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Motivation

Multivariate data are usually modelled via

• Multivariate Normal models

• Multinomial models (for categorical data)

What about multivariate count data?

• Small counts with a lot of zeros

• Normal approximation may not be adequate at all

Idea: Use multivariate Poisson models
Attractive idea but the models are computationally demanding.
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Multivariate Count data

• Different type of crimes in different areas

• Purchases of different products

• Accidents (different types or in different time periods)

• Football data

• Different types of faults in production systems

• Number of faults in parts of a large system etc
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Bivariate Poisson model

Let Xi ∼ Poisson(θi), i = 0, 1, 2

Consider the random variables

X = X1 + X0

Y = X2 + X0

(X, Y ) ∼ BP (θ1, θ2, θ0),

Joint probability function given:

P (X = x, Y = y) = e−(θ1+θ2+θ0)
θx
1

x!
θy
2

y!

min(x,y)∑

i=0


 x

i





 y

i


 i!

(
θ0

θ1θ2

)i

.
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Properties of Bivariate Poisson model

• Marginal distributions are Poisson, i.e.

X ∼ Poisson(θ1 + θ0)

Y ∼ Poisson(θ2 + θ0)

• Conditional Distributions : Convolution of a Poisson with a Binomial

• Covariance: Cov(X, Y ) = θ0

For a full account see Kocherlakota and Kocherlakota (1992) and Johnson,
Kotz and Balakrishnan (1997)
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Bivariate Poisson model (more)

Limited use because of computational problems.

Recursive relationships:

xP (x, y) = θ1P (x− 1, y) + θ0P (x− 1, y − 1)

yP (x, y) = θ2P (x, y − 1) + θ0P (x− 1, y − 1).
(1)

with the convention that P (x, y) = 0, if s < 0.

Need for ”clever” use of thee relationships (See, e.g. Tsiamyrtzis and Karlis,
2002).
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Bivariate Poisson model (estimation)

Various techniques:

• Moment method, Maximum likelihood, Even points etc (see, Kocherlakota
and Kocherlakota, 1992).

• Recently: Bayesian estimation (Tsionas, 1999).
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Bivariate Poisson regression model

(Xi, Yi) ∼ BP (θ1i, θ2i, θ0i)

log(θji) = x′iβj , j = 0, 1, 2

• Allows for covariate-dependent covariance.

• Separate modelling of means and covariance

• Standard estimation methods not easy to apply.

• Computationally demanding.

• Application of an easily programmable EM algorithm
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Application of Bivariate Poisson regression model

Champions league data of season 2000/01

The model

(X,Y )i ∼ BP (λ1i, λ2i, λ0i)

log(λ1i) = µ + home + atthi + defgi

log(λ2i) = µ + attgi + defhi .

Use of sum-to-zero or corner constraints

Interpretation

• the overall constant parameter specifies λ1 and λ2 when two teams of the
same strength play on a neutral field.

• Offensive and defensive parameters are expressed as departures from a team
of average offensive or defensive ability.



Multivariate Poisson models October 2002

'

&

$

%

Application of Bivariate Poisson regression model (2)

Modelling the covariance term

log(λ0i) = βcon + γ1β
home
hi

+ γ2β
away
gi

γ1 and γ2 are dummy binary indicators taking values zero or one depending on
the model we consider. Hence when γ1 = γ2 = 0 we consider constant covariance,
when (γ1, γ2) = (1, 0) we assume that the covariance depends on the home team
only etc.
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Results(1)

Table 1: Details of Fitted Models for Champions League 2000/01 Data
(1H0 : λ0 = 0 and 2H0 : λ0 = constant, B.P. stands for the Bivariate Poisson).

Model Distribution Model Details Log-Lik Param. p.value AIC BIC

1 Poisson -432.65 64 996.4 1185.8

λ0

2 Biv. Poisson constant -430.59 65 0.0421 994.3 1186.8

3 Biv. Poisson Home Team -414.71 96 0.4382 1024.5 1311.8

4 Biv. Poisson Away Team -416.92 96 0.6552 1029.0 1316.2

5 Biv. Poisson Home and Away -393.85 127 0.1512 1034.8 1428.8
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Results(2)

Table 2:

Home Away Goals

0 1 2 3 4 5 Total

0 10(17.3) 11(10.5) 5(4.2) 3(1.4) 0(0.4) 1(0.1) 30(33.9)

1 20(17.9) 17(14.8) 2(6.8) 3(2.5) 1(0.8) 0(0.2) 43(43.0)

2 14(12.8) 13(11.9) 6(6.1) 2(2.4) 0(0.8) 0(0.2) 35(34.2)

3 10 (7.6) 8 (7.6) 8(4.1) 2(1.7) 0(0.6) 0(0.2) 28(21.8)

4 3 (4.1) 4 (4.2) 3(2.4) 1(1.0) 1(0.4) 0(0.1) 12(12.2)

5 3 (2.0) 2 (2.2) 0(1.3) 1(0.5) 0(0.2) 0(0.1) 6 (6.3)

6 1 (1.0) 1 (1.1) 0(0.6) 0(0.3) 0(0.1) 0(0.0) 2 (3.1)

7 0 (0.4) 0 (0.5) 1(0.3) 0(0.1) 0(0.0) 0(0.0) 1 (1.3)

Total 61 (63.1) 56(52.8) 25 (25.8) 12(9.9) 2 (3.3) 1(0.9) 157 (155.8)∗



1

Table 1: Estimated Parameters for 2000/01 Champions League Data.

Poisson Bivariate Poisson

Team Att Def Att Def

1 Anderlecht 0.23 0.32 0.30 0.40

2 Arsenal 0.09 -0.14 -0.01 -0.26

3 B.Munich 0.06 -0.87 0.09 -1.13

4 Barcelona 0.29 0.29 0.36 0.37

5 Besiktas -0.73 0.63 -0.69 0.78

6 Deportivo -0.19 -0.30 -0.24 -0.34

7 Dynamo Kyiv -0.16 -0.25 -0.09 -0.17

8 Galatasaray -0.03 0.10 -0.03 0.13

9 Hamburger SV -0.05 0.25 -0.06 0.42

10 Heerenveen -0.29 -0.22 -0.40 -0.25

11 Helsingborg -0.43 0.23 -0.59 0.25

12 Juventus 0.13 0.62 0.07 0.77

13 Lazio 0.05 -0.20 0.05 -0.20

14 Leeds 0.04 -0.12 0.14 -0.03

15 Leverkusen -0.05 0.42 -0.14 0.42

16 Lyon 0.46 -0.54 0.67 -0.55

17 Man.UND 0.27 -0.41 0.26 -0.60

18 Milan -0.07 -0.23 -0.10 -0.31

19 Monaco 0.37 0.24 0.37 0.20

20 Olympiakos 0.22 -0.68 0.38 -0.77

21 PSG 0.27 0.12 0.32 0.15

22 PSV Eindhoven 0.15 -0.04 0.14 -0.07

23 Panathinaikos -0.55 -0.16 -0.93 -0.26

24 Rangers -0.03 -0.28 -0.04 -0.35

25 Real M. 0.41 0.08 0.46 0.07

26 Rosenborg 0.52 0.59 0.67 0.74

27 Shakhtar 0.16 0.69 0.23 0.92

28 Sparta -0.52 0.36 -0.75 0.45

29 Spartak -0.19 -0.35 -0.04 -0.26

30 Sporting -0.59 0.51 -0.82 0.58

31 Sturm -0.06 0.34 0.22 0.58

32 Valencia 0.22 -1.00 0.20 -1.68

Other Parameters

Intercept -0.05 -0.39

Home 0.64 0.79

λ3 0.00 0.24
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Generalizing the model

Let Yi ∼ Poisson(θi), i = 0, 1, . . . , m

Consider the random variables

X1 = Y1 + Y0

X2 = Y2 + Y0

· · ·
Xm = Ym + Y0

Then (X1, . . . , Xm) jointly follow a multivariate Poisson distribution
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Properties

• The joint probability function is given by

P (X) = P (X1 = x1, X2 = x2, . . . , Xm = xm)

= exp(−
m∑

i=1

θi)
m∏

i=1

θxi
i

xi!

s∑

i=0

m∏

j=1


 xj

i


 i!

(
θ0∏m
i=1 θi

)i

.

where s = min(x1, x2, . . . , xm).

• Marginally each Xi follows a Poisson distribution with parameter θ0 + θi.

• Parameter θ0 is the covariance between all the pairs of random variables.

• If θ0 = 0 then the variables are independent.
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Problems

• Probability function too complicated for

– even the calculation of the function (remedy: use of recurrence
relationships)

– for estimation purposes (remedy:use of an EM algorithm)

• Assumes common covariance for all pairs - unrealistic
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The EM algorithm

Dempster et al. ( 1977), Meng and Van Dyk (1997), McLachlan and Krishnan
(1997)

• Numerical method for finding ML estimates that offers a nice statistical
perspective

• Missing data representation

• Can help in a variety of problems that can be presented as missing data
problems
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The EM mechanics

Let φ the vector of parameters of interest

Complete data Yi = (Xi, Zi)

• Observed part Xi

• Unobserved part Zi

The steps are:

• E-step

Q(φ | φ(k)) = E(logp(Y | φ) | X, φ(k))

(the expectation is taken with respect to the conditional distribution
f(Y | X, φ(k)) and

• M-step Maximize Q(φ | φ(k))

φ(k) represents the vector of parameters after the k-th iteration
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The EM in simple words

• E-step

Estimate the missing part of the data using the data and the current values
of the parameters and

• M-step Maximize the likelihood of the complete data using instead of the
unobserved values their expectations from the E-step
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Pros and Cons

Pros

• Easily programmable

• Estimates in the admissible range

• Byproducts of the algorithm have interesting statistical interpretation

Cons

• Slow Convergence

• Dependence on the initial values
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The EM for the Multivariate Poisson

• Observed data: the vectors Xi

• Unobserved Data: the vectors Yi

Note: Since we have m Xi’s and m + 1 Yi’s, in fact if we find one of the Yi we get
the rest easily
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The EM for the Multivariate Poisson, (Karlis, 2002)

E-step: Using the data and the current estimates after the k − th iteration θ(k)

calculate the pseudo-values

si = E(Y0i | Xi, ti, θ
(k)) =

= θ0ti
P (X1 = x1i − 1, X2 = x2i − 1, . . . , Xm = xmi − 1)

P (Xi)

M-step: Update the estimates by

θ0
(k+1) =

n∑
i=1

si

n∑
i=1

ti

, θi
(k+1) =

x̄i

t̄
− θ0

(k+1) i = 1, . . . , m

If some convergence criterion is satisfied stop iterating otherwise go back to the
E-step for one more iteration.
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Interesting things

• Need for quick calculation of the probabilities

• It can be seen that for this model the EM algorithm is similar to the
Newton-Raphson method

• Conditional distribution of Y0i

f(Y0i = y | xi, θ
(k)) = P (y) =

θy
0

y!

∏m
j=1

θ−y
j

(xji−y)!

s∑
y=0

θy
0

y!

∏m
j=1

θ−y
j

(xji−y)!

,

y = 0, . . . ,min(xi)
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An example-Accident Data

Accidents in 24 roads of Athens for the period 1987-1991

Year

Road 1987 1988 1989 1990 1991 length (km)

Akadimias 11 33 25 23 6 1.2

Alexandras 41 63 91 77 29 2.6

Amfitheas 5 35 44 21 13 2.4

· · ·
Peiraios 86 89 109 90 49 8.0

Sigrou 60 61 87 86 29 4.8

Estimated θ̂1 = 4.902 θ̂2 =8.731 θ̂3 =11.795

Parameters θ̂4 =10.147 θ̂5 =2.517 θ̂0 =3.753
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Restrictions

Important notes

• The above model is restrictive as it assumes the same covariance for all the
pairs

• Almost all the applications of multivariate Poisson models imply this model.

• This model cannot generalize the idea of multivariate normal models
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Extending the model

Let Y = (Y1, Y2, . . . , Ym) and Yi ∼ Poisson(θi), i = 1, . . . , m. Then the general
definition of multivariate Poisson models is made through the matrix A of
dimensions k ×m, where the elements of the matrix are zero and ones and no
duplicate columns exist.

Then the vector X = (X1, X2, . . . , Xk) defined as

X = AY

follows a multivariate Poisson distribution.
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Complete Specification

A = [A1 A2 . . . Ak]

where Ai is a matrix of dimensions k ×

 k

i


 where each column has exactly i

ones and k − i zeroes.

Example k = 3

A1 =




1 0 0

0 1 0

0 0 1


 A2 =




1 1 0

1 0 1

0 1 1


 A3 =




1

1

1



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and then

A =




1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1




This correspond to

X1 = Y1 + Y12 + Y13 + Y123

X2 = Y2 + Y12 + Y23 + Y123 (2)

X3 = Y3 + Y13 + Y23 + Y123

where all Yi’s, are independently Poisson distributed random variables with
parameter θi, i ∈ ({1}, {2}, {3}, {12}, {13}, {23}, {123})
Note: Parameters θij are in fact covariance parameters between Xi and Xj .
Similarly θ123 is a common 3-way covariance parameter.
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Other cases

Independent Poisson variables

Corresponds to the case A = A1.

Example for k = 3

A =




1 0 0

0 1 0

0 0 1




i.e. product of independent Poisson probability functions.
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Full covariance structure

If we want to specify only up to 2-way covariances we take the form

A = [A1 A2]

Example k = 3

A =




1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1




This model is very interesting as it assumes different covariances between all the
pairs and thus it resembles the multivariate normal model.
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This correspond to

X1 = Y1 + Y12 + Y13

X2 = Y2 + Y12 + Y23

X3 = Y3 + Y13 + Y23

where all Yi’s, are independently Poisson distributed random variables with
parameter θi, i ∈ ({1}, {2}, {3}, {12}, {13}, {23})
the covariance matrix of (X1, X2, X3) is now

V ar(X) =




θ1 + θ12 + θ13 θ12 θ12

θ12 θ2 + θ12 + θ23 θ23

θ13 θ23 θ3 + θ13 + θ23



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Properties

For the general model we have

E(X) = AM

and
V ar(X) = AΣAT

where M and Σ are the mean vector and the variance covariance matrix for the
variables Y0, Y1, . . . , Yk respectively.

Σ is diagonal because of the independence of Yi’s and has the form

Σ = diag(θ1, θ2, . . . , θm)

Similarly
MT = (θ1, θ2, . . . , θm)
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Covariance Model

We concentrate on the 2-way full covariance model. A model with m variables has

m +


 m

2




parameters.

Bad news: The joint probability function has at least m summations!

Good news: One may use recurrence relationships (clearly need to find efficient
algorithms to do so)
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Example : a 3-variate full model

For example, consider again the case of the full trivariate Poisson model.

P (X = x) =
∑

(y12,y13,y23)∈C

exp (−∑
θi) θx1−y12−y13

1 θx2−y12−y23
2 θx3−y13−y23θy12

12 θy13
13 θy23

23

(x1 − y12 − y13)!(x2 − y12 − y23)!(x3 − y13 − y23)!y12!y13!y23!
,

where the summation is over the set C ⊂ N3 defined as

C = [(y12, y13, y23) ∈ N3 : {y12+y13 ≤ x1}∪{y12+y23 ≤ x2}∪{y13+y23 ≤ x3} 6= ∅].
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Multivariate Poisson regression model with covariance

structure

Let the vector xi = (x1i, x2i, ..., xmi), i = 1, ..., n, denotes the i-th available
m-variate observation. Let S = R1 ∪R2, where R1 = {1, 2, . . . , m} and
R2 = {ij, i, j = 1, . . . , m, i < j}. The sets R1 and R2 contain the subscripts
needed for the definition of the unobserved variables Yi and the corresponding
parameters θi, i ∈ S. The model takes the form

Xi ∼ m− Po(θti), i = 1, ..., n,

ln θji = z′iβj , i = 1, ..., n

• ti is an offset such as a population or an area and

• θ is the vector of all the parameters, i.e. θ = (θ1, . . . , θm, θ12, . . . , θ(m−1),m).

• βj is the vector of regression coefficients for the j-th parameter and

• zi’ is a vector of regressors not necessarily the same for all parameters
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Example

Consider 3 variates X1, X2, X3 that represent the purchase of 3 products. Jointly
the y follow a 3-variate Poisson distribution with up yo 2-way covariance. Let z

be another variable let say the sex. The model has the form

(X1, X2, X3)i ∼ 3− Poisson(θ1i, θ2i, θ3i, θ12i, θ13i, θ23i)

log(θ1i) = a1 + β1zi

log(θ2i) = a2 + β2zi

log(θ3i) = a3 + β3zi

log(θ12i) = a4 + β4zi

log(θ13i) = a5 + β5zi

log(θ23i) = a6 + β6zi

Perhaps one may use regressors only for the mean parameters θ1, θ2, θ3.
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Estimation- ML estimation via EM algorithm

Denote as Θ(j) = β1
(j−1), β2

(j−1), . . . , βr
(j−1), r = 1, . . . , k the vector of all the

parameters after the j-th iteration.

• E-Step: Using the observed data and the current estimates after j − 1
iterations Θ(j−1) , calculate the pseudo values

sir = E(Y ir | Xi, ti,Θ(j−1))

=

∑
y∈g−1(xi)

yir

k∏
r=1

Po(yi | θir
(j−1)ti)

P (xi | θir
(j−1), ti)

, i = 1, , . . . , n, r ∈ S

where θir
(j−1) = exp(zir

′βr
(j−1)), i = 1, ..., n, r = 1, ..., k.

• M-Step: Update the vector βr by fitting a Poisson regression on sir,
i = 1, . . . , n and explanatory variables zir.

• If some convergence criterion is satisfied stop iterating,
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Estimation- Bayesian estimation via MCMC algorithm

(Karlis and Meligotsidou, 2002)

Closed form Bayesian estimation is impossible

Need to use MCMC methods

Implementation details

• Use the same data augmentation

• Jeffrey priors for regression coefficients

• The posterior distributions of βr, r = 1, . . . , k are non-standard and, hence,
Metropolis-Hastings steps are needed within the Gibbs sampler,
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Application- Crime data

4 different types of crime (rapes , arson, manslaughter, smuggling)

Regressors only for the mean parameters (not to impose imposing so much
structure)

Regressors used (socio-economic characteristics):

• the natural logarithm of the population in millions

• the Gross Domestic Product per capita in Euros for each prefecture (GDP),

• the unemployment rate of the prefecture (unem)

• a dummy variable to show whether the prefecture is at the borders of the
country (borders)

• a dummy variable to show whether the prefecture has at least one city with
population larger than 150 thousands habitants (city).
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Results - EM algorithm

θ12 θ13 θ14 θ23 θ24 θ34
0.8077 4.6115 1.0780 0.0000 0.0000 0.0001

SE 0.0889 1.1127 0.2077 0.0898 0.1431 0.0892

Regression parameters

rapes arsons manslaughter smuggling

β1 S.E β2 SE β3 SE β4 SE

constant 0.7416 0.2349 2.5155 0.0306 3.2762 0.0383 1.3909 0.0614

pop -3.5702 0.4895 -3.9422 0.0559 -2.8082 0.2156 4.7223 0.1354

GDP 0.0632 0.0318 0.0071 0.0357 0.0135 0.0135 0.0150 0.0554

unem -0.0173 0.0285 -0.0046 0.0249 -1.0521 0.0380 0.8009 0.0408

borders 0.1586 0.0469 0.0440 0.0353 0.0386 0.0122 -0.0103 0.0203

city -0.1902 0.0412 0.2721 0.0372 0.3750 0.0729 -0.2637 0.0345

Table 3: ML estimates derived via the EM algorithm for the crime data, when
covariates were considered for the parameters θi, i = 1, 2, 3, 4.
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Results - Bayesian estimation

θ12 θ13 θ14 θ23 θ24 θ34
0.8845 4.7425 1.5177 0.0595 0.0543 0.1505

SE 0.80573 2.02699 1.16568 0.17804 0.15937 0.39825

Regression parameters

rapes arsons manslaughter smuggling

β1 S.E β2 SE β3 SE β4 SE

constant 1.1975 0.86960 2.5197 0.75372 3.4696 0.52593 1.5347 0.83199

pop -1.4777 3.00626 -3.6553 2.52460 -1.9301 1.68167 4.5748 2.66657

GDP 0.0482 0.02236 0.0055 0.02236 0.0053 0.01732 0.0123 0.02236

unem -0.0003 0.34699 -0.0468 0.31289 -0.9884 0.28844 0.7077 0.29614

borders 0.0885 0.08185 0.0372 0.07348 0.0103 0.05000 -0.0274 0.08246

city -0.3948 0.57079 0.2083 0.44215 0.3331 0.30463 -0.2892 0.44710

Table 4: Posterior summaries for the parameters of the model with covariates
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Mixtures of multivariate Poisson distribution

Several different ways to define such mixtures:

• Assume

(X1, . . . , Xm) ∼ m− Poisson(αθ))

α ∼ G(α)

• Assume

(X1, . . . , Xm) ∼ m− Poisson(θ))

θ ∼ G(θ)

• Part of the vector θ varies, while some of he parameters remain constant. For
example (in 2 dimensions)

(X1, X2) ∼ Biv.Poisson(θ1, θ2, θ0)

θ1, θ2 ∼ G(θ1, θ2)
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Dependence Structure

Consider the case

(X1, . . . , Xm | θ) ∼ m− Poisson(θ))

θ ∼ G(θ)

The unconditional covariance matrix is given by

V ar(X) = ADAT

where A is the matrix used to construct the conditional variates from the original
independent Poisson ones and
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D =




V ar(θ1) + E(θ1) Cov(θ1, θ2) . . . Cov(θ1, θm)

Cov(θ1, θ2) V ar(θ2) + E(θ2) . . . Cov(θ2, θm)

. . .

Cov(θ1, θm) . . . V ar(θm) + E(θm)



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Example

(X1, X2) ∼ Biv.Poisson(θ1, θ2, θ3)

θ1, θ2, θ3 ∼ G(θ1, θ2, θ3)

So,

Cov(X1, X2) = V ar(θ3) + E(θ3) + Cov(θ1, θ2) + Cov(θ1, θ3) + Cov(θ2, θ3)

so, if initially the variables are uncorrelated, i.e. θ3 = 0 we have that

Cov(X1, X2) = Cov(θ1, θ2)
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Important findings

Remark 1: The above formula imply that if the mixing distribution allows for
any kind of covariance between the θ’s then the resulting unconditional variables
are correlated. Even in the case that one starts with independent Poisson
variables the mixing operation can lead to correlated variables.

Remark 2: More importantly, if the covariance between the pairs (θi, θj) is
negative the unconditional variables may exhibit negative correlation. It is well
known that the multivariate Poisson distribution cannot have negative
correlations, this is not true for its mixtures.

Remark 3: The covariance matrix of the unconditional random variables are
simple expressions of the covariances of the mixing parameters and hence the
moments of the mixing distribution. Having fitted a multivariate Poisson mixture
model, one is able to estimate consistently the reproduced covariance structure of
the data. This may serve as a goodness of fit index.
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Finite Mixtures of multivariate Poisson distribution

If we assume that θ can take only a finite number of different values finite
multivariate Poisson mixture arise. The pf is given as

P (X) =
k∑

j=1

pjP (X | θj)

where P (X | θj) denotes the pf of a multivariate Poisson distribution.

this model can be used for clustering multivariate count data Examples:

• Cluster customers of a shop according to their purchases in a series of
different products

• Cluster areas according to the number of occurrences of different types of a
disease etc
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Interesting things

• Standard model-based clustering procedures can be applied. for example,
estimation is feasible via EM algorithm, selection of the number of
components can be used in a variety of criteria etc

• Since, mixing operation imposes structure is not a good idea to start with a
model with a lot of covariance terms.

• Since we work with counts one may use the frequency table instead of the
original observations. This speeds up the process and the computing time is
not increased so much even if the sample size increases dramatically
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Summary

• Multivariate Poisson model similar in nature to multivariate normal were
considered.

• The model can be generalized to have quite large (but unnecessary) structure.

• Using up to 2-way covariance term suffice to describe most data sets

• Estimation can be accomplished via EM algorithms (or MCMC schemes from
the Bayesian perspective)

• Multivariate Poisson regression models as well as multivariate clustering can
be applied through these models



Multivariate Poisson models October 2002

'

&

$

%

Open problem -Future and Ongoing research

• Need to speed up estimation, including quick calculation of the probabilities
and improving the EM algorithm.

• Model selection procedure must be obtained that are suitable for the kind of
data (e.g. selection of appropriate covariance terms)

• Finite mixtures of multivariate Poisson regressions

• Bayesian estimation for the finite mixture of multivariate Poisson model
including selection for the number of components.


