator with 1 + d/N+ (d/N)2, N as in
(0.5). As simulations similar to those presented in Figure IL.1 suggest, we use in the
'symmetrized segment ' case the same correction factor and in the 'Toeplitz ' case the
factor 1+ d/H . (H as in Section 0.3) (see also Figure I1.4). ’

« with orders fixed and estimated. By 'estimated orders' we mean that they were selected
according to the dimension selection criterion proposed in Section IL1.2 (and Section
11.1.3 for the corrected estimator). For the non-corrected estimator we considered both a
penalty term including and not including the quadratic term (d/N)2 in order to observe the
difference in their performance. For the 'symmetrized segment’ estimator we used the
same penalties as above and for the "Toeplitz' estimator we took d/H and d/T, for the
same reasons as for the correction factors.
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b) Autoregressive estimators.

We underline that autoregressive estimators may have been introduced as parametric
estimators for an autoregressive model, but they may also be regarded as non-parametric
estimators.

« defined over ‘least squares' (Section II.1.4), 'least squares forward-backward' and
'Toeplitz Yule-Walker' equations (both defined in this section).

« corrected and non-corrected. By this we mean again the (quasi) bias correction
discussed in Section I1.1.4. There, it was only considered in the case of the least squares
estimator. It consists of the multiplication of the estimator with 1 + 2 p/N+ 4 (p/N)2, N
as in (0.5). For the same reasons as for the Capon estimator we use the same correction
factor for the 'forward-backward' estimator; for the 'Toeplitz ' case we use 1+ 2 d/H;
Hyas in Section 0.3) (see also Figure I1.4).

« with orders fixed and estimated. For estimating the orders we used the 'order selection
criterion’ proposed in Section II.1.4. For the non-corrected estimator we considered
various forms of the penalty in order to observe the difference in their performance: 2p/T
(AIC), 2p/N (almost equal to AICc), 2p/N +4 (p/N)? (the criterion proposed in Section
11.1.4) and also In(T)p/T (BIC). For the 'symmetrized segment ' estimator we took 2p/N
and 2p/N+4(p/N)? and for the 'Toeplitz' estimator we took 2 d/H and 2 d/T (see Figure
11.4).

¢) Keel smoothed tapered periodograms: I1*Ky, where I is defined in (0.7) and Ky
the Barlett-Priestley kernel (see 0.4) with bandwidth b.

Generally we used the following rules in the abbreviations for the cases a) and b).

C : Capon (segment Cov.Mat.Est.). AR: autoregressive (least squares)
-s- : symmetrized segment Cov.Mat.Est. -fb-: least squares forward-backward
-t- : Toeplitz Cov.Mat.Est. (20% taper) -t-: Toeplitz Yule-Walker (20% taper)

-c-: (quasi) bias correction by multiplication with an appropriate factor.

-d*(N)80- estimated order with penalty including only linear terms, maximum=380.
-d*(T)80- the same but with 'T" instead of 'N', maximum=80.

-dA(T; In)80- the same (only for AR) but with penalty In(T) p/T (BIC), maximum=80.
-dA(NN)80- estimated order with penalty including also quadratic terms,
maximum=80.

-cd*80- estimated order for (quasi) bias corrected estimator with penalty = 0,
maximum==80. ’

The estimators and their abbreviations

(For Capon or autoregressive estimators 'ﬁLT orders are estimated by
argming<go (Zn)'ljln(?¢r) + penalty (d) with different penalties, given below. We use N
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as in (0.5) and H=Hry as in 0.3).

P/ 30%/ Bw=0.02 I(h)*Kb where 1) the 30%-tapered periodogram, defined in
T T

Section
kemnel (see Section

withbandwidth b=0.02.

C49
CdA(N)80
CdA(NN)80
Cc58

Ccd”80
Cs51
Csd2(N)80
Csd*(NN)80
Csc61

Cscd*80
Ct67

Ctd*(H)80
Ctd(T)80
Ctc81

Ctcd”80
AR26
ARpA(T)80
ARPpA(N)80
ARpA(NN)80
ARpA(In,T)80
ARCc26

ARcp”80
ARfb26

ARfbpA(T)80
ARfbpA(N)80
ARfbp*(NN)80
ARfbc26

0.3, relation (0.7) and Ky the Barlett-Priestley
0.4)

'segment Capon', defined in (0.4) and (0.5), with d=49.

as above but with estimated d: penalty = d/N.

as above but with penalty= d/N + (d/N)Z.

'segment Capon' ((quasi) bias corrected), defined in (0.4) and
(0.5),with d=58, multiplied by 1+ d/N+ (@/N)>.

as above but with estimated d: penalty= 0.

'symmetrized segment Capon', defined in IV.1.1, with d=51.
as above but with estimated d: penalty= d/N.

as above but with penalty= d/N + (d/N)z.

'symmetrized segment Capon' ((quasi) bias corrected), defined
inIV.1.1, d=61, multiplied by 1+ &/N+ (d/N)%.

as above but with estimated d: penalty= 0.

"Toeplitz Capon', defined in Section IV.1.2, with d=67 and an
20% Tukey data taper (see Section 0.3)

as above but with estimated d: penalty= d/H.

as above but with penalty=d/T .

"Toeplitz Capon' ((quasi) bias corrected), defined in IV.1.2,
with d=81 and 20% taper, multiplied by 1+ d/H.

as above but with estimated d: penalty= 0.

autoregressive least squares, defined in I1.1.4, with p=26.

as above but with estimated p: penalty = 2 p/T (AIC).

as above but with penalty = 2 p/N.

as above but with penalty= 2 p/N + 4 (p/N)z.

as above but with penalty= In(T) p/T (BIC).

autoregressive least squares ((quasi) bias corrected), defined in
Section IL1.4, p=26, multiplied by 1+ 2p/N+ 4(p/N)°.

as above but with estimated p: penalty= 0.

autoregressive least squares forward-backward, defined in
Section V.1.3, with p=26.

as above but with estimated p: penalty= 2 p/T (AIC).

as above but with penalty=2 p/N.

as above but with penalty=2 p/N + 4 (p/N)°.

autoregressive least squares forward-backward ((quasi) bias
corrected), defined in Section V.1.3, p=26, multiplied by
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142p/N+ 4(p/N)>.

ARfbcp”80 as above but with estimated p: penalty=0.

ARt26 Toeplitz autoregressive, defined in Section V.1.2, with p=26,
20% tapered.

ARtp*(H)80 as above but with estimated p: penalty= 2 p/H.

ARtpA(T)80 as above but with penalty= 2 p/T (AIC).

ARtc26 Toeplitz autoregressive ((quasi) bias corrected), defined in
Section V.1.2, with p=26, 20% taper, multiplied by 1+ 2 d/H.

ARtcp”80 as above but with estimated p: penalty= 0.

V.2 SIMULATION RESULTS

We will now present the simulation results following the methodology discussed in
Section V.1.1. In each of the following sections we present a set of box plots concerning
some of the questions posed at the beginning of this chapter.

V.2.1 Comparison of ‘'segment' Capon and LS AR with tapered
estimators

In the following image we present three groups of estimators:

° 'Segment' Capon and autoregressive least squares, corrected and non-corrected.

«  optimally tapered 'Toeplitz' Capon and autoregressive estimators.

o Smoothed periodograms with gptimal bandwidth, one optimally tapered and one
non- tapered.

In the first group we used estimated orders in order to stress the fact that these estimators
do not have any prior information at all. In the second group we did the same so that itis
comparable with the first group.

What can be observed is: first, that the non-tapered periodogram is much worse than the
others; non-tapered 'Toeplitz' Capon and autoregressive estimators would exhibit a
similar behaviour. Secondly, the 'segment’ Capon and autoregressive estimators have
discrepancy distributions very close to that of optimally tapered estimators. The finer
differences which can already be observed among them will be further analysed in
subsequent sections.
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Fig. V.2 Box-plots of discrepancies for different types of estimators
(500 samples under Model A).

Capon and AR- estimators Toeplitz Capon and AR- Smoothed
with no prior information. estimators optimally periodograms.
tapered (20%).
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C: Segment Capon.  Ct: Toeplitz (20% tapered).

"c-: corrected ( multiplication with (1+ d/H) for Ct and with (1+ d/N + (d/N)2 ) for C.

dANN)-, -dA(H)- : estimated d, penalty- term= d/N + (d/N)2, d/H. For Ccd?, Ctcd”: no penalty.

AR: LS Autoreg.  ARt: Toeplitz (20% tapered).

"c-'; corrected ( multiplication with (1+ 2p/H) for ARtp and with (1+ 2p/N + 4(p/N)2 ) for ARp.

pAH)- ', '-pMNN)-' : estimated p, penalty- term= 2p/H, 2p/N + 4(p/N)2. For ARcp?, ARtcp” : no penalty.
P/t%/Bw=b: Smoothed periodogram, 1% tapered, kemel bandwidth=b.

V.2.2 Comparison of different types of Capon estimators

In the following image we present three groups of estimators:

. 'Segment' Capon.

. 'Symmetrized segment' Capon.

. optimally tapered (20%) ‘Toeplitz' Capon.

In each group there are corrected and non-corrected estimators and also estimators with
fixed (empirically optimal) and estimated orders (by different selection criteria).
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Fig. V.3 Box-plots and estimated means with 95% and 99.9% confidence intervalls of
discrepancies for different types of Capon-estimators (500 samples under Model A).
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Cd: Segment Capon (dimension d). ~ Csd: Symmetrized-segm. Capon.  Ctd: Toeplitz (20% tapered).
"-c-: corrected ( multiplication with (1+d/H) for Ctd and with (1+ d/N + (d/N)2 ) for Cd and Csd.
-dA(N)-, -dN(T)-, -dM(H)- : estimated d, penalty- term= d/N, d/T, d/H.

"-dN(NN)- : estimated d, penalty- term= d&/N + (d/N)2. For Ccd? ,Cscd, Ctcd” : no penalty.

The following points can be observed:

o Symmetrization does not seem to bring significant benefits to the 'segment’
estimator: the discrepancy distributions for Cs51 and C49 hardly differ.

e The optimally tapered Toeplitz Capon seems to perform slightly better than the
'segment’ Capon: only 62% of the mass of C49 lies below the 75% quantile of Ct67. But
the corrected 'segment’ Capon Cc58 seems to be better than both the corrected and the
non-corrected optimally tapered 'Toeplitz' estimators. All its quartiles lie strongly below
those of Ct67 and Ctc81.

° As mentioned above, correction brings significant benefits to the 'segment’ and
'symmetrized segment' Capon. The benefits are less important for the Toeplitz Capon but
one has still the impression that the inter-quartile range of Ctc81 is narrower than the one
of Ct67.

° For the first two groups dimension selection criteria including quadratic terms (for
corrected estimators these are implicitly present in the correction) work well. Dimension
selection criteria including only linear terms perform worse.

° This is not the case for the 'Toeplitz' estimators where the linear approximation is
good enough (see also Figure 11.4).
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V.2.3 Comparison of different types of non-parametric estimators

In the following image we present four groups of estimators:

. 'Segment' Capon and 'least squares' autoregressive.
° 'Symmetrized segment' Capon and 'least squares forward-backward'
autoregressive.

. optimally tapered (20%) Toeplitz' Capon and 'Toeplitz' autoregressive
e an optimally tapered and smoothed periodogram.

In each group there are corrected and non-corrected estimators, but only estimators with
fixed (empirically optimal) orders.

Fig V.4.

Box-plots and estimated means with 95% and 99.9% confidence intervalls
of discrepancies for different types of Capon- and Autoregressive
estimators with 'optimal parameters' (500 samples under Model A).

Smooth.
'Least-Squares'/ 'Least-Squares fw.- bw.'/ Period.
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Cd: Segment Capon (dimension d). ~ Csd: Symmetrized-segm. Capon.  Ctd: Toeplitz (20% tapered).
'-c-": corrected ( multiplication with (1+d/H) for Ctd and with (1+ d/N + (d/N)2 ) for Cd and Csd.

ARp: LS Autoreg. (order p).  ARfbp: LS-forw-backw. Autor.  ARtp: Toeplitz (20% tapered).

"-c-': corrected ( multiplication with (1+ 2p/H) for ARtp and (1+ 2p/N + 4(p/N)2 ) for ARp and ARfbp.
P/30%/Bw...: Smoothed periodogram, 30% tapered, kernel bandwidth= 0.025.

Beyond the points already described in the previous section and which can be seen to
hold here also for autoregressive estimators, one can observe in Figure V.4 the
following:

. Capon estimators are always worse than the corresponding autoregressive ones:
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for all types of estimation of the underlying covariance matrix, for both corrected and
non-corrected estimators, all quartiles of the discrepancy distribution of the Capon
estimators always lie above those of the corresponding autoregressive estimators.

o The optimally tapered periodogram seems to perform better than the 'segment’
Capon: only 58% of the mass of C49 lies below the 75% quartile of P/30%/Bw=0.025.
But the corrected 'segment' Capon Cc58 seems to be better than the (optimally tapered
and smoothed) periodogram. All its quartiles lie below those of P/30%/Bw=0.025.

. 'Least squares' autoregressive estimators corrected and non-corrected also seem to
perform better than the (optimally tapered and smoothed) periodogram.

In the image which follows we present the same as above but with estimated orders.
Beyond the optimal taper for the third group there is no 'prior information’ entering. This
is the reason we present it separately.

Fig V.5.

Box-plots and estimated means with 95% and 99.9% confidence intervalls of
discrepancies for different types of Capon- and Autoregressive estimators with
‘estimated orders' (500 samples under Model A).
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C: Segment Capon.  Cs: Symmetrized-segm. Capon.  Ct: Toeplitz (20% tapered).

‘-c-: corrected ( multiplication with (1+ d/H) for Ct and with (1+ d/N + (d/N)2 ) for C and Cs.

"-dANN)-, -dA(NN)-', "-dN(T)-', '-dA(H)-': estimated d, penalty- term= d/N, d/N + (I/N)2, d/T, d/H.

AR: LS Autoreg.  ARfb: LS-forw-backw. Autor.  ARt: Toeplitz (20% tapered).

"-¢c-": corrected ( multiplication with (1+ 2p/H) for ARtp and with (1+ 2p/N + 4(p/N)2 ) for ARp and ARfbp.
-pAN)-, -pA(T)-, -pAUNT)-, -pAH)- ¢, -pANN)-' : estimated p, penalty- term=

2p/N (AICc), 2p/T (AIC), In(T)p/T (BIC), 2p/H, 2p/N + 4(p/N)2.

For Ccd? ,Cscd?, Cted?, ARcpt ,ARfbep?, ARtep” @ no penalty.
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. One can verify the observations already mentioned for the first image (with fixed orders).
This is natural since 'estimated orders' approximate the behavior of fixed ‘optimal’
orders. One observes again rather clearly the superiority of corrected estimators as well
as the superiority of order selection criteria including quadratic terms when 'segment
Cov.Mat.Est." are used. What is also very interesting is the difference of the performance
of the simple AIC:

» the AIC (penalty 2p/T) for autoregressive least squares estimators performs very
badly; not even the median of ARpA(T)80 lies in the image. When symmetrization
(forward-backward) is used, AIC performs a bit better than previously, but still much
worse than the other selection criteria presented. On the contrary AIC performs as well
as other selection criteria in connection with a 'Toeplitz' autoregressive estimator. This
difference is explained in Section IL.1.4. It is due to the fact that the approximation

(2n)! Jf fplx(k) dA = 2p/T is 'good enough' when g T is the 'Toeplitz' autoregressive
estimator but very bad when /f‘p,T is the autoregressive least squares estimator.

V.2.4 Conclusions of the simulation study
In this section we summarize the points observed in the simulation study.

. Capon estimators with a 'segment’ or a 'symmetrized segment' Cov.Mat.est. and
autoregressive LS or LS forward-backward estimators perform as well as optimally
tapered smoothed periodograms or optimally tapered Toeplitz' Capon and autoregressive
estimators.

. (Quasi) bias correction brings important benefits to the 'segment’, 'symmetrized
segment' Capon and autoregressive LS or LS forward-backward estimators. The benefits
are less important for the Toeplitz Capon and autoregressive estimators.

° For the 'segment’, 'symmetrized segment' Capon and for the autoregressive LS or
LS forward-backward estimators dimension selection criteria including quadratic terms
(for corrected estimators these are implicitly present in the correction) work well: the
resulting discrepancy distributions can be hardly distinguished from those with an
optimal parameter choice (asymptotic efficiency). Dimension selection criteria including
only linear terms perform less well. This is not the case for the 'Toeplitz' estimators
where the criteria including only linear terms are good enough.
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A. APPENDIX

A.l The LN functions

We introduce the L"{X) functions (Dahlhaus (1983)) and state some of their properties
which we use for the cumulant calculations.

Let L"(k) be a 27 periodic and symmetric around O function, defined on [-m,7] as
follows:

1) = {Nif|)»|sN‘1
I?\lll,else

Then the following holds:

Lemma A.1 There exists Ke R, such that for N,d,c e N*, o,B,7,A,1,xe R:
i) f Ny+o) LNB-o) der < K In(N) LN(y+B).
ii) If ¢ / d < C for some C holds, then there exists K' € R, such that

f LYy+x) L4B-x) LMch+ex) LNcp-cx) dx< K' d ¢ 1 In(N) In(c) LYy+p) INchtep) ©

Proof. i) Dahlhaus (1983)
ii) Follows easily from the proof of Dahlhaus (1985), Lemma 4.1.

A.2 Orthogonal polynomials

In this chapter we study some properties of quantities related to the system {Q)k(k) )ke N of
polynomials orthogonal with respect to a spectral density f, where f fulfills (A) and (B)
(see also Szegd (1959)). We study especially bounds and approximations of kernels of
the type Kq(Ajt)=Kq(f,A.11) defined in Section 1.2.3. Let also Ty be defined as in
Chapter 0.

Let {Q)k(l.) }kENB denote the system of polynomials orthogonal with respect to f, that is ¢x

is a polynomial of degree k in e!* and (27t)'1f f(M)9i(A)0;(A) = ;5. Then it may be easily

seen that
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(A.2.1) 001\ =V 2% ed U3 by, ed=0,...,0,1)e R?

where T'q =UdUdt is the Cholesky decomposition of I'y (Ug is a lower triangular dxd
matrix).

dl —
(A.2.2) Ka(h,p):= B Ta by =(21)7 Y, Do)
i=0
It is further well known that under (A) (Szegd (1959), Theorem 12.1.3.)

(A.2.3) loau| 2> (1) uniformly in A for d—>es.
Moreover if f=|hy 2, where hy, is a polynomial of degree p in e (f autoregressive) then
(A.2.4) forj=p 0;(A) =hp(h) et

Finally the Christoffel-Darboux (Szegd (1959), Theorem 11.4.2.) formula holds:

4 @6 0400 0440 - 0ah) 0aW)
1-¢l (u—l)

(A2.5) Ka(h,p) =(2n)

Proof of (A.2.1) and (A.2.2). Let ¢4(A)e CY, o) :=(¢0(7»),...,¢d.1(7»)) ‘. We
first show

@ 9a(h) =V2m U by,

If (1) is true, (A.2.1) follows directly. Furthermore (A.2.2) also follows from (1):

dl —
B, T4 by = (U3 B) U by =(27) 1 0 00t =(27) 1 3 0i(M)iCh)-
i=0

In order to check the validity of (1) it is sufficient to prove that:

i) the j-th component of ¥ 27 Ual b, is a polynomial of degree j-1 in ei*, which is the
case.

ii) the polynomials given by the components of Y 21 U(‘,1 b, fulfill the orthogonality
property, which follows from

f £ (Uztby); (Uathy)  d = [U;f f £(A) by 51 aA (U3) ] =103 Ta(U) ] u= 85k

iif) the first d components of U} by are identical to U3 by, which is equivalent to
Uil o
b

) 3 veR%beR: Ug,=

In order to prove (2) we first prove:
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Ug O

3) 3 peR%2eR: Ugi= © .

u' a

Define the vector ¢ :=(cg,...,c1)* and the matrix U® as on the right hand of (3) by setting
w:=(Ug) ! c and a := Vco - utu. It is easily verified that the thus defined matrix U’ has the

property thatU( ) =T gy thus Ugs = U°.

It still remains to prove Co - u'u = 0. This follows from the next argument:

Set x! := (c‘l"d - 1) Then, since T4y is positive definite we have x! Tg41x = co - u'u 2 0.

We now turn to the proof of (2). Define the matrix V; .1 as the right hand side of (2) with
b: —-a-l and v :=-b (Ud‘)'lu, with a and u as above. Then it is easily verified that
Va1 = UgL,. This proves (2). O

In the following lemma we bound the K (£,1.j1) -kernels by an L function:

Lemma A.2 Let f fulfill (A). Then there exists a constant M', which depends only
on m,M (from (A)), such that

Kalfau) < M L4Ap) .

Proof. It is easy to see that for any xe R% with|| x ||, =1 we have x! Ty x 2 21 m.

It follows H I'al H <(2 ® m)"L. This together with Cauchy's inequality yield:
|55 il b, < BiTd b, BLTa'b, < d?m2(2m) 2.
On the other hand, from (A.2.5), we have:

|5 r2t b < (202 (|ei60 60 0 o | +] 00w au|* )] 1- 8 62

222 | 0a) |* | 0a@]? 1/2) (1- cos @b ™.

Thus:
i e
|8 T ] < 2yt | 0a] | 0aw)| 1& sm(i%_)J
Because of (A.2.3), the result follows from] X sin'l(x/2)| <M, xe[-m,x]. O

We now turn to the study of approximations of f by trigonometric polynomials. From
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Butzer and Nessel (1971) Theorem 2.2.3, it is known that if £ fulfills (A) and (B) then
(for n big enough) there exists a sequence Itd 2 of positive trigonometric polynomials of
degree py With “Itnl 2§11 IL.= O(p;’), where y:=r+0, r,o as in (B). We show that the

orthogonal polynomials !q),] # corresponding to f approximate f -1 at almost the same rate
(up to a In(n) factor). This will be a consequence of statement 'a' of our next lemma (see
also Lemma 1.3 a).

Hannan (1989) uses the above mentioned result (Butzer and Nessel) to prove that

SUPp e RI K (A1) - Kn (Ith‘z,k,u)l =0np}) -

In statement 'b' of the next lemma we prove a refinement of this result.

Lemma A.3 Let f fulfill the conditions (A) and (B). Then for a given sequence of
integers p, —e with pp £ n there exists a sequence |t,,j2 of positive trigonometric
polynomials of degree py, such that:

) |l 2- £71 1. = Ofp) and || 6 Wl = Ofp;7 In(w), where {WnxMlen denotes
the system of orthogonal polynomials associated with |t,,['2 and y:=r+0., 1,0 as in (B).

) supry < r | Kn (1) - K (12 0.0)| = Ofpi ince) L{u-2) h
Proof. From Butzer and Nessel (1971) Theorem 2.2.3, follows that (for n big enough)

there exists a sequence |t| 2 of positive trigonometric polynomials of degree p, with
it - £ |l= O(p;:’). We will show that this sequence also fulfills a) and b).

Denote by G, be the nxn Toeplitz matrix associated with |t,,|'2 and let G, = V, V4 be its
Cholesky decomposition. First observe that|| T - Ga || < 27 |||t 2- £| | and further that

lIr;! - Gatl] = o),

To see this observe that T - G;! = (UL)! [ 1-{Ui G, (UL)Y) ‘] Uzl and further that a
Neuman expansion yields:

1- (U 6, (0] = 1]1-(ui G (I =0 (llTs - Gall)= Of;)

To prove a) let us expand 0, with respect to {\y“‘k(k)}ke N. We obtain:

n-1
020 = 0o + | 2 - (1) D Wan) W) 0u(lr) dp

v=0

n-1
+ W Y, VavMWar() 0n() dp
v=0
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with o, = f 2 Wan(H) On(u) dp.

The last term vanishes because of the orthogonality property of ¢, with respect to f. The
second term on the right side is less than or equal to (note (A.2.3) and Lemma A.2)

1L supnabosto] [ L0 e~ O o)
Thus for a) it is sufficient to show| o, - 1| = O(p;?’). Now from (A.2.1):
oo = f o> Won) 0n() dp =eh Uil G (Vi) en = ¢h Uit Varen = (Uil (Vo
where we denote by (A}, the n,n-th element of the matrix A.
Since (Vil)n = (Vail and (Vi)Z =(Gglhn = (mm) it is sufficient to show:
(Ui - (Vil)an = O(p;)-
But this follows from
(U2 = (1 s (VD)2 = (G, | - G52 | = Ofpy7) anal | 5] 22 m .
This finishes the proof of a).
Let us now prove b). First we obtain from Cauchy's inequality:
|55 by - B Gi | < I - Gl =0 O (7).
On the other hand from (A.2.5)
| Ko (£248) - K (1 2,218) | < O(1) [| 00 Wi | 1- cos (u-my [
and the result follows from a) and from x sin l(x/2) <M, xe [-n,n]. Il

Let Ed;=51; f (£ £) (1) + £ £:1(A) - 1 . be defined as in Chapter IIL In the next

proposition we show that d Bgisa sequence falling in d, at least for d large enough.

Proposition A.4 Let f fulfill the conditions (A) and (B) with r 22 and o > 0.
Then we have:

aBa-@)Ba= L[ - arsoe)
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Proof. From (2x)! J' £510) an =d! u(r;,l f O dk): 1 we have:

dBe-(d+1)Ban = 5- f (1) - 1) (1) - (a+1) nlEsrn) - In(®) (1) ar
= L f [n(®) - ()] (0) + (@+1)m[EdEd (o) a

wy 2

Now since fé—:l =1+ (d+1)! {l ¢d| } where ¢q is the orthogonal polynomial of
fa

order d with respect to f, we obtain that the quantity above equals:

- #f n[Ee1]() + (@) [t + @1yt (|0l - 1)] () ar
Expanding the In-terms we obtain with Lemma 1.3 that the quantity above equals:

= ilif-(f-l?d-l)(xﬁ%( - 1)%1) (| 0al % -1)0) ar + 0(a?)

which with ‘Q)dlz‘fd 1=f -1+ 0 (d2) (Lemma1.3) yields our assertion. []

A.3 The variance function 6

Let © be defined as in Chapter L. The following lemma gives its relevant properties:

Lemma A.5 0 fulfills the following:
1) 0(x) — § X—>o0
ii) (x) = x -1, 0<x<1.
ii) 8(x) = %, x20

iv) arginf {6(dc 1), ce N*} =1, V¥ deN* o

Proof. For xe R* let ax:=x- [x] € [0,1). Then © may be written as:

=2 2 o302 + %) 3
) 609=2 + [ od-a + 3)x
If xe N then otx= 0 and ) B(x) = % X_3_.

If x<1 then 0x =x and 8(x) = x-1. This proves ii).
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(3) For k< x <k+1 for some k it is easily seen that 6 is falling.

Let us now prove iv). We have for ce N* and x:= dc"L:

383 [6(d) - 8(de)] = ¢3(2 02 - 302 + @) - A+ d S A S - c2d +d, with

A := suppeasi(2 03 - 302 + ) = V3 / 18.

Now for fixed d and c<d the function A ¢3 - c2d +d is falling in ¢ and is negative for
c=2, thus it is negative for 2<c<d. This together with ii) proves iv). Together with ()it
proves iii) and taking (3) into account i) follows too. O

A.4 Approximation of the Kullback-Leibler by the Whittle discrepancy

In this section we prove the result announced in Section IL1.1 concerning the
approximation of the Kullback-Leibler distance dt (f ,'fd,r) between the Capon estimator

’f\d,T and the spectrum f by the Whittle discrepancy A(f ,?d;r). Adopting the same notation
as in Section IL.1.1 we have:

Lemma A.6 Assume that (A) and (C) hold and that || f'||. < oe. Further assume

that d=dt fulfills
. d1+£
i) T — 0 for some >0 and
ii) d@*T In3(T) - 0.
Then as T—o we have: l dr (f ,fu) - A(f ,’de)I =ogd/T) d

Proof. Let Ar:=|||far £~ 1]|-<1/2 Jand

op:=(d* T @) In(T) ) ¥ v a1 In(T)

with some & <€ (1-€)/6. Observe that for d big enough from Lemmata L2 and 1.3 we
have:

[far£t-1]]w < O] Far - 1]+l Taet- 1]l

< o ||Thr-1]| +11 Fa£1 -1]].. = Oxan)

Let us denote by B} =U? Br (fd;p) (U'Tl)t and its eigenvalues by M1,...,u7. Then it
follows from the previous that || By-1]| < ||farf!-1||< = Og{or).
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Thus on At we may expand:

. T T
ar (£820) =T [0 + it -1] =@T)Y [ i-1)%+ O (ad)
i=1 i=1
= (1) B} - 1]+ O (o)

= 1/2f [ar () [Eax £ () T Kefrps)|* arap +0 (o)

On the other hand on At we may also expand
altfar)= [ -17(2) 0 +0 (e
Thus, since .[ f(u) T! ‘ Kx(X,u)l g dp = (2n)! £:1 (1), we have (uniformly) on A

IdT (ffd:r) - A(f,ELT)I <

= 1/2f [Tz -£(0)

£(w) fr0)

TL7 ()] dh dp + O (o)
£200)

[far £ (0 - [far £ (1)

=0p (ar)f |(ar -6 () - [Far £ ()] 72 [L7(w-2)] * 0 @ + Op (00% lnfp ) +0 (o)

It is easy to verify that:

iy |24z () -Far )] = Op) [ a1 11ty 11 || Ba-Bull2 A 1) =OpD[d]A-p| A 1]

ii)f[dlxl A 1]T-1[LT(x)]2dx=o{9—1“T—@)

It follows:
A . 3
%'dl‘ (££sr) - Alear)| = Op(orin(m) + O (a_fil )

This quantity converges to 0 under the conditions of the lemma. Since also P ( A% )—=0
the proof is finished. O

97



REFERENCES

Akaike, H. (1970). Statistical Predictor Identification. Ann. Inst. Statist. Math. 22 203-
217.

Baggerroer, A.B. (1976). Confidence Intervals for Regression (MEM) Spectral
Estimates. IEEE Trans.Inform.Theory 22 534-545.

Berk, K.N. (1974). Consistent Autoregressive Spectral Estimates. Annals Stat. 2 489-
502.

Bloomfield, P. (1976). Fourier Analysis of Time Series: An Introduction. John Wiley
and Sons, New York, London, Sydney, Toronto.

Brillinger, R. (1975). Time Series: Data Analysis and Theory. Holt, Rinehart and
‘Winston Inc.

Brockwell, P. and Davis, R. (1987). Time Series: Theory and Methods. Springer-
Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo.

Burg, J.P. (1972). The Relationship between Maximum Entropy and Maximum
Likelihood Spectra. Geophys.37 375-376.

Butzer, P. and Nessel, R. (1971).Fourier Analysis and Approximation, Vol 1: One
Dimensional Theory. Birkhaeuser Verlag, Basel und Stuttgart.

Byme, C. L. and Fitzgerald, R. M. (1984). Spectral Estimators that Extend the
Maximum  Entropy and the Maximum Likelihood Methods. SIAM
J.Appl.Math.44 425 -442.

Capon, J. (1969). High Resolution Frequency Wavenumber Spectrum Analysis. Proc
IEEE ST 1408 - 1418.

Capon, J. and Goodman, N.R. (1970). Probability Distributions for Estimates of the
Frequency Wavenumber Spectrum. Proc IEEE 58 1785 - 1786.

Coursol, J. and Dacuhna-Castelle. (1982). Remarks on the Approximation of the
Likelihood Function of a Stationary Gaussian Process. Theory of Probability and
its Applications 27 162-167.

Dahlhaus, R (1983). Spectral Analysis with Tapered Data. Journal of Time Series
Analysis 4 163-175.

Dahlhaus,R (1985). On a Spectral Density Estimate Obtained by Averaging
Periodograms. J.Appl. Prob. 22 598-610.

Dahlhaus,R (1990). Nonparametric High Resolution Spectral Estimation. Probability
Theory Rel.Fields 85 147-180.

Grenander, UL and Szegd, G. (1958). Toeplitz Forms and their Applications, University
of California Press, Berkeley and Los Angeles.

Hannan, E.J. and Wahlberg, B.(1989). Convergence Rates for Inverse Toeplitz Matrix
Forms. Journal of Multivariate Analysis 31 127-135.

Hurvich, C.M. and Tsai, C.L. (1989). Regression and Time Series Model Selection in
Small Samples. Biometrica 76 297-307.

98



Hosoya, Y. and Taniguchi, M. (1982). A Central Limit Theorem for Stationary
Processes and the Parameter Estimation of Linear Processes. Annals Stat. 10 132-
153

Kay, S.M. and Marple, S.L. (1981). Spectrum Analysis - A Modern Perspective. Proc
IEEE 69 1380 - 1419.

Lewis, R. and Reinsel, G.C. (1985). Prediction of Multivariate Time Series by
Autoregressive Model Fitting. Journal Mult. Anal. 16 393-411.

Linhart and Zucchini (1986). Model selection. Wiley Series in Probability and
Mathematical Statistics.

McDonough, R.N. (1979). Application of the Maximum Likelihood Method and the
Maximum Entropy Method to Array Processing. In: Nonlinear Methods of Spectral
analysis, Edit : Haykin, 181 - 245, Springer Verlag Heidelberg, New York 1979

Marzetta, T.L. (1983). A New Interpretation for Capon's Maximum Likelihood Method
of Frequency Wavenumber Spectral Estimation. JEEE Trans. Acoust. Speech.
Sign.Proc.31 445.

Parzen, E. (1957). On Consistent Estimates of the Spectrum of a Stationary Time Series.
Ann. Math. Statist. 28 329-348.

Pisarenko, V.F. (1972). On the Estimation of Spectra by Means of Non-linear Functions
of the Covariance Matrix. Geophys. J. Royal Astr. Soc. 28 511 - 531.

Rosenblatt, M. (1985). Stationary Sequences and Random Fields. Birkh&user, Boston,
Basel, Stuttgart.

Shibata, R. (1980). Asymptotically Efficient Selection of the Order of the Model for
Estimating Parameters of a Linear Process. Annals Stat. 8 147-164.

Subba Rao, T. and Gabr M.M.(1989). The Estimation of Spectrum, Inverse Spectrum
and Inverse Autocovariances of a Stationary Time Series. Journal of Time Series
Analysis 10 183-202.

Szegd, G. (1959). Orthogonal Polynomials, American Mathematical Society Colloquium
Publications vol XXIII, New York 1959.

Taniguchi, M. (1980). On Selection of the Order of the Spectral Density Model for a
Stationary Process. Ann. Inst. Statist. Math. 32 401-419.

Zhurbenko, L.G. (1980). On the Efficiency of Spectral Density Estimates of a Stationary
Process. Theory Prob. Appl. 25 466-480.

99











