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Motivation

Motivation I : Decision under uncertainty

Consider an agent facing a random consequence X ∼ P.

If P is known for certain then X can be evaluated using VnM utilities

U(X ) = EP [u(X )]

What if a single probability law (model) is not available for the
description of X?

M = {P1, · · · ,PN} set of plausible models for X
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Motivation

Various classical choices (incomplete list)

▶ Minimax preferences (Gilboa - Schmeidler)

U(X ) = min
P∈M

E[u(X )]

To paraphrase Leibnitz ”the worst of all possible worlds” - an over cautious
pessimistic view of the risk, a worst case scenario.

▶ Multiplier preferences (Hansen-Sargent)
Pick the most plausible model P0 (reference model) and then consider all
possible models P ∈ P as models for X “penalizing” them using the KL entropy
H(P | P0):

U(X ) = min
P∈P

(EP(u(X )) +
1

θ
H(P | P0)), θ > 0

▶ Variational preferences (Maccheroni, Marinacci, Rustichini)
Consider a convex lower semicontinuous penalty function φ in the space of all
possible models for X , P ∈ P, and solve the variational problem

U(X ) = min
P∈P

(EP [u(X )] + φ(P)).

Variational preferences include minimax preferences and multiplier preferences as
special cases.
Moreover they follow an interesting axiomatic framework developed by
Maccheroni, Marinacci, Rustichini (MMR2006) and importantly satisfy the
uncertainty aversion axiom

f1 ∼ f2 =⇒ λf1 + (1− λ)f2 ⪰ f1, for any acts f1, f2, λ ∈ (0, 1).
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Motivation

What if there is some belief that all models in M share a fraction of
the truth or capture different aspects of the phenomenon under study?

Then we may treat each of the models in M as “random”
observations of the true (unknown) model and try to do some type of
least squares approximation in model space i.e. find a mean model
consisting of the above which will be used to describe X .

Motivated by the concept of the Fréchet mean such a model will be

PB = argmin
P∈P

(w1d
2(P,P1) + · · ·+ wNd

2(P,PN))

where

▶ w1, · · · ,wN are weights on the various models
▶ d(P,Pi ) is some distance in the space of models (probability measures)

PB is called the barycenter of M and is the model in P of least
distance from all models in M.

In Euclidean space the barycenter corresponds to the standard notion
of the mean - minimizer of variance.
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Motivation

Having obtained PB one could consider

U(X ) = EPB
[u(X )] (1)

as a decision making tool.

However, as we shall see, building on the theory of variational
preferences, we can go further than our proposal in (1).

At any rate, PB sound like a good way to combine all models in a
single one - weighted by an appropriate weight of belief wi - to be
used subsequently for evaluating X .
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Motivation

Motivation II: Group decision making

Consider a group of N agents wishing to agree on the valuation of a
common resource (asset or risk) X

Each agent i has a different model Pi for X

How can we get a valuation for X such that it is most likely that all
agents will agree on and thus validate the common decision?

Examples: Climate change negotiations, CAT bonds valuation etc
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Motivation

If the probability of agent i accepting a proposal P concerning X depends on
how distant P is from her anchor Pi then the proposal which is most likely to
be accepted by the group will be the one that satisfies

d(P,P1) ≤ ϵ1,

· · ·
d(P,PN) ≤ ϵN ,

where ϵi represent the disposition of agent i to deviate from her anchor
position.
By a scalarization argument one could argue (informally) that a model P with
sufficiently high probability of being accepted by all agents will be

PB = argmin
P∈P

(w1d
2(P,P1) + · · ·+ wNd

2(P,PN)),

with wi related to ϵi .
This is a model suitable for valuation of X , in terms of

U(X ) = EPB
[u(X )], (2)

or some refinements upon it.
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Frechét mean preferences

Frechét mean preferences

Consider the space of models (probability measures) P endowed with a notion
of distance (metric) d .
Consider the set of plausible models

M = {P1, · · · ,PN},

and define the Fréchet function

FM(P) =
N∑
i=1

wid
2(P,Pi ).

The baryenter of M is defined as

PB = argmin
P∈P

FM.

Definition 1

For any ϕ : R → R++ convex and increasing we define the Fréchet mean utility
functional

U(X ) = min
P∈P

(EP [u(X )] + ϕ(FM(P))
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Frechét mean preferences

Fréchet mean utilities are a special case of the class of variational
utilities (Maccheroni, Marinacci, Rustichini MMR2006) and satisfy
their axiomatic framework.

Importantly on account of that they display ambiguity aversion effects

They penalize large variability in model space, if ϕ(FM(PB)) = 0
(normalization) then

U(X ) ≤ EPB
[u(X )].

P 7→ ϕ(FM(P)) plays the role of a penalty function penalizing the less
plausible models in M (e.g. outliers of some sort).

The relative magnitude of the penalty term with respect to the utility
term plays an important role

- If ϕ >> then P∗ ≃ PB and U(X ) ≃ EPB
[u(X )].

- If ϕ << then P∗ may deviate considerably from PB and U(X ) can
be significantly smaller than EPB

[u(X )].
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Frechét mean preferences

Fréchet multiplier preferences

The special case where

ϕ(FM(P) =
θ

2
(FM(P)− FM(PB), θ > 0,

corresponds to Fréchet multiplier preferences,

Uθ(X ) = min
P∈P

[EP [u(X )] +
θ

2
(FM(P)− FM(PB))], θ > 0.

θ is called the multiplier.

For any θ > 0

Uθ(X ) ≤ EPB
[u(X )], pessimism effect

As θ → ∞ then Uθ(X ) → EPB
[u(X )]
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Frechét mean preferences

The following questions arise:

1 Which is a suitable distance in the space of probability measures?

2 In general it seems that

U(X ) = EPB
[u(X )] + C (X )

where C (X ) ≤ 0 is a correction term to the barycentric expected
utility

Can we calculate the correction term C explicitly so as to use the
utility functional U for concrete valuations?
Can we understand the interplay between risk and uncertainty?
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Optimal transportation enters : The Wasserstein distance

Optimal transportation enters : The Wasserstein distance

A very convenient metric (distance) in the space of probability measures is the
Wasserstein distance from optimal transport.

Given two probability measures P and Q their 2-Wasserstein distance can be
defined as

d2(P,Q) = W2(P,Q) =

{
inf

γ∈Π(P,Q)
Eγ [(X − Y )2]

}1/2

,

X ∼ P, Y ∼ Q, (X ,Y ) ∼ γ,

where Π(P,Q) is the set of all probability measures on Ω× Ω with marginals P
and Q.

Figure: µs = P, µt = Q, T is the transport map (source:
http://people.irisa.fr/Nicolas.Courty/OATMIL/)
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Optimal transportation enters : The Wasserstein distance

The calculation of the Wasserstein metric is in general a difficult computational problem.

However, in certain cases explicit answers can be found:

For measures on R a closed form result exists in terms of the quantile functions

d2(P,Q) =

{∫ 1

0
(F−1(s)− G−1(s))2ds

}1/2

,

F (x) = P((−∞, x ]), G (x) = G ((−∞, x ]).

This leads to a closed form solution for the barycenter as quantile average

F−1
B (s) =

N∑
i=1

wiF
−1
i (s),

FB(x) = PB((−∞, x ]), Fi (x) = Pi ((−∞, x ]), i = 1, · · · ,N.

For normal families X ∼ N(µ1,S1), Y ∼ N(µ2,S2) we have that

d2(P,Q) =
{
∥µ1 − µ2∥2 + Tr(S1 + S2 − 2(S

1/2
1 S2S

1/2
1 )1/2)

}1/2

This leads to a “closed” form solution for the barycenter PB ∼ N(µB ,SB)

µB =
N∑
i=1

wiµi ,

SB solves SB =
N∑
i=1

wi (S
1/2
B SiS

1/2
B )1/2
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Optimal transportation enters : The Wasserstein distance

Why the Wasserstein metric?

d2(·, ·) is a true metric in the space of probability measures - unlike
KL divergence - compatible with the weak-* topology

It allows us to extend one of the most desirable properties of the
Kullback-Leibler divergence - that of reducing robust decision
problems within the exponential family of distributions to quadratic
optimization problems - to any family

It can be used to establish an upper bound for the difference in
expected utility associated with using different probability measures
for determining the expected utility associated with a random variable

|EP [u(X )]− EQ [u(X )]| ≤ C d2(P,Q).
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Fréchet-Wasserstein mean utilities

Fréchet-Wasserstein mean utilities

We will now consider that X ∈ R (a natural assumption for a risk), focus
on the multiplier case, and metrize P with the 2-Wasserstein metric.

Definition 2 (F-W multiplier preferences)

Uθ(X ) = min
P∈P

[EP [u(X )] +
θ

2
(FM(P)− FM(PB))], θ > 0,

FM(P) =
N∑
i=1

wiW2(P,Pi )
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Fréchet-Wasserstein mean utilities

Theorem 3 (PeXY2021)

There exists a positive constant θc such that for θ > θc :

(a) A minimizer Pθ of problem (2) i is expressed in terms of the quantile F−1
θ ,

which is the solution of

1

θ
u′(z) + z = F−1

B (s), s ∈ [0, 1], θ > 0, (3)

and

Uθ(X ) =

∫ 1

0
u(F−1

θ (s))ds +
1

2θ

∫ 1

0
(u′(F−1

θ (s)))2ds. (4)

(b) Assuming that u ∈ C 3, the following perturbative expansion for sufficiently
large θ holds:

F−1
θ = F−1

B − 1

θ
u′(F−1

B ) +
1

θ2
u′′(F−1

B )u′(F−1
B ) + O

(
1

θ3

)
,

Uθ(X ) = EPB
[Vθ(X )], (5)

Vθ(x) := u(x)

(
1− 1

2θ

(u′(x))2

u(x)
+

1

2θ2
(u′(x))2 u′′(x)

u(x)

)
+ O

(
1

θ3

)
.
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Fréchet-Wasserstein mean utilities

Comments

1 It holds that F−1
θ ≤ F−1

B and Uθ(X ) ≤ UB(X ) := EPB
[u(X )] for all

θ > θc , i.e., the DM underestimates X at all confidence levels as
compared to the Wasserstein barycenter.

2 F−1
θ → F−1

B and Uθ(X ) → Uβ(X ) = EPB
[u(X )] as θ → ∞.

3 If u′ is a decreasing function we get the sharper estimate
F−1
θ ≤ F−1

B − 1
θu

′(F−1
B ) for all θ > θc .

4 The expansion in (5) looks like an expected utility representation, but
note that the “utility function” Vθ is not in general an increasing
function of x unless θ is large enough.

5 The above expressions are interesting as they present the interplay
between risk aversion (as quantified by the derivatives of u) and
ambiguity aversion (as quantified by θ).
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Fréchet-Wasserstein mean utilities

6 For the case of CRRA utilities of the form

uγ(x) =

{
ln x , for γ = 1,
x1−γ

1−γ , for γ > 1.

we obtain - upon defining γ1 = 1 + 2γ, γ2 = 2 + 3γ - that

Uθ(X ) = EPB
[uγ(X )]−1− γ1

2θ
EPB

[uγ1(X )]−γ(1− γ2)

2θ2
EPB

[uγ2(X )]+O

(
1

θ3

)
,

(6)
with the leading order in the expansion for Uθ(X ) is the barycentric expected
utility, while the corrections can be interpreted again as barycentric expected
utilities albeit corresponding to other members of the CRRA family, but
importantly with larger risk aversion coefficients.

7 A similar result can be obtained for CARA utility functions
u(x) = 1

λ(1− e−λx), as

Vθ(x) =
1

λ
(1− e−λx)− λ

2θ
e−2λx − λ2

2θ2
e−3λx + O

(
1

θ3

)
. (7)
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Fréchet-Wasserstein mean utilities

Marginal utility

An important tool in valuation is marginal utility (it can provide estimates
for prices).

Definition 4 (Marginal ambiguity-averse utility)

The marginal utility of X is defined as

Mθ(X ) := lim
ϵ→0

1

ϵ
(Uθ(X + ϵ)− Uθ(X )),

(provided that the limit exists) where ϵ > 0 is a non-random infinitesimal
endowment
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Fréchet-Wasserstein mean utilities

Proposition 5 (PeXY2021)

For θ > θc it holds that

(a) The marginal utility Mθ is represented as

Mθ(X ) =

∫ 1

0
u′(F−1

θ (s))ds = EQθ
[u′(X )]. (8)

Morever, it holds that

Mθ(X ) ≥ MB(X ) = EPB
[u′(X )], ∀ θ > θc ,

while Mθ(X ) → MB(X ) for θ → ∞.
(b) For large θ, and assuming sufficient smoothness for u, marginal utility admits

the expansion

Mθ(X ) = EPB
[u′(X )Cθ(X )], (9)

where Cθ(X ) is a correction factor of the form

Cθ(X ) = 1− 1

θ
u′′(X ) +

1

θ2

[
(u′′(X ))2 +

1

2
u′′′(X )u′(X )

]
+ O

(
1

θ3

)
. (10)
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Fréchet-Wasserstein mean utilities

Comment

The statement of the above proposition admits a very intuitive
interpretation.

Since F−1
θ ≤ F−1

B for all θ > 0, which means that the uncertainty averse
agent using the probability model with quantile function F−1

θ provides
statistical estimates for X , which at all confidence levels are lower than the
corresponding estimates provided by the model related to the Wasserstein
barycenter of M.

However, by Proposition 5(a), the marginal utility of the uncertainty averse
agent admits a representation under the model with quantile function F−1

θ .

Since F−1
θ underestimates F−1

B , the marginal utility corresponding to
model F−1

θ will be higher than the marginal utility corresponding to model
F−1
B (since u′ is a decreasing function so that u′(F−1

θ ) ≥ u′(F−1
B )).
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Fréchet risk measures

Fréchet risk measures

Analogous concepts can be used for the definition of convex risk measures
that can be used for risk assessment and management in the presence of
multiple priors [PaY2018].

Here we expand the concept in the following sense:

The risk X depends on a vector of risk factors Z = (Z1, · · · ,Zd) and there
are N models available for their probability laws,

M = {P1, · · · ,PN}.

The risk X is connected with the risk factors through the risk mapping

Z = (Z1, · · · ,Zd) 7→ −X = Φ0(Z ).
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Fréchet risk measures

Convex risk measures in a nutshell

Convex risk measures (Fölmer) are important concepts in modern risk management
which serve to define a capital requirement (on behalf of the regulatory authority).

Definition 6 (Convex risk measures)

Let L is a space of random variables containing the relevant financial positions. A
convex risk measure ρ : L → R is a mapping that satisfies the following properties

1 Monotonicity: If X ≤ Y then ρ(X ) ≥ ρ(Y )
2 Cash invariance: If m ∈ R then ρ(X +m) = ρ(X )−m
3 Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X ) + (1− λ)ρ(Y ), 0 ≤ λ ≤ 1.

The following robust representation of convex risk measures due to Fölmer is
extremely important:

ρ(X ) = max
P∈P

[EP [−X ]− α(P)],

where α : P → R is a convex penalty function.
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Fréchet risk measures

Definition 7 (Fréchet risk measure)

Let α : R → R+ ∪ {∞} be an increasing function, such that α(0) = 0, and
let Φ0 : Rd → R+ be the risk mapping connecting the stochastic factors Z
to the risk position X of the firm. We define the Fréchet risk measure for
any γ ∈ (0,∞) as

ρ(X ) := sup
P∈P(Rd )

{
EP [−X ]− 1

2γ
α(FM(µ))

}
, (11)

where M is the set of priors for Z , −X = Φ(Z ) and FM the normalized
Fréchet function.
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Fréchet risk measures

Proposition 8 (Properties of Fréchet risk measures)

Consider the measurable space (Ω,F) where here Ω = Rd and F ⊆ B(Rd)
a given σ-algebra.

(i) The Fréchet risk measures considered as mappings ρ : L → R+,
where L := {X : Ω → R : X F −measurable } are convex risk
measures, such that ρ(X ; γ) ≥ EPB

[−X ], for all γ ≥ 0, where PB is
the Fréchet barycenter of M.

(ii) For any fixed −X = Φ0(Z ), it holds that ρ(X ; γ1) ≤ ρ(X ; γ2) for any
0 ≤ γ1 ≤ γ2, while

lim
γ→0+

ρ(X ; γ) = EPB
[Φ0(Z )] ≤ ρ(X ; γ) ≤ ess sup

Z∈Ω=Rd

Φ0(Z ),

where PB is the Fréchet barycenter of M.

The above proposition implies that the parameter γ plays the role of an
uncertainty aversion parameter
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Fréchet risk measures

When metrizing the space of probability measures on Rd using the Wasserstein
metric explicit calculations are possible.

Proposition 9

Assume that M = {µi , i = 1, . . . , n} with µi = LS(mi ,Si ) with mi ∈ Rd and
Si ∈ P(d), where P(d) ⊂ Rd×d is the set of positive definite symmetric matrices.
If the position of the firm is provided by the risk mapping −X = Φ0(Z ) then ρ(X )
is calculated as the solution of the matrix optimization problem

ρ(X ) = sup
(m,S)∈Rd×P(d)


∫
Rd

Φ0(µ+ S1/2z)dP(z)︸ ︷︷ ︸
Φ

− 1

2γ

(
n∑

i=1

wi∥m −mi∥2 +
∑
i=1

wiTr(S + Si − 2(S
1/2
i SS

1/2
i )1/2)

)} (12)

The maximizer (m, S) to the above problem can be found as the solution of the set
of matrix equations (first order conditions):

γDmΦ(m,S)− (m −
n∑

i=1

wimi ) = 0,

2γS1/2DSΦ(m,S)S1/2 − (S −
n∑

i=1

wi (S
1/2SiS

1/2)1/2) = 0,

(13)
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Applications

Applications

We illustrate the use of the proposed utility functionals and risk measures
using 3 indicative applications:

1 Application in estimating the social discount rate

2 Application group decision making - CAT bond pricing

3 Application in estimation of risk premia under model uncertainty.
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Applications The social discount rate

The social discount rate

The social discount rate (SDR) is one of the most fundamental but also
controversial parameters in cost-benefit analysis.

In the absence of model uncertainty the SDR is determined by the classical
consumption-based Ramsey discounting formula

r(t) = δ − 1

t
ln

E[u′(C (t))]

u′(C (0))
,

where δ is the utility discount rate, C (t) is consumption at time t (which
is a random variable) and C (0) is today’s consumption. Intuitively, if
expected marginal utility in the future is higher, then the future is
discounted less.

This formula provides a term structure for r and is a crucial parameter in
standard cost-benefit analysis (Gollier 2013).
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Applications The social discount rate

Assume now that a regulator seeks to calculate the SDR in the presence of
model uncertainty.

Assume that for any fixed t > 0, the random variable X = C (t) is the
unknown consumption at this instant in time, and that there is a set of
models Mt of probability measures concerning the distribution of C (t),
described in terms of the quantiles F−1

t,i

For any fixed t > 0, a direct application of Theorem 3 for X = C (t) allows
the calculation of the utility functional Uθ(C (t)), whereas by repeating the
arguments that led to the results in Proposition 5, we can see that the
relevant SDR formula now assumes the form

r(t) = δ − 1

t
ln

[M(C (t))]

u′(C (0))
= δ − 1

t
ln

EP∗
t
[u′(C (t)]

u′(C (0))
, (14)

where the standard expected marginal utility is now replaced by M(C (t))
(see Definition 4 and Proposition 5) and P∗

t is the probability measure
corresponding to the quantile function (F ∗

t )
−1.
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Applications The social discount rate

With regard to formula (14), it should be noted that:

(a) This seemingly simple formula takes model uncertainty fully into consideration
since the effects of uncertainty are included in the minimizing quantile (F ∗

t )
−1.

(b) In the limit as θ → ∞, r(t) → rB(t), and the barycentric SDR rB is obtained.
(c) Since by Proposition 5 it holds that EP∗

t
[u′(C (t)] > EPt,B [u

′(C (t)], and
keeping in mind that u′(C (0)) > 0, we conclude that

r(t) < rB(t), t ∈ R+, θ > 0, (15)

which implies that the effect of uncertainty aversion is to decrease the SDR
relative to the SDR obtained under risk aversion with expected utility defined
in terms of the Wasserstein barycenter model PB. This can be regarded as a
second-order precautionary effect.

(d) The perturbative expansions obtained can be used to analytically approximate
the SDR using formula (14) to provide information on the dependence of the
SDR on various parameters of interest (such as θ or in the case of CRRA
utilities the risk aversion coefficient γ).
The effect of uncertainty aversion, at least to first order in 1

θ , is to decrease
the SDR as compared to the barycentric one (ambiguity prudence effect).
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Applications The social discount rate

A numerical experiment

Following Gollier (2013, Ch. 4), we assume that the consumption process C (t)
follows a single factor (autoregressive) model of the form

C (t + 1) = C (t) exp(x(t)),

x(t + 1) = µ+ y(t) + εx(t),

y(t) = ϕy(t − 1) + εy (t),

(16)

where εx(t), εy (t) are independent and serially independent with
E[εx(t)] = E[εy (t)] = 0 and Var(εx(t)) = σ2

x , Var(εy (t)) = σ2
y , y−1 is some initial

state, and ϕ ∈ [0, 1] is a parameter representing the degree of persistency (mean
reversion) of y .

The choice ϕ = 0 reduces the model to a standard random walk model which is a
discretization of a Wiener process.

The case where ϕ ̸= 0 corresponds to a discretization of an Ornstein-Uhlenbeck
process.

Typically, {y(t)} is an unobserved stochastic factor, which has an effect on the
observed growth rate {x(t)} of the consumption process {C (t)}.
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A straightforward induction procedure shows that, given ϕ and y−1, the
stochastic consumption process {C (t)} is lognormally distributed and in
particular

lnC (t)− lnC (0) ∼ N(µt , σ
2
t ),

where

µt = µ t + y−1
1− ϕt

1− ϕ
,

σ2
t =

σ2
y

(1− ϕ)2

[
t − 2ϕ

ϕt − 1

ϕ− 1
+ ϕ2ϕ

2t − 1

ϕ2 − 1

]
+ σ2

x t.

When all the parameters and the distributions of noise terms concerning
model (16) are fully known, i.e., when we are in a world of a single model,
the Ramsey formula can be used to produce a term structure for the SDR
(Gollier 2013).

Using the general class of CRRA utilities, Gollier produces an analytic
formula for the term structure of the discount rate as

r(t) = δ + γ
1

t
µt −

1

2
γ2

1

t
σ2
t .
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Bansal and Yaron (2004) calibrated the factor model for consumption to
data from the period 1929-1998 using annual data from the USA,
producing estimates for the monthly mean return and volatilities of
µ = 0.0015, σx = 0.0078, σy = 0.00034, and estimated the reversion
parameter as ϕ = 0.979.

Using these parameter values, Gollier implemented formula (16) to
produce a term structure which is increasing or decreasing depending on
the sign of y−1.

In particular Gollier used a range of values for y−1 ∈ [−0.001, 0.001] for his
numerical experiments for the term structure. In the case where ϕ = 0,
the term structure is flat.
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Applications The social discount rate

Even if we trust the autoregressive model for the evolution of consumption, there
are parameters related to the hidden variables included in the model, the value of
which can be doubted.

For the sake of illustration consider the two parameters ϕ and y−1.

Different estimations or opinions regarding the parameters p = (ϕ, y−1) produce
different parameters µt and σ2

t , therefore different models for the distribution of
C (t).

The important question that arises is how the emergence of multiple models affects
the SDR relative to the single model case (16).
We study this case when each model in the set Mt is a lognormal model of the
type presented in (16).

Each has parameters with values µ = 0.0015, σx = 0.0078, σy = 0.00034 (see
Bansal and Yaron 2004), but has a different choice for the parameters ϕ or y−1 or
both.

It is quite natural to allow some uncertainty for these parameters and in particular
for y−1 as these are the ones whose estimation is more delicate.
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Figure: The individual term structure curves (blue) and the barycentric term
structure (red).



Figure: Comparison of the term structure predicted by the barycentric model
rB(t) (red line) and the uncertainty averse Fréchet-Wasserstein model r(t) (blue
line) for two different choices of the parameters in the Gollier model (16).



Applications
The Wasserstein barycenter in consensus group decision making:

Application to CAT bond pricing

The Wasserstein barycenter in consensus group decision
making: Application to CAT bond pricing

We consider the use of the Wasserstein barycenter in group decision
making and show that it can be used in the formulation of proposals that
are most likely to lead to consensus of a group of DMs with varying
models concerning an unknown risk.

In particular we show that the use of the Wasserstein barycenter as a
commonly acceptable probability model upon which a decision is made is
the one which maximizes the probability of reaching consensus.

While the above framework can be encountered in a wide variety of
situations, we choose as a motivating example the issuance and pricing of
a CAT bond.
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Application to CAT bond pricing

CAT bonds are risk sharing instruments, used by a group of firms in the
management of extreme risks such as natural and climate-change related disaster
risks (e.g., earthquakes, hurricanes, floods, fires) and cybersecurity risks.

CAT bonds are issued by insurance and reinsurance firms, corporations,
government bodies and others.

The important effects of ambiguity on the spreads of CAT bonds have been noted
quite early in the literature (see e.g. Bantwal and Kunreuther 2000).

Another important aspect of CAT bonds is the involvement of multiple agents in
their design and pricing (see e.g. Edesess 2015), a fact that affects the calculation
of the expected loss, which according to econometric studies is one of the key
drivers in CAT bonds prices (see e.g. Galeotti et al. 2013).

The application in this section focuses on these two last aspects, and in particular
on the determination of a model for the risk which maximizes the probability of
acceptance by all parties involved, and on the resulting pricing of the CAT bond.
For a detailed review on CAT bonds, including their design and mechanics, see
Cummins and Barrieu (2013) and the references therein.
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Application to CAT bond pricing

As a consequence of their nature, more than one agent is involved in the issuance of
a CAT bond, such as insurers; reinsurers; corporations; pension funds; structuring
agents who assist the issuer in selecting trigger type and are involved in placing the
bond with investors (investment banks or brokers); modelling agents who estimate
the risk based on models and simulations (e.g., Risk Management Solution, Inc, or
Eqcat); ratings agencies and others (see for example Edesess 2015).

All, or the majority, of these different actors must agree on some common
characteristics concerning the contract structure of the CAT bond, which are
related to a common agreement concerning the estimation of the extreme risk.
Since extreme risks are by nature rare events, the lack of sufficient historical data
places them within the realm of model uncertainty, as it is not possible on the basis
of statistical evidence to single out a unique probabilistic model for the random
variable L corresponding to the risk.

On the other hand, in order for all parties to agree upon the issue and the actual
contract terms, a commonly agreed model for the distribution of the extreme risk
must be adopted. The agreement is a necessity, as the issuance of a risk sharing
instrument is of mutual benefit to all parties.

Since in principle each agent involved may have a different prior for the risk, the
valuation has to be effected by a commonly agreed probability model for the risk,
or at least by a model which the agents involved have the maximum probability of
agreeing upon.

The issue of identifying such a model of common acceptance is important for the
construction and pricing of the CAT bond.
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CAT bond fundamentals

This type of instrument has become very popular in recent years, as a
vehicle for transferring extreme risks from insurers and re-insurers to
investors.

It constitutes a tool that enables:

(a) extreme risks to be covered more efficiently, providing solvency to
those involved in the insurance business; and

(b) attractive investment opportunities with potentially high returns to be
provided to investors, which are largely uncorrelated to other market
indices, hence offering at the same time a useful hedging tool.

A. N. Yannacopoulos (AUEB) ε-RFSιη
′
Athens September 6, 2021 42 / 55



Applications
The Wasserstein barycenter in consensus group decision making:

Application to CAT bond pricing

The basic structure of a CAT bond is as follows.

A sponsor or group of sponsors, typically a reinsurer, contacts a
special purpose vehicle (SPV) in order to enter an alternative
reinsurance contract which will guarantee solvency in case of
occurrence of extreme losses.

The sponsor, at the cost of some premium ρ, will receive insurance
coverage up to some level h, in the case of extreme losses.

The SPV for its own coverage, and in order to guarantee the
possibility of covering amount h for the sponsor, issues a CAT bond,
which is a standard defaultable bond, with the default triggered by
the event of extreme losses of the sponsor.
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Several payoff structures are possible: if the amount h is issued in bonds,
then
(a) in the absence of a triggering event, the bond provides coupons to the
investors corresponding to interest r + ρ, where r is a standard interest
rate (e.g., LIBOR) and a principal h; while
(b) in the presence of the triggering event, coupons are reduced to
(r + ρ)(1− d1) and the principal is reduced to h(1− d2), for suitable d1, d2.
Other payoff structures are possible, and there exists a variety of
CAT-based derivatives such as CAT swaps which provide a multitude of
opportunities for risk sharing and efficient risk management.
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However, the success of such instruments, especially in the primary market,
crucially depends on the choice of the premium ρ, which in turn is related to the
spread of the CAT bond.

Numerous theoretical and empirical studies have shown that the most important
quantity is the expected loss EL = E[G (L)] where L is the random variable
corresponding to the catastrophic risk and G : R+ → R+ is an appropriate function
related to the cover agreement between the sponsor(s) and the SPV.

One commonly used model for the spread is a linear model of the form
ρ = c1 + c2EL (Galeotti et al. 2013) for appropriate constants c1, c2 which are
determined by linear regression and may incorporate geographic or seasonal effects.

Other models are based upon utility pricing arguments and result in nonlinear
models of the form ρ = EL+ γ(PFL)α(CEL)β, where PFL = P(L > a) is the

probability of first loss and CEL =
E[L(a,a+h)|L>a]

h =
E[L(a,a+h)]

hP(L>a) is the conditional
expected loss.
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Consensus achievement and pricing of CAT bonds

The above discussion clearly indicates the need for agreement on the probability
P(L ≥ x), no matter which pricing methodology is adopted for the CAT bond.

This requires the development of a scheme which allows the parties involved in the
design of the CAT bond to reach consensus concerning the probability model for
the extreme risk.

Even though each agent may have a different prior concerning the probability
P(L ≥ x), it is in their common interest to agree on a common model that will
favor the issuance of the bond, hence each agent will be willing to change her/his
initial prior and accept a new probability model for L as long as the uneasiness
caused by this change is not too high.

It is reasonable to assume that this uneasiness is an increasing function of the
distance d(Q,Qi ) between the prior Qi of agent i , concerning the risk, and the
adopted probability measure Q.

Put differently, the probability pi of agent i accepting the probability measure Q
can be expressed as pi = φi (d

2(Q,Qi )), where φi : R+ → [0, 1] is a decreasing
function characterizing the strength of each agent’s belief in the prior and her/his
willingness to move.
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If the agents are independent, the probability of all of them agreeing with
the mediator’s proposal is equal to p = p1 · · · pn.

The choice of the probability measure Q that satisfies as many agents as
possible can then be expressed as the problem of choosing Q so as to
maximize probability p.

Since the problem of maximizing p is equivalent to the problem of
maximizing ln(p) under the above assumptions, it can be seen that the
probability measure which will maximize the probability of attaining a
consensus is the solution to

max
Q∈P

n∑
i=1

ln(φi (d
2(Q,Qi )). (17)

We adopt the metrization of the space of probability measures in terms of
the Wasserstein metric d(Q,Qi ) = W2(Q,Qi ) and consider the
corresponding problem (17).
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We will show that the probability measure Q which maximizes the
probability of all agents agreeing to it, is the Fréchet barycenter of the set
of models, with a choice of weights which corresponds to the functions φi .

Proposition 10

Assume that the models Qi , i = 1, · · · , n, for risk L are expressed in terms
of the probability distributions Fi and the corresponding quantiles F−1

i and

define the quantities Mij :=
∫ 1
0 F−1

i (s)F−1
j (s)ds, i , j = 1, · · · , n.

Moreover, assume sufficient smoothness and integrability conditions for
the decreasing functions φi : R+ → [0, 1] and let Φi := − ln(φi ),
i = 1, · · · , n, be increasing and convex.
A probability measure Q ∈ P(R) that maximizes the probability of
agreement of all agents coincides with the Wasserstein barycenter PB

represented by the distribution function FB given by the quantile average

F−1
B =

n∑
i=1

wiF
−1
i ,

where the weights w = (w1, · · · ,wn) are solutions of the set of algebraic
equations

wi =
Φ′
i (Λi (w))∑n

j=1Φ
′
j (Λj(w))

, i = 1, · · · , n, (18)

with

Λi (w) := Mii − 2
n∑

ℓ=1

Miℓwℓ +
n∑

ℓ=1

n∑
k=1

Mℓkwℓwk , i = 1, · · · , n. (19)
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Proposition 10 shows that the probability measure for L that maximizes
the probability of agreement of all agents corresponds to the Wasserstein
barycenter with a particular choice of weights, which are endogenously
determined in terms of the elasticities of the functions φi which model the
rigidity of the various agents to their priors.

In some sense these reflect the bargaining power or authority of each agent
in the group.

Note that the problem studied in Proposition 10 is formally similar to (and
in fact inspired by) a Nash bargaining game in the space of probability
models (measures).

If agents are symmetric with φi (z) = exp(ci − c z), i = 1, · · · , n for ci , c
appropriate constants and with ci possibly varying from agent to agent but
c being the same for all agents, the resulting weights will be 1/n.

This interpretation of the Wasserstein barycenter provides a further
argument in favor of its use as a decision-making tool under model
uncertainty.
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We are now ready to proceed with the pricing of the CAT bond. A

class of suitable models for the extreme risk is the class of generalized extreme
value (GEV) distributions, described by the probability distribution functions

Fi (x) =


exp

(
−
(
1 + ξi

(
x−µi
σi

))−1/ξi
)
, ξi ̸= 0,

exp

(
−e

− (x−µi )

σi

)
, ξi = 0,

Given a set of weights w = (w1, · · · ,wn) determined in the context of Proposition
10, the corresponding Wasserstein barycenter is F−1

B =
∑n

i=1 wiF
−1
i .

In the case where all models correspond to the same shape parameter ξi = ξ, the
Wasserstein barycenter corresponds to a member of the GEV family with
µB =

∑n
i=1 wiµi , σB =

∑n
i=1 wiσi and ξB = ξ.

In the general case, the quantile function F−1
B is explicitly known and its inversion

is therefore an easy numerical task (though not feasible in closed form).

The family of GEV distributions, which encompasses in one family the three types
of extreme value distributions (Gumbel, Weibull and Fréchet), has been
successfully used in the literature to model the distribution of extreme risks such as
earthquakes and floods.
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The premium will be determined in terms of the quantity E[L(a,a+h]] which will now be calculated
under the Wasserstein barycenter, in terms of

EL = EQB [L(a,a+h]] =

∫ 1

0
G (F−1

B (s))ds =

∫ FB(a+h)

FB(a)
(F−1

B (s)− a)ds + h(1− FB(a+ h)). (20)

easily computed numerically for the Wasserstein barycenter.

For certain special cases, such as when all the agents have models with the same shape parameter
ξi = ξ (which is a reasonable assumption for certain types of extreme risks which are modelled by
the Gumbel type), the calculation can be performed analytically. In such cases,

F−1
B (s) =

{
µB + σB

ξ [(− ln s)−ξ − 1], ξ ̸= 0,

µB − σB ln(− ln s), ξ = 0,
, and FB(x) =


exp

(
−
(
1 + ξ

(
x−µB
σB

))−1/ξ
)
, ξ ̸= 0,

exp

(
−e

− (x−µB )

σB

)
, ξ = 0,

so that EL can be approximated in terms of the exponential integral function E1 or an appropriate
series expansion.
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Risk premia estimation under model uncertainty

Consider the standard risk model

X =
N∑
i=1

Ci , Ci i.i.d. N ∼ Pois(λ).

Assume that

N depends on a set of risk factors Z1 in terms of the risk mapping
λ 7→ Φ1(Z1).
Ci depends on a set of risk factors Z2 in terms of the risk mapping
λ 7→ Φ2(Z2).

Then, conditioning on Z1

E [−X ] = E[Φ1(Z1)]E[Φ2(Z2)]

Assuming Z = (Z1,Z2) ∼ N(µ,S) a direct application of Proposition 9 can be
used to obtain ρ(X ) and through that risk premia estimations.

Extensive numerical experiments indicate that the proposed risk measure performs
in a satisfactory manner.
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Conclusion

We have explored the possibility of using tools from the theory of
optimal transportation and in particular the concept of Wasserstein
distance in decision theory

By quantifying the dis-similarity between various models in terms of
the Wasserstein distance we propose

A class of variational utilities suitable for multiple priors
A class of risk measures suitable for multiple priors

Both are amenable to almost closed form solutions which provide
interesting insights between risk and uncertainty

The proposed approach is illustrated in terms of selected applications.
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