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Road map

Road map

Decision problems

toolbox
the Savage and Anscombe-Aumann setups
classical subjective expected utility

Model uncertainty: ambiguity / robustness models

Issues

ambiguity / robustness makes optimal actions more prudent?
ambiguity / robustness favors diversi�cation?
ambiguity / robustness a¤ects valuation?
model ambiguity resolves in the long run through learning?
sources of uncertainty: a Pandora�s box?

Model misspeci�cation
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Probability of facts and of theories

Probability of facts and of theories

Decisions�consequences depend on external factors
(contingencies)

Probability of contingencies

Probabilistic theories on contingencies (e.g., generative
mechanisms, DGP)

Thinking over such theories

Two layers of uncertainty
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Decision problems: the toolbox, I

Decision problems: the toolbox, I

A decision problem consists of

a space A of actions

a space C of material (e.g., monetary) consequences

a space S of environment states

a consequence function ρ : A� S ! C that details the
consequence

c = ρ (a, s)

of action a when state s obtains
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Decision problems: the toolbox, I

Decision problems: the toolbox, I

States are jointly exhaustive and mutually exclusive

We thus abstract from state misspeci�cation issues (e.g.,
unforeseen contingencies)
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Example (i): natural hazards

Example (i): natural hazards

Public o¢ cials have to decide whether or not to evacuate an area
because of a possible earthquake

A two actions a0 (no evacuation) and a1 (evacuation)

C monetary consequences (damages to infrastructures and
human casualties; Mercalli-type scale)

S possible peak ground accelerations (Richter-type scale)

c = ρ (a, s) the monetary consequence of action a when
state s obtains
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Example (ii): monetary policy

Example (ii): monetary policy example

ECB or the FED have to decide some target level of in�ation
to control the economy unemployment and in�ation

Unemployment u and in�ation π outcomes are connected to
shocks ε = (εu , επ) and the policy a according to

u = θ0 + θ1ππ + θ1aa+ εu

π = a+ επ

θ = (θ0, θ1π, θ1a) are three structural coe¢ cients

(i) θ1π and θ1a are slope responses of unemployment to actual
and planned in�ation (e.g., Lucas-Sargent θ1a = �θ1π;
Samuelson-Solow θ1a = 0)

(ii) θ0 is the rate of unemployment that would (systematically)
prevail without policy interventions
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Example (ii): monetary policy

Example (ii): monetary policy

Here:
A the target levels of in�ation

C the pairs c = (u,π)

S has random and structural components

s = (ε, θ)

The reduced form is

u = θ0 + (θ1π + θ1a) a+ θ1πε+ εu

π = a+ επ

and so ρ has the form

ρ (a,w , ε, θ) =
�

θ0
0

�
+ a

�
θ1π + θ1a

1

�
+

�
1 θ1π

0 1

� �
εu
επ

�
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Example (ii): monetary policy

Example (ii): monetary policy

Random components: shocks (i.e., minor omitted explanatory
variables which we are �unable and unwilling to specify�) or
measurement errors

Cf. the works of Hurwicz, Koopmans and Marschak in the
1940s and 1950s
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Example (iii): climate policy

Example (iii): climate policy

A policy maker has to decide some target greenhouse gas
emissions level to control damages associated with global
temperatures increases

Di¤erent sources of uncertainty are relevant
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Example (iii): climate policy

Example (iii): climate policy

Scienti�c uncertainty: how do emissions E translate in
increases of temperatures T? Assume

T = θTE + εT

where θT is a structural CCR (carbon-climate response)
parameter and εT is a random component

Socioeconomic uncertainty: how do increases of temperatures
T translate in economic damages D? Assume a DICE
quadratic

D = θ1DT + θ2DT
2 + εD

where θ1D and θ2D are structural parameters and εD is a
random component

We abstract from issues about the objective functions
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Example (iii): climate policy

Example (iii): climate policy

Here:

A emission policies

C the economic damages (in GDP terms)

S has random and structural components

s = (ε, θ)

where
ε = (εT , εD )

are the random components a¤ecting the climate and economic
systems, and

θ = (θT , θ1D , θ2D )

are their structural coe¢ cients
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Example (iii): climate policy

Example (iii): climate policy

Action a is an emission policy, with cost c (a)

d (a, ε, θ) economic damage function

ρ (a, ε, θ) = �d (a, ε, θ)� c (a) is the overall consequence of
policy a

From 8<: T = θT a+ εT

D = θ1DT + θ2DT 2 + εD

it follows that

d (a, ε, θ) = � (θ1D θT + 2θ2D εT ) a� θ2D θ2T a
2 � θ1D εT

�θ2D ε2T � εD
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Decision problems: the toolbox, II

Decision problems: the toolbox, II

The quartet (A,S ,C , ρ) is a decision form under uncertainty

The decision maker (DM) has a preference % over actions

we write a % b if the DM (weakly) prefers action a to action b

The quintet (A,S ,C , ρ,%) is a decision problem under
uncertainty

DMs aim to select actions â 2 A such that â % a for all a 2 A

Static setting, we abstract from temporal/dynamic issues
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Consequentialism and the Savage setup

Consequentialism and the Savage setup

What matters about actions is not their label / name but the
consequences that they determine when the di¤erent states
obtain

Consequentialism: two actions that are realization equivalent
� i.e., that generate the same consequence in every state �are
indi¤erent

We abstract from ethical issues
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Consequentialism and the Savage setup

Consequentialism and the Savage setup

Formally,

ρ (a, s) = ρ (b, s) 8s 2 S =) a � b

or, equivalently,
ρa = ρb =) a � b

Here ρa : S ! C is the section of ρ at a given by
ρa (s) = ρ (a, s)
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The Savage setup

The Savage setup

The section ρa is a Savage act

We can de�ne a preference % over Savage acts by:

ρa % ρb () a % b

For convenience, we keep using the same symbol %
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The Savage setup

The Savage setup

Savage�s acts are typically denoted by f : S ! C

The collection of all acts is denoted by F

The quartet (F ,S ,C ,%) is a Savage decision problem under
uncertainty

Through acts fc constant to c 2 C , i.e.

fc (s) = c 8s 2 S

the preference % induces a preference over consequences:

c % c 0 () fc % fc 0

Savage�s setup is theoretically convenient but, in applications,
acts may have a contrived interpretation
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Random consequences

Random consequences

In some applications, we are not able to specify an exhaustive
state space

A possibility is to assume that actions deliver consequences
that are stochastic and not deterministic

The consequence of action a is then a (�nitely supported)
probability distribution

ρ (a) 2 ∆0 (C )

on consequences, called lottery

We denote by p and q typical lotteries; for each lottery p, the
quantity

p (c) 2 [0, 1]
is the probability that consequence c obtains
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Random consequences

Random consequences

We identify a consequence c 2 C with the trivial (Dirac)
lottery δc that assigns probability 1 to c , i.e.,

δc
�
c 0
�
=

8<: 1 if c 0 = c

0 else

Up to this identi�cation, we can regard C as a subset of
∆0 (C )
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Random consequentialism and the Anscombe-Aumann setup

Random consequentialism and the Anscombe-Aumann
setup

Consider action with random consequences, i.e., lotteries

Random consequentialism: two actions sharing the same
random consequence in every state are indi¤erent

Formally,

ρ (a, s) = ρ (b, s) 8s 2 S =) a � b
or, equivalently,

ρa = ρb =) a � b
Random consequentialism subsumes (outcome)
consequentialism: recall the identi�cations of consequences
and trivial lotteries

The section ρa is a an Anscombe-Aumann (AA) act
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The Anscombe-Aumann setup

The Anscombe-Aumann setup

AA acts are de�ned by f : S ! ∆0 (C )

The collection of all acts is denoted by F

The quartet (F ,S ,C ,%) is an AA decision problem under
uncertainty

As in the Savage�s setup, through constant acts the preference
% induces a preference over lotteries

Through trivial lotteries, in turn this preference over lotteries
induces a preference over non-random consequences:

c % c 0 () δc % δc 0
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The Anscombe-Aumann setup

The Anscombe-Aumann setup

The AA consequence space has a vector structure �often in
place of ∆0 (C ) one considers a convex subset of a vector
space

By mixing AA acts
αf + (1� α) g

with

(αf + (1� α) g) (s) = αf (s) + (1� α) g (s) 8s 2 S

the space F inherits this vector structure, a very convenient
feature of the AA setup, widely used in the theoretical
literature

Yet, the interpretation of mixing (often via randomization)
can be contrived
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Probability models

Probability models

Because of their ex-ante structural information, DMs know
that states are generated by a probability model m that
belongs to a given subset M of ∆ (S)

Each m describes a possible DGP, so it represents (model) risk

DMs thus posit a model space M in addition to the state
space S , a central tenet of classical statistics a la
Neyman-Pearson-Wald

When the model space is based on experts�advice, its
nonsingleton nature may re�ect di¤erent advice
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Models: a toy example

Models: a toy example

Consider an urn with 90 Red, or Green, or Yellow balls

DMs bet on the color of a ball drawn from the urn

State space is S = fR,G ,Y g

Without any further information, M = ∆ (fR,G ,Y g)

If DMs are told that 30 balls are red, then

M =

�
m 2 ∆ (fR,G ,Y g) : m (R) =

1
3

�
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Models and experts: probability of heart attack

Models and experts: probability of heart attack

Two DMs: John and Lisa are 70 years old

smoke

no blood pressure problem

total cholesterol level 310 mg/dL

HDL-C (good cholesterol) 45 mg/dL

systolic blood pressure 130

What�s the probability of a heart attack in the next 10 years?
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Models and experts: probability of heart attack

Models and experts: probability of heart attack

Based on their data and medical models, experts say

Experts John�s m Lisa�s m
Mayo Clinic 25% 11%

National Cholesterol Education Program 27% 21%

American Heart Association 25% 11%

Medical College of Wisconsin 53% 27%

University of Maryland Heart Center 50% 27%

Table from Gilboa and M. (2013)



Models

Uncertainty: a taxonomy

Uncertainty: a taxonomy

In this setup, we can decompose uncertainty in three distinct layers:

Model risk: uncertainty within a model m

Model ambiguity: uncertainty across models in M

Model misspeci�cation: uncertainty about models (the correct
model does not belong to the posited set M)
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Models: a consistency condition

Models: a consistency condition

Cerreia-Vioglio et al. (2013) take the �structural� information
M as a primitive and thus enrich the standard framework

DMs know that the correct model m that generates
observations belongs to the posited collection M

In terms of preferences: betting behavior must be consistent
with datum M, i.e.,

m (F ) � m (E ) 8m 2 M =) �bet on F�% �bet on E�

The sextet (A,S ,C ,M, ρ,%) forms a classical decision
problem under uncertainty

Here we abstract from model misspeci�cation issues (to be
dealt with later)
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Risk: EU

Risk: EU

Suppose that the DMs know the correct model m, so M is a
singleton

A preference % that satis�es Savage�s axioms and the
consistency condition is represented by the expected utility
criterion

V (a) = ∑
s
u (ρ (a, s))m (s)

That is, actions a and b are ranked as follows:

a % b () V (a) � V (b)

u is a von Neumann-Morgenstern utility function:

c % c 0 () u (c) � u
�
c 0
�

It captures risk attitudes
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Model ambiguity: classical SEU

Model ambiguity: classical SEU

A preference % that satis�es Savage�s axioms and the consistency
condition is represented by the classical subjective expected utility
(SEU) criterion

V (a) = ∑
m

�
∑
s
u (ρ (a, s))m (s)

�
µ (m)

That is, actions a and b are ranked as follows:

a % b () V (a) � V (b)
Here

u is again a von Neumann-Morgenstern utility function

µ is a subjective prior probability that quanti�es the
uncertainty about models; its support is included in M

If M is based on the advice of di¤erent experts, the prior may
re�ect the di¤erent con�dence that DMs have in each of them
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Model ambiguity: classical SEU

Model ambiguity: classical SEU

The �classical� adjective reminds of the classical statistics
tenet on which this criterion relies

If we set
R (a,m) = ∑

s
u (ρ (a, s))m (s)

we can write the classical SEU criterion as

V (a) = ∑
m

R (a,m) µ (m)

In words, this criterion considers the expected utility R (a,m)
of each possible model m, and averages them out according to
the prior µ
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Model ambiguity: classical SEU

Model ambiguity: classical SEU

Each prior µ induces a predictive probability µ̄ 2 ∆ (S)
through reduction

µ̄ (E ) = ∑
m
m (E ) µ (m)

In turn, the predictive probability enables to rewrite the
classical SEU criterion as

V (a) = R (a, µ̄) = ∑
s
u (ρ (a, s)) µ̄ (s)

This reduced form of V is the original Savage subjective EU
representation
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Classical SEU: some special cases

Classical SEU: some special cases

If the support of µ is a singleton fmg, DMs subjectively (and
so possibly wrongly) believe that m is the correct model. The
criterion thus reduces to a Savage EU criterion R (a,m)

If M is a singleton fmg, DMs know that m is the correct
model (a rational expectations tenet)

(i) There is only model risk (quanti�ed by m)

(ii) The criterion again reduces to the EU representation R (a,m),
but now interpreted as a von Neumann-Morgenstern criterion



Models

Classical SEU: some special cases

Classical SEU: some special cases

Singleton M have been pervasive in economics

Since the 70s, economics has emphasized the study of agents�
reactions to the �opponents�actions (from the Lucas critique
in macroeconomics to the study of incentives in game
theoretic settings)

Rational expectations literature had to depart from the
�particle� view of agents of the Keynesian macroeconomics of
the 50s and 60s
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Factorization

Factorization

In applications, states often have random and structural
components

s = (ε, θ)

The shock has the form

ε = σw

where w is a �white noise�with zero mean and unit variance

The parameter σ 2 Σ speci�es the standard deviation of the
shock

DMs know the shock distribution, up to the standard
deviations σ
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Factorization

Factorization

The positive scalar
m (θ, ε)

gives the joint probability of parameters and shocks under
model m

We consider models factored as:

m = δθ � qσ

i.e.,

m(ε, θ0) =

(
qσ (ε) if θ0 = θ

0 else

Each model corresponds to
1 a distribution qσ of the random component ε
2 a parameter θ (e.g., a model climate system/economy)
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Factorization

Factorization

In the factorization m = q � δθ, two kinds of model
uncertainties emerge:

Theoretical model ambiguity about the economic and physical
theories that underpin the models: di¤erent θ correspond to
di¤erent theories

Stochastic model ambiguity about the statistical performance
of such theories, due to shocks and to measurement errors:
di¤erent qσ correspond to di¤erent performances
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Factorization

Factorization

We write the consequence function as ρθ (a, ε) to emphasize
the structural component θ over the random one ε

We index factored models as

mθ,σ = qσ � δθ

An hypothesis on states is summarized by a pair
(θ, σ) 2 H � Θ� Σ

The set of models that the DM posits is

M = fmθ,σ : (θ, σ) 2 Hg
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Factorization

Factorization

Model risk is within each qσ

Model ambiguity is over the structural coe¢ cient θ and the
standard deviation σ

To address it, the DM has a prior probability µ (θ, σ) that
quanti�es DM�s degree of belief that θ is the true parameter
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Factorized classical SEU

Classical SEU under factorization

We have
R (a, p) = ∑

θ,ε

u (ρθ(a, ε)) p(θ, ε)

for each p 2 ∆
In particular, for a factored model indexed by a pair
(θ, σ) 2 Θ� Σ we have

R (a, θ, σ) = ∑
θ0,ε

u (ρθ0(a, ε))mθ,σ(θ
0, ε)

= ∑
θ0,ε

u (ρθ0(a, ε)) (qσ � δθ) (θ
0, ε)

= ∑
ε

u (ρθ(a, ε)) qσ(ε)
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Factorized classical SEU

Classical SEU under factorization

The classical SEU criterion becomes

V (a) = ∑
θ,σ

 
∑

ε

u (ρθ(a, ε)) qσ(ε)

!
µ (θ, σ)

or, equivalently,

V (a) = ∑
θ,σ

R (a, θ, σ) µ (θ, σ)
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Factorized classical SEU: monetary policy example

Factorized classical SEU: monetary policy example

Back to the monetary example

u = θ0 + θ1ππ + θ1aa+ εu

π = a+ επ

The shock ε = (εu , επ) has the form

εu = σuw and επ = σπw 0

where w and w 0 are uncorrelated �white noises�with zero
mean and unit variance

Distribution q σ of shock ε is known up to the vector

σ = (σu , σπ)

of standard deviations
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Factorized classical SEU: monetary policy example

Factorized classical SEU: monetary policy example

Model economy θ is unknown

So, belief µ is on (θ, σ)

The monetary policy problem is then

max
a2A

V (a) = max
a2A ∑

θ,σ

 
∑

ε

u (ρθ(a, ε)) qσ(ε)

!
µ (θ, σ)
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Road map

Decision problems

toolbox
the Savage and Anscombe-Aumann setups
classical subjective expected utility

Model uncertainty: ambiguity / robustness models
Issues

ambiguity / robustness makes optimal actions more prudent?
ambiguity / robustness favors diversi�cation?
ambiguity / robustness a¤ects valuation?
model ambiguity resolves in the long run through learning?
sources of uncertainty: a Pandora�s box?

Model misspeci�cation
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Ambiguity / Robustness: the problem

Ambiguity / Robustness: the problem

Model risk and ambiguity need to be treated di¤erently

The standard expected utility model does not

Since the 1990s, a strand of economic literature has been
studying ambiguity / Knightian uncertainty / robustness /
deep uncertainty

Normative focus (no behavioral biases or �mistakes�)

We consider two approaches

non-Bayesian (Gilboa and Schmeidler 1989)

Bayesian (Klibano¤, M. and Mukerji 2005)

Both approaches broaden the scope of traditional EU analysis
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Ambiguity / Robustness: the problem

Ambiguity / Robustness: the problem

Intuition: betting on coins is greatly a¤ected by whether or
not coins are well tested

Models correspond to possible biases of the coin

By symmetry (uniform reduction), heads and tails are judged
to be equally likely when betting on an untested coin, never
�ipped before

The same probabilistic judgement holds for a well tested coin,
�ipped a number of times with an approximately equal
proportion of heads to tails

The evidence behind such judgements, and so the con�dence
in them, is dramatically di¤erent: ceteris paribus, DMs may
well prefer to bet on tested (model risk) rather than on
untested coins (model risk & ambiguity)

Experimental evidence: Ellsberg paradox
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Ambiguity / Robustness: relevance

Ambiguity / Robustness: relevance

A more robust rational behavior toward uncertainty emerges

A more accurate / realistic account of how uncertainty a¤ects
valuation (e.g., uncertainty premia in market prices)

Better understanding of exchange mechanics

a dark side of uncertainty: no-trade or small-trade results
because of cumulative e¤ects of model risk and ambiguity; see
the �nancial crisis

Better calibration and quantitative exercises
applications in Finance, Macroeconomics, and Environmental
Economics

Better modelling of decision / policy making

applications in Risk Management; e.g., the otherwise elusive
precautionary principle may �t within this framework
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Ambiguity / Robustness: relevance

Ambiguity / Robustness: relevance

Caveat: model risk and ambiguity can work in the same
direction (magni�cation e¤ects), as well as in di¤erent
directions

Magni�cation e¤ects: large �uncertainty prices�with
reasonable degrees of risk aversion

Combination of sophisticated formal reasoning and empirical
relevance
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Ambiguity / Robustness: a Bayesian approach

Ambiguity / Robustness: a Bayesian approach

A �rst distinction: DMs do not have attitudes toward
uncertainty per se, but rather toward model risk and model
ambiguity

Such attitudes may di¤er: typically DMs are more averse to
model ambiguity than to model risk

Experimental evidence from Aydogan et al. (2018)
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Bayesian approach: a tacit assumption

Bayesian approach: a tacit assumption

Suppose consequences are monetary

Recall that R (a,m) = ∑s u (ρ (a, s))m (s)

Classical subjective EU representation can be written as

V (a) = ∑
m

R (a,m) µ (m)

= ∑
m

�
u � u�1

�
(R (a,m)) µ (m)

= ∑
m
u (c (a,m)) µ (m)

where c (a,m) is the certainty equivalent

c (a,m) = u�1 (R (a,m))

of action a under model m
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Bayesian approach: a tacit assumption

Bayesian approach: a tacit assumption

The pro�le
fc (a,m) : m 2 supp µg

is the scope of the model ambiguity that is relevant for the
decision
In particular, DMs use the decision criterion

V (a) = ∑
m
u (c (a,m)) µ (m)

to address model ambiguity, while

R (a,m) = ∑
s
u (ρ (a, s))m (s)

is how DMs address the model risk that each m features
Identical attitudes toward model risk and ambiguity, both
described by the same function u
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Bayesian approach: representation

Bayesian approach: representation

The smooth ambiguity model generalizes the representation
by distinguishing such attitudes

Actions are ranked according to the smooth ambiguity
criterion

V (a) = ∑
m

�
v � u�1

�
(R (a,m)) µ (m)

= ∑
m
v (c (a,m)) µ (m)

The function v : C ! R represents attitudes toward model
ambiguity
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Bayesian approach: representation

Bayesian approach: representation

A negative attitude toward model ambiguity is modelled by a
concave v , interpreted as aversion to (mean preserving)
spreads in certainty equivalents c (a,m)

Ambiguity aversion amounts to a higher degree of aversion
toward model ambiguity than toward model risk, i.e., a v
more concave than u
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Bayesian approach: representation

Bayesian approach: representation

Setting φ = v � u�1, the smooth ambiguity criterion can be
written as

V (a) = ∑
m

φ (R (a,m)) µ (m)

This formulation holds for any kind of consequence (not just
monetary)

Ambiguity aversion corresponds to the concavity of φ, a
�portable� feature

If φ (x) = �e�λx , it is a Bayesian version of the multiplier
preferences (Hansen and Sargent 2001, 2008)

Sources of uncertainty now matter �no longer �uncertainty is
reduced to risk�
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Bayesian approach: extreme attitudes and maxmin

Bayesian approach: extreme attitudes and maxmin

Under extreme ambiguity aversion (e.g., as λ " ∞ when
φ (x) = �e�λx ), the smooth ambiguity criterion in the limit
reduces to the maxmin criterion

V (a) = min
m2supp µ

∑
s
u (ρ (a, s))m (s)

Pessimistic criterion: DMs maxminimize over all possible
probability models in the support of µ

The prior µ just selects which models in M are relevant

It is, essentially, the maxmin criterion of Wald (1950)

Gilboa and Schmeidler (1989) seminal maxmin decision model
can take a Waldean interpretation
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Bayesian approach: extreme attitudes and maxmin

Bayesian approach: extreme attitudes and maxmin

If supp µ = M, the prior is actually irrelevant and we get
back to a stricto sensu Wald maxmin criterion

V (a) = min
m ∑

s2S
u (ρ (a, s))m (s)

When M consists of all possible models, it reduces to the
statewise maxmin criterion

V (a) = min
s
u (ρ (a, s))

A very pessimistic (paranoid?) criterion: probabilities, of any
sort, do not play any role (Arrow-Hurwicz decision under
ignorance)

Precautionary principle
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Bayesian approach: remarks

Bayesian approach: remarks

Under maxmin behavior there might be no trade on assets
(Dow and Werlang, 1992). More generally, a lower trade
volume on assets may correspond to a higher ambiguity
aversion (e.g., higher λ when φ (x) = �e�λx )

So, ambiguity reinforces the idea that uncertainty can be an
impediment to trade

The smooth ambiguity criterion admits a simple quadratic
approximation that generalizes the classic mean-variance
model (Maccheroni, M. and Ru¢ no, 2013)
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Ambiguity / Robustness: a non Bayesian approach

Ambiguity / Robustness: a non Bayesian approach

Need to relax the requirement that a single number quanti�es
beliefs: the multiple (prior) probabilities model

DMs may not have enough information to quantify their
beliefs through a single probability, but need a set of them

Expected utility is computed with respect to each probability
and DMs act according to the minimum among such expected
utilities
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Non Bayesian approach: representation

Non Bayesian approach: representation

Model ambiguity addressed through a set C of priors

DMs use the multiple priors criterion

V (a) = min
µ2C ∑

m

�
∑
s
u (ρ (a, s))m (s)

�
µ(m)

= min
µ2C ∑

s
u (ρ (a, s)) µ̄(s) (1)

DMs consider the least among all the EU determined by each
prior in C

The predictive form (1) is the original version axiomatized by
Gilboa and Schmeidler (1989)
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Non Bayesian approach: comments

Non Bayesian approach: comments

This criterion is less extreme than it may appear at a �rst
glance

The set C incorporates

the attitude toward ambiguity, a taste component

its perception, an information component

A smaller set C may re�ect both better information � i.e., a
lower perception of ambiguity �and / or a less averse
ambiguity attitude

In sum, the size of C does not re�ect just information, but
taste as well
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Non Bayesian approach: comments

Non Bayesian approach: comments

With singletons C = fµg we return to the classical subjective
EU criterion

When C consists of all possible priors on M, we return to the
Wald maxmin criterion

min
m ∑

s
u (ρ (a, s))m (s)

No trade results (kinks)
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Non Bayesian approach: comments

Non Bayesian approach: comments

A more general α-maxmin criterion has been axiomatized by
Ghirardato, Maccheroni and M. (2004):

V (a) = αmin
µ2C ∑

m

�
∑
s
u (ρ (a, s))m (s)

�
µ(m)

+ (1� α)max
µ2C ∑

m

�
∑
s
u (ρ (a, s))m (s)

�
µ(m)
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Non Bayesian approach: variational model

Non Bayesian approach: variational model

In the multiple priors model, a prior µ is either �in�or �out�
of the set C

Maccheroni, M. and Rustichini (2006): general variational
criterion

V (a) = inf
µ2∆(M )

�
∑
m

�
∑
s
u (ρ (a, s))m (s)

�
µ(m) + c (µ)

�
where c (µ) is a convex function that weights each prior µ

If c is the dichotomic function given by

δC (µ) =

�
0 if µ 2 C
+∞ else

we get back to the multiple priors model with set of priors C
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Non Bayesian approach: multiplier model

Non Bayesian approach: multiplier model

If c is given by the relative entropy R (µjjν), where ν is a
reference prior, we get the multiplier criterion

V (a) = inf
µ2∆(M )

�
∑
m

�
∑
s
u (ρ (a, s))m (s)

�
µ(m) + αR (µjjν)

�
popularized by Hansen and Sargent in their studies on
robustness in Macroeconomics

Also the mean-variance criterion is variational, with c given by
a Gini index



Models

Road map

Road map

Decision problems

toolbox
the Savage and Anscombe-Aumann setups
classical subjective expected utility

Model uncertainty: ambiguity / robustness models

Issues (skipped)

ambiguity / robustness makes optimal actions more prudent?
ambiguity / robustness favors diversi�cation?
ambiguity / robustness a¤ects valuation?
model ambiguity resolves in the long run through learning?
dynamics: recursive models
sources of uncertainty: a Pandora�s box?

Model misspeci�cation
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Sources of uncertainty

Sources of uncertainty

We made a distinction between attitudes toward model risk
and model ambiguity

A more general issue: do attitudes toward di¤erent
uncertainties di¤er?

Source contingent outcomes: do DMs regard outcomes (even
monetary) that depend on di¤erent sources as di¤erent
economic objects?

Ongoing research on this subtle topic
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Interim epilogue

Interim epilogue

In decision problems with data, it is important to distinguish
model risk, ambiguity and misspeci�cation

Traditional EU reduces model ambiguity to model risk, so it
ignores the distinction

Experimental and empirical evidence suggest that the
distinction is relevant and may a¤ect valuation

We presented two approaches, one Bayesian and one not

For di¤erent applications, di¤erent approaches may be most
appropriate

Model misspeci�cation can be studied within this framework,
as we will see next
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Road map

Road map

Decision problems

toolbox
Savage setup
classical subjective expected utility

Model uncertainty: ambiguity / robustness models

Issues

ambiguity / robustness makes optimal actions more prudent?
ambiguity / robustness favors diversi�cation?
ambiguity / robustness a¤ects valuation?
model ambiguity resolves in the long run through learning?
sources of uncertainty: a Pandora�s box?

Model misspeci�cation
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Decision making under model uncertainty

Decision making under model uncertainty

Decisions�consequences depend on external factors
(contingencies)

Probability of contingencies

Probabilistic theories on contingencies (e.g., generative
mechanisms, DGP)

Thinking over such theories

Environments with uncertainty through the guise of models
(e.g., policy making)

Decision making under model uncertainty

Based on Cerreia-Vioglio et al. (2021)
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Setup

Recall that a Savage decision problem consists of

a space F of acts f : S ! C

a space C of material (e.g., monetary) consequences

a space S of environment states

The quartet (F ,S ,C ,%) is a Savage decision problem under
uncertainty

If C is a convex subset of a vector space (say, consisting of
lotteries), this quartet takes the Anscombe-Aumann form

We abstract from state misspeci�cation issues (e.g.,
unforeseen contingencies)
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Structured models

Structured models

∆ is the set of probability measures on S

Recall that DMs posit a set M of models m 2 ∆ on states,
with a substantive motivation or scienti�c underpinnings

Each m describes a possible DGP, so it represents model risk

Here it becomes convenient to call structured the models in
M to emphasize their substantive motivation
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Structured models

Structured models

DMs thus posit a model space M in addition to the state
space S

When the model space is based on experts�advice, its
nonsingleton nature may re�ect di¤erent advice

If needed, M is a convex and compact subset of ∆σ
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The uncertainty taxonomy

The uncertainty taxonomy

The quintet (F ,S ,C ,M,%) forms a classical decision
problem under uncertainty

If DMs know that the correct model belongs to M, they
confront model ambiguity

If DMs know the correct model within M, they confront risk
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The uncertainty taxonomy

The uncertainty taxonomy

Recall that, in this setup, we can decompose uncertainty in three
distinct layers:

Model risk: uncertainty within a model m

Model ambiguity: uncertainty across models in M

Model misspeci�cation: uncertainty about models (the correct
model does not belong to the posited set M)
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Model misspeci�cation: Relevance

Model misspeci�cation: Relevance

Do data reveal DGPs and so speak, by and large, for
themselves?

If so, model misspeci�cation is a minor issue

Is theoretical reasoning needed to interpret empirical
phenomena?

If so, model misspeci�cation is a major issue
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Model misspeci�cation: Issues

Model misspeci�cation: Issues

Need of a decision criterion that accounts for model
misspeci�cation concerns

Currently, models with agents confronting model
misspeci�cation are unable to address agents�misspeci�cation
concerns (they even use expected utility preferences)
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Model misspeci�cation

Model misspeci�cation

Suppose that DMs confront model misspeci�cation

At the time of decision, they are afraid that none of the
posited structured models is correct
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Model misspeci�cation (Hansen and Sargent, 2020)

Model misspeci�cation (Hansen and Sargent, 2020)

The DM contemplates also unstructured models p 2 ∆ in
ranking actions according, for example, to a conservative
decision criterion

V (f ) = min
p2∆

�Z
u (f ) dp + λ min

m2M
R(pjjm)

�
λ > 0 is an index of misspeci�cation fear

The relative entropy R (�jj�) is an index of statistical distance
between models (structured or not)

So, minm2M R(pjjm) is an Hausdor¤ �distance�between p
and M

We have minm2M R(pjjm) > 0 i¤ p /2 M
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A protective belt

A protective belt

Unstructured models lack the substantive status of structured
models, they are essentially statistical artifacts

In this variational criterion, they act as a protective belt
against model misspeci�cation
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Model ambiguity: back to Wald 1950

Model ambiguity: back to Wald 1950

The higher λ is, the lower the misspeci�cation fear is

If λ = +∞, the criterion takes a maxmin form

V (f ) = min
m2M

Z
u (f ) dm

and we are back to model ambiguity

Without misspeci�cation fear, the DM would maxminimize
over structured models

No prior beliefs (cf. general maxmin analysis of Gilboa and
Schmeidler, 1989)
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Multiplier criterion

Multiplier criterion

If M is a singleton fmg, so no model ambiguity, we have the
multiplier criterion

V (f ) = min
p2∆

�Z
u (f ) dp + λR(pjjm)

�

Under the protective belt interpretation, it is the criterion of
an expected utility DM who fears model misspeci�cation
(about the unique posited model)
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General form

In general, a decision criterion under model misspeci�cation is

V (f ) = min
p2∆

�Z
u (f ) dp + min

m2M
c (p,m)

�
Here c : ∆�M ! [0,∞] is a statistical distance (for the set
M), with c (p,m) = 0 i¤ m = p

E.g., the relative entropy R(�jj�) or, more generally, a Csiszar
φ-divergence Dφ(�jj�)

We have minm2M c(pjjm) > 0 i¤ p /2 M
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Box and bets

Box and all that

Structured models may be incorrect, yet useful as Box (1979)
famously remarked

Formally, betting behavior must be consistent with datum M,
i.e.,

m (F ) � m (E ) 8m 2 M =) �bet on F�% �bet on E�

Under bet-consistency, a DM may fear model misspeci�cation
yet regards structured models as good enough to choose to
bet on events that they unanimously rank as more likely
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Mild model misspeci�cation

A mild form of fear of model misspeci�cation

PROP The decision criterion

V (f ) = min
p2∆

�Z
u (f ) dp + λ min

m2M
R(pjjm)

�
is bet-consistent

The result continues to hold for any φ-divergence Dφ(pjjm)
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Misspeci�cation neutrality

A preference % is misspeci�cation neutral ifZ
u (f ) dm �

Z
u (g) dm 8m 2 M =) f % g

for all acts f and g

In this case, for decision-theoretic purposes fear of
misspeci�cation plays no role

We are back to aversion to model ambiguity
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Misspeci�cation neutrality

Misspeci�cation neutrality

PROP A preference % represented by the decision criterion

V (f ) = min
p2∆

�Z
u (f ) dp + min

m2M
c (p,m)

�
is misspeci�cation neutral i¤ it is represented by the maxmin
criterion

V (f ) = min
m2M

Z
u (f ) dm

This con�rms behaviorally that the maxmin criterion
corresponds to aversion to model ambiguity, with no fear of
misspeci�cation.
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A tale of two preferences

A tale of two preferences

This criterion can be axiomatized within a two-preference
setup a la Gilboa et al. (2010), in an Anscombe-Aumann
setting

A dominance relation %� represents the DM �genuine�
preference on acts, so it is typically incomplete

A behavioral preference % governs choice, so it is complete
(burden of choice)
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To be continued

To be continued

Bayesian analysis (unforeseen contingencies one level up)

Dynamic analysis

Applications
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Evergreen works from the founding fathers:

1 F. Ramsey, Truth and Probability, 1926

2 L. Savage, Foundations of statistics, 1954 (now a Dover book)

3 B. de Finetti, Teoria della probabilità, 1970 (trans. 1974,
Wiley)

Classical presentations of the classical theory:

1 P. Fishburn, Utility theory for decision making, 1970

2 D. Kreps, Notes on the theory of choice, 1988

Classical presentations of the �neo-classical� theory:

1 I. Gilboa, Theory of decision under uncertainty, 2009

2 P. Wakker, Prospect theory, 2010
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Recent surveys and overviews which the tutorial is based upon:

1 I. Gilboa and M. Marinacci, Ambiguity and the Bayesian
paradigm, 2013 (in a Cambridge U. Press book)

2 L. P. Hansen, Nobel lecture: Uncertainty outside and inside
economic models, J. Political Economy, 2014

3 L. P. Hansen and M. Marinacci, Ambiguity aversion and model
misspeci�cation: An economic perspective, Stat. Science, 2016

4 M. Marinacci, Model uncertainty, J. Europ. Econ. Ass., 2015

5 L. Berger et al., Rational policymaking during a pandemic,
PNAS, 2021
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